Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review
Abstract
:1. Introduction
2. Embryologic Stages of Heart Development
2.1. Formation of the Heart Tube
2.2. Development of Heart Chambers
2.3. Septation of the Heart
3. An Overview of Transcription Factors and Signaling Molecules Involved in the Development of CHD
3.1. TBX5
3.1.1. TBX5 in Heart Development
3.1.2. TBX5 in the Development of the Ventricular Conduction System
3.1.3. Gene–Environment Interactions Involving TBX5
3.1.4. Genetic Variation Involving TBX5
3.2. GATA4
3.2.1. GATA4 in Cardiomyocyte Differentiation
3.2.2. GATA4 in the Development of the Atrioventricular Region
3.2.3. GATA4 in the Developed Heart and Genetic Variation Involving GATA4
3.3. NKX2-5
3.3.1. NKX2-5 in Heart Development
3.3.2. NKX2-5 in the Development of the Ventricular Conduction System
3.3.3. Gene–Gene and Gene–Environment Interactions Involving NKX2-5
3.3.4. Genetic Variation Involving NKX2-5
3.4. CRELD1
3.4.1. CRELD1 in Heart Development
3.4.2. Genetic Variation Involving CRELD1
3.5. Genetic Variations in Other Transcription Factor and Signaling Molecule Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Botto, L.D.; Lin, A.E.; Riehle-Colarusso, T.; Malik, S.; Correa, A. Seeking Causes: Classifying and Evaluating Congenital Heart Defects in Etiologic Studies. Birth Defects Res. Part A-Clin. Mol. Teratol. 2007, 79, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Dolk, H.; Loane, M.; Garne, E. The Prevalence of Congenital Anomalies in Europe. Adv. Exp. Med. Biol. 2010, 686, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.K.; Li, N.; Keavney, B.D. Global Birth Prevalence of Congenital Heart Defects 1970-2017: Updated Systematic Review and Meta-Analysis of 260 Studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linde, D.; Konings, E.E.M.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Birth Prevalence of Congenital Heart Disease Worldwide: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Diab, N.S.; Barish, S.; Dong, W.; Zhao, S.; Allington, G.; Yu, X.; Kahle, K.T.; Brueckner, M.; Jin, S.C. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes 2021, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.N.; Wu, Q.J.; Liu, Y.S.; Lv, J.L.; Sun, H.; Chang, Q.; Liu, C.F.; Zhao, Y.H. Environmental Risk Factors and Congenital Heart Disease: An Umbrella Review of 165 Systematic Reviews and Meta-Analyses with More than 120 Million Participants. Front. Cardiovasc. Med. 2021, 8, 640729. [Google Scholar] [CrossRef] [PubMed]
- Kalisch-Smith, J.I.; Ved, N.; Sparrow, D.B. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a037234. [Google Scholar] [CrossRef]
- Stone, N.R.; Gifford, C.A.; Thomas, R.; Pratt, K.J.B.; Samse-Knapp, K.; Mohamed, T.M.A.; Radzinsky, E.M.; Schricker, A.; Ye, L.; Yu, P.; et al. Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. Cell Stem Cell 2019, 25, 87–102.e9. [Google Scholar] [CrossRef]
- Sahara, M.; Santoro, F.; Sohlmér, J.; Zhou, C.; Witman, N.; Leung, C.Y.; Mononen, M.; Bylund, K.; Gruber, P.; Chien, K.R. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev. Cell 2019, 48, 475–490.e7. [Google Scholar] [CrossRef]
- Richter, F.; Morton, S.U.; Kim, S.W.; Kitaygorodsky, A.; Wasson, L.K.; Chen, K.M.; Zhou, J.; Qi, H.; Patel, N.; Depalma, S.R.; et al. Genomic Analyses Implicate Noncoding de Novo Variants in Congenital Heart Disease. Nat Genet. 2020, 52, 769–777. [Google Scholar] [CrossRef]
- Sylva, M.; Van den Hoff, M.J.B.; Moorman, A.F.M. Development of the Human Heart. Am. J. Med. Genet. Part A 2014, 164, 1347–1371. [Google Scholar] [CrossRef]
- Buijtendijk, M.F.J.; Barnett, P.; van den Hoff, M.J.B. Development of the Human Heart. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Moorman, A.F.M.; Christoffels, V.M.; Anderson, R.H.; Van Den Hoff, M.J.B. The Heart-Forming Fields: One or Multiple? Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1257–1265. [Google Scholar] [CrossRef]
- Sizarov, A.; Ya, J.; De Boer, B.A.; Lamers, W.H.; Christoffels, V.M.; Moorman, A.F.M. Formation of the Building Plan of the Human Heart: Morphogenesis, Growth, and Differentiation. Circulation 2011, 123, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Marvin, M.J.; Di Rocco, G.; Gardiner, A.; Bush, S.M.; Lassar, A.B. Inhibition of Wnt Activity Induces Heart Formation from Posterior Mesoderm. Genes Dev. 2001, 15, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.P. Patterning the Vertebrate Heart. Nat. Rev. Genet. 2002, 3, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Le Garrec, J.F.; Domínguez, J.N.; Desgrange, A.; Ivanovitch, K.D.; Raphaël, E.; Bangham, J.A.; Torres, M.; Coen, E.; Mohun, T.J.; Meilhac, S.M. A Predictive Model of Asymmetric Morphogenesis from 3D Reconstructions of Mouse Heart Looping Dynamics. Elife 2017, 6, e28951. [Google Scholar] [CrossRef]
- Cohen-Gould, L.; Mikawa, T. The Fate Diversity of Mesodermal Cells within the Heart Field during Chicken Early Embryogenesis. Dev. Biol. 1996, 177, 265–273. [Google Scholar] [CrossRef]
- Bayraktar, M.; Männer, J. Cardiac Looping May Be Driven by Compressive Loads Resulting from Unequal Growth of the Heart and Pericardial Cavity. Observations on a Physical Simulation Model. Front. Physiol. 2014, 5, 430. [Google Scholar] [CrossRef]
- De Boer, B.A.; van den Berg, G.; de Boer, P.A.J.; Moorman, A.F.M.; Ruijter, J.M. Growth of the Developing Mouse Heart: An Interactive Qualitative and Quantitative 3D Atlas. Dev. Biol. 2012, 368, 203–213. [Google Scholar] [CrossRef]
- Houweling, A.C.; Somi, S.; Van Den Hoff, M.J.B.; Moorman, A.F.M.; Christoffels, V.M. Developmental Pattern of ANF Gene Expression Reveals a Strict Localization of Cardiac Chamber Formation in Chicken. Anat. Rec. 2002, 266, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Ieda, M.; Tsuchihashi, T.; Ivey, K.N.; Ross, R.S.; Hong, T.T.; Shaw, R.M.; Srivastava, D. Cardiac Fibroblasts Regulate Myocardial Proliferation through Β1 Integrin Signaling. Dev. Cell 2009, 16, 233–244. [Google Scholar] [CrossRef]
- Jensen, B.; Wang, T.; Moorman, A.F.M. Evolution and Development of the Atrial Septum. Anat. Rec. 2019, 302, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, N.; McCarthy, K.P.; Ho, S.Y. Anatomy of the Atrial Septum and Interatrial Communications. J. Thorac. Dis. 2018, 10, S2837–S2847. [Google Scholar] [CrossRef] [PubMed]
- Keyte, A.L.; Alonzo-johnsen, M.; Hutson, M.R. Evolutionary and Developmental Origins of the Cardiac Neural Crest: Building a Divided Outflow Tract. Birth Defects Res. C Embryo Today 2014, 102, 309–323. [Google Scholar] [CrossRef]
- Steimle, J.D.; Moskowitz, I.P. TBX5: A Key Regulator of Heart Development, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 122. [Google Scholar]
- Pezhouman, A.; Nguyen, N.B.; Sercel, A.J.; Nguyen, T.L.; Daraei, A.; Sabri, S.; Chapski, D.J.; Zheng, M.; Patananan, A.N.; Ernst, J.; et al. Transcriptional, Electrophysiological, and Metabolic Characterizations of HESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in Cardiomyocyte Maturation. Front. Cell Dev. Biol. 2021, 9, 3560. [Google Scholar] [CrossRef]
- Takeuchi, J.K.; Ohgi, M.; Koshiba-Takeuchi, K.; Shiratori, H.; Sakaki, I.; Ogura, K.; Saijoh, Y.; Ogura, T. Tbx5 Specifies the Left/Right Ventricles and Ventricular Septum Position during Cardiogenesis. Development 2003, 130, 5953–5964. [Google Scholar] [CrossRef]
- Koshiba-Takeuchi, K.; Mori, A.D.; Kaynak, B.L.; Cebra-Thomas, J.; Sukonnik, T.; Georges, R.O.; Latham, S.; Beck, L.; Henkelman, R.M.; Black, B.L.; et al. Reptilian Heart Development and the Molecular Basis of Cardiac Chamber Evolution. Nature 2009, 461, 95–98. [Google Scholar] [CrossRef]
- Hoffmann, A.D.; Peterson, M.A.; Friedland-Little, J.M.; Anderson, S.A.; Moskowitz, I.P. Sonic Hedgehog Is Required in Pulmonary Endoderm for Atrial Septation. Development 2009, 136, 1761–1770. [Google Scholar] [CrossRef]
- Xie, L.; Hoffmann, A.D.; Burnicka-Turek, O.; Friedland-Little, J.M.; Zhang, K.; Moskowitz, I.P. Tbx5-Hedgehog Molecular Networks Are Essential in the Second Heart Field for Atrial Septation. Dev. Cell 2012, 23, 280–291. [Google Scholar] [CrossRef]
- Burnicka-Turek, O.; Broman, M.T.; Steimle, J.D.; Boukens, B.J.; Petrenko, N.B.; Ikegami, K.; Nadadur, R.D.; Qiao, Y.; Arnolds, D.E.; Yang, X.H.; et al. Transcriptional Patterning of the Ventricular Cardiac Conduction System. Circ. Res. 2020, 127, E94–E106. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, I.P.G.; Pizard, A.; Patel, V.V.; Bruneau, B.G.; Kim, J.B.; Kupershmidt, S.; Roden, D.; Berul, C.I.; Seidman, C.E.; Seidman, J.G. The T-Box Transcription Factor Tbx5 Is Required for the Patterning and Maturation of the Murine Cardiac Conduction System. Development 2004, 131, 4107–4116. [Google Scholar] [CrossRef] [PubMed]
- Van Ouwerkerk, A.F.; Bosada, F.M.; Van Duijvenboden, K.; Houweling, A.C.; Scholman, K.T.; Wakker, V.; Allaart, C.P.; Uhm, J.S.; Mathijssen, I.B.; Baartscheer, T.; et al. Patient-Specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022, 145, 606–619. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, W.C.; Wang, F.; Cheng, Y.R.; Liu, Y.M.; Lai, Y.F.; Zhang, R.J.; Qiao, Y.N.; Yuan, Y.Y.; et al. Gestational Leucylation Suppresses Embryonic T-Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. Adv. Sci. 2022, 9, 2201034. [Google Scholar] [CrossRef]
- Holt, M.; Oram, S. Familial Heart Disease with Skeletal Malformations. Br. Heart J. 1960, 22, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Basson, C.T.; Bachinsky, D.R.; Lin, R.C.; Levi, T.; Elkins, J.A.; Soults, J.; Grayzel, D.; Kroumpouzou, E.; Traill, T.A.; Leblanc-Straceski, J.; et al. Mutations in Human TBX5 [Corrected] Cause Limb and Cardiac Malformation in Holt-Oram Syndrome. Nat. Genet. 1997, 15, 30–35. [Google Scholar] [CrossRef]
- Li, Q.Y.; Newbury-Ecob, R.A.; Terrett, J.A.; Wilson, D.I.; Curtis, A.R.; Yi, C.H.; Gebuhr, T.; Bullen, P.J.; Robson, S.C.; Strachan, T.; et al. Holt-Oram Syndrome Is Caused by Mutations in TBX5, a Member of the Brachyury (T) Gene Family. Nat. Genet. 1997, 15, 21–29. [Google Scholar] [CrossRef]
- Vanlerberghe, C.; Jourdain, A.S.; Ghoumid, J.; Frenois, F.; Mezel, A.; Vaksmann, G.; Lenne, B.; Delobel, B.; Porchet, N.; Cormier-Daire, V.; et al. Holt-Oram Syndrome: Clinical and Molecular Description of 78 Patients with TBX5 Variants. Eur. J. Hum. Genet. 2019, 27, 360–368. [Google Scholar] [CrossRef]
- Al-Qattan, M.M.; Abou Al-Shaar, H. Molecular Basis of the Clinical Features of Holt-Oram Syndrome Resulting from Missense and Extended Protein Mutations of the TBX5 Gene as Well as TBX5 Intragenic Duplications. Gene 2015, 560, 129–136. [Google Scholar] [CrossRef]
- Azab, B.; Aburizeg, D.; Ji, W.; Jeffries, L.; Isbeih, N.J.; Al-Akily, A.S.; Mohammad, H.; Osba, Y.A.; Shahin, M.A.; Dardas, Z.; et al. TBX5 Variant with the Novel Phenotype of Mixed-Type Total Anomalous Pulmonary Venous Return in Holt-Oram Syndrome and Variable Intrafamilial Heart Defects. Mol. Med. Rep. 2022, 25, 1–13. [Google Scholar] [CrossRef]
- Yoshida, A.; Morisaki, H.; Nakaji, M.; Kitano, M.; Kim, K.S.; Sagawa, K.; Ishikawa, S.; Satokata, I.; Mitani, Y.; Kato, H.; et al. Genetic Mutation Analysis in Japanese Patients with Non-Syndromic Congenital Heart Disease. J. Hum. Genet. 2016, 61, 157–162. [Google Scholar] [CrossRef]
- Miyao, N.; Hirono, K.; Hata, Y.; Yoshimura, N.; Ichida, F. Novel Compound Heterozygous TBX5 Variants May Induce Hypoplastic Left Heart Syndrome. Pediatr. Int. 2019, 61, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Postma, A.V.; Van De Meerakker, J.B.A.; Mathijssen, I.B.; Barnett, P.; Christoffels, V.M.; Ilgun, A.; Lam, J.; Wilde, A.A.M.; Deprez, R.H.L.; Moorman, A.F.M. A Gain-of-Function TBX5 Mutation Is Associated with Atypical Holt-Oram Syndrome and Paroxysmal Atrial Fibrillation. Circ. Res. 2008, 102, 1433–1442. [Google Scholar] [CrossRef]
- Markunas, A.M.; Manivannan, P.K.R.; Ezekian, J.E.; Agarwal, A.; Eisner, W.; Alsina, K.; Allen, H.D.; Wray, G.A.; Kim, J.J.; Wehrens, X.H.T.; et al. TBX5-Encoded T-Box Transcription Factor 5 Variant T223M Is Associated with Long QT Syndrome and Pediatric Sudden Cardiac Death. Am. J. Med. Genet. Part A 2021, 185, 923–929. [Google Scholar] [CrossRef]
- Patterson, J.; Coats, C.; McGowan, R. Familial Dilated Cardiomyopathy Associated with Pathogenic TBX5 Variants: Expanding the Cardiac Phenotype Associated with Holt–Oram Syndrome. Am. J. Med. Genet. Part A 2020, 182, 1725–1734. [Google Scholar] [CrossRef]
- Morine, M.; Kohmoto, T.; Masuda, K.; Inagaki, H.; Watanabe, M.; Naruto, T.; Kurahashi, H.; Maeda, K.; Imoto, I. A Unique TBX5 Microdeletion with Microinsertion Detected in Patient with Holt-Oram Syndrome. Am. J. Med. Genet. Part A 2015, 167, 3192–3196. [Google Scholar] [CrossRef]
- Kimura, M.; Kikuchi, A.; Ichinoi, N.; Kure, S. Novel TBX5 Duplication in a Japanese Family with Holt–Oram Syndrome. Pediatr. Cardiol. 2015, 36, 244–247. [Google Scholar] [CrossRef]
- Patel, C.; Silcock, L.; McMullan, D.; Brueton, L.; Cox, H. TBX5 Intragenic Duplication: A Family with an Atypical Holt-Oram Syndrome Phenotype. Eur. J. Hum. Genet. 2012, 20, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Bogarapu, S.; Bleyl, S.B.; Calhoun, A.; Viskochil, D.; Saarel, E.V.; Everitt, M.D.; Frank, D.U. Phenotype of a Patient with Contiguous Deletion of TBX5 and TBX3: Expanding the Disease Spectrum. Am. J. Med. Genet. Part A 2014, 164, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Cenni, C.; Andres, S.; Hempel, M.; Strom, T.M.; Thomas, E.; Davies, A.; Timoney, N.; Frigiola, A.; Logan, M.; Holder-Espinasse, M. TBX3 and TBX5 Duplication: A Family with an Atypical Overlapping Holt-Oram/Ulnar-Mammary Syndrome Phenotype. Eur. J. Med. Genet. 2021, 64, 104213. [Google Scholar] [CrossRef]
- Pikkarainen, S.; Tokola, H.; Kerkelä, R.; Ruskoaho, H. GATA Transcription Factors in the Developing and Adult Heart. Cardiovasc. Res. 2004, 63, 196–207. [Google Scholar] [CrossRef]
- Afouda, B.A. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int. J. Mol. Sci. 2022, 23, 5255. [Google Scholar] [CrossRef]
- Zhao, R.; Watt, A.J.; Battle, M.A.; Li, J.; Bondow, B.J.; Duncan, S.A. Loss of Both GATA4 and GATA6 Blocks Cardiac Myocyte Differentiation and Results in Acardia in Mice. Dev. Biol. 2008, 317, 614–619. [Google Scholar] [CrossRef]
- Ieda, M.; Fu, J.D.; Delgado-Olguin, P.; Vedantham, V.; Hayashi, Y.; Bruneau, B.G.; Srivastava, D. Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell 2010, 142, 375–386. [Google Scholar] [CrossRef]
- Takeuchi, J.K.; Bruneau, B.G. Directed Transdifferentiation of Mouse Mesoderm to Heart Tissue by Defined Factors. Nature 2009, 459, 708–711. [Google Scholar] [CrossRef]
- Rivera-Feliciano, J.; Lee, K.H.; Kong, S.W.; Rajagopal, S.; Ma, Q.; Springer, Z.; Izumo, S.; Tabin, C.J.; Pu, W.T. Development of Heart Valves Requires Gata4 Expression in Endothelial-Derived Cells. Development 2006, 133, 3607–3618. [Google Scholar] [CrossRef]
- Kim, B.J.; Zaveri, H.P.; Jordan, V.K.; Hernandez-Garcia, A.; Jacob, D.J.; Zamora, D.L.; Yu, W.; Schwartz, R.J.; Scott, D.A. RERE Deficiency Leads to Decreased Expression of GATA4 and the Development of Ventricular Septal Defects. DMM Dis. Model. Mech. 2018, 11, dmm031534. [Google Scholar] [CrossRef] [PubMed]
- Pu, T.; Liu, Y.; Xu, R.; Li, F.; Chen, S.; Sun, K. Identification of ZFPM2 Mutations in Sporadic Conotruncal Heart Defect Patients. Mol. Genet. Genomics 2018, 293, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhan, Y.; Chen, W.; Ma, X.; Sheng, W.; Huang, G. Functional Analysis of Rare Variants of GATA4 Identified in Chinese Patients with Congenital Heart Defect. Genesis 2019, 57, e23333. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, S.; Barnett, P.; Van Duijvenboden, K.; Weber, D.; Gessler, M.; Christoffels, V.M. GATA-Dependent Regulatory Switches Establish Atrioventricular Canal Specificity during Heart Development. Nat. Commun. 2014, 5, 3680. [Google Scholar] [CrossRef]
- He, A.; Gu, F.; Hu, Y.; Ma, Q.; Yi Ye, L.; Akiyama, J.A.; Visel, A.; Pennacchio, L.A.; Pu, W.T. Dynamic GATA4 Enhancers Shape the Chromatin Landscape Central to Heart Development and Disease. Nat. Commun. 2014, 5, 10966. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, H.; Xiang, M.; Zhou, L.; Wu, B.; Moskowitz, I.P.; Zhang, K.; Xie, L. Gata4 Regulates Hedgehog Signaling and Gata6 Expression for Outflow Tract Development. PLoS Genet. 2019, 15, e1007711. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Li, H.R.; Cao, X.M.; Wang, Q.X.; Qiao, C.J.; Ya, J. Second Heart Field and the Development of the Outflow Tract in Human Embryonic Heart. Dev. Growth Differ. 2013, 55, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, J.; Gharibeh, L.; Nemer, M. From Embryogenesis to Adulthood: Critical Role for GATA Factors in Heart Development and Function. IUBMB Life 2020, 72, 53–67. [Google Scholar] [CrossRef]
- Shichiri, Y.; Kato, Y.; Inagaki, H.; Kato, T.; Ishihara, N.; Miyata, M.; Boda, H.; Kojima, A.; Miyake, M.; Kurahashi, H. A Case of 46,XY Disorders of Sex Development with Congenital Heart Disease Caused by a GATA4 Variant. Congenit. Anom. 2022, 62, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, S.; Ehsan, F.; Shabana; Tahir, A.; Jamil, M.; Shahid, S.U.; Khan, A.; Hasnain, S. First Report of Polymorphisms in MTRR, GATA4, VEGF, and ISL1 Genes in Pakistani Children with Isolated Ventricular Septal Defects (VSD). Ital. J. Pediatr. 2021, 47, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Sun, G.; Zhu, Y.; Yang, Y.; Tan, Z.; Zhao, T.; Hu, S. The M310T Mutation in the GATA4 Gene Is a Novel Pathogenic Target of the Familial Atrial Septal Defect. BMC Cardiovasc. Disord. 2021, 21, 12. [Google Scholar] [CrossRef]
- Behiry, E.G.; Al-Azzouny, M.A.; Sabry, D.; Behairy, O.G.; Salem, N.E. Association of NKX2-5, GATA4, and TBX5 Polymorphisms with Congenital Heart Disease in Egyptian Children. Mol. Genet. Genomic Med. 2019, 7, e612. [Google Scholar] [CrossRef]
- Alonso-Montes, C.; Martín, M.; Martínez-Arias, L.; Coto, E.; Naves-Díaz, M.; Morís, C.; Cannata-Andía, J.B.; Rodríguez, I. Variants in Cardiac GATA Genes Associated with Bicuspid Aortic Valve. Eur. J. Clin. Investig. 2018, 48, e13027. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Pang, S.; Chen, J.; Shan, J.; Cheng, Q.; Yan, B. Identification and Functional Study of GATA4 Gene Regulatory Variants in Atrial Septal Defects. BMC Cardiovasc. Disord. 2021, 21, 321. [Google Scholar] [CrossRef]
- Floriani, M.A.; Glaeser, A.B.; Dorfman, L.E.; Agnes, G.; Rosa, R.F.M.; Zen, P.R.G. GATA4 Deletions Associated with Congenital Heart Diseases in South Brazil. J. Pediatr. Genet. 2021, 10, 092–097. [Google Scholar] [CrossRef]
- Wat, M.J.; Shchelochkov, O.A.; Holder, A.M.; Breman, A.M.; Dagli, A.; Bacino, C.; Scaglia, F.; Zori, R.T.; Cheung, S.W.; Scott, D.A.; et al. Chromosome 8p23.1 Deletions as a Cause of Complex Congenital Heart Defects and Diaphragmatic Hernia. Am. J. Med. Genet. Part A 2009, 149, 1661–1677. [Google Scholar] [CrossRef]
- Bartlett, H.; Veenstra, G.J.C.; Weeks, D.L. Examining the Cardiac NK-2 Genes in Early Heart Development. Pediatr. Cardiol. 2010, 31, 335–341. [Google Scholar] [CrossRef]
- Reamon-Buettner, S.M.; Borlak, J. NKX2-5: An Update on This Hypermutable Homeodomain Protein and Its Role in Human Congenital Heart Disease (CHD). Hum. Mutat. 2010, 31, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Nomura-Kitabayashi, A.; Sultana, N.; Cai, W.; Cai, X.; Moon, A.M.; Cai, C.L. Mesodermal Nkx2.5 Is Necessary and Sufficient for Early Second Heart Field Development. Dev. Biol. 2014, 390, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.D.; Zhang, B.; Lee, B.; Evans, S.I.; Lassar, A.B.; Lee, K.H. Evolutionary Conservation of Nkx2.5 Autoregulation in the Second Heart Field. Dev. Biol. 2013, 374, 198–209. [Google Scholar] [CrossRef]
- George, V.; Colombo, S.; Targoff, K.L. An Early Requirement for Nkx2.5 Ensures the First and Second Heart Field Ventricular Identity and Cardiac Function into Adulthood. Dev. Biol. 2015, 400, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Jay, P.Y.; Harris, B.S.; Maguire, C.T.; Buerger, A.; Wakimoto, H.; Tanaka, M.; Kupershmidt, S.; Roden, D.M.; Schultheiss, T.M.; O’Brien, T.X.; et al. Nkx2-5 Mutation Causes Anatomic Hypoplasia of the Cardiac Conduction System. J. Clin. Investig. 2004, 113, 1130–1137. [Google Scholar] [CrossRef]
- Furtado, M.B.; Wilmanns, J.C.; Chandran, A.; Tonta, M.; Biben, C.; Eichenlaub, M.; Coleman, H.A.; Berger, S.; Bouveret, R.; Singh, R.; et al. A Novel Conditional Mouse Model for NKX2-5 Reveals Transcriptional Regulation of Cardiac Ion Channels. Differentiation 2015, 91, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, D.; Wang, Y.; Huang, Z.; Xu, J.; Yang, T.; Wang, L.; Tang, Q.; Cai, C.L.; Huang, H.; et al. Nkx2-5 Defines a Subpopulation of Pacemaker Cells and Is Essential for the Physiological Function of the Sinoatrial Node in Mice. Development 2019, 146, dev178145. [Google Scholar] [CrossRef]
- Vincentz, J.W.; Barnes, R.M.; Firulli, B.A.; Conway, S.J.; Firulli, A.B. Cooperative Interaction of Nkx2.5 and Mef2c Transcription Factors during Heart Development. Dev. Dyn. 2008, 237, 3809–3819. [Google Scholar] [CrossRef]
- Hu, W.; Dong, A.; Karasaki, K.; Sogabe, S.; Okamoto, D.; Saigo, M.; Ishida, M.; Yoshizumi, M.; Kokubo, H. Smad4 Regulates the Nuclear Translocation of Nkx2-5 in Cardiac Differentiation. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Lai, G.; Wang, L.; Li, Z.; Zhao, Y. Homocysteine Downregulates Cardiac Homeobox Transcription Factor NKX2.5 via IGFBP5. Am. J. Physiol.-Hear. Circ. Physiol. 2020, 319, H1380–H1386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Diao, J.; Huang, P.; Li, J.; Li, Y.; Yang, Y.; Luo, L.; Zhang, S.; Chen, L.; Wang, T.; et al. Association of Maternal Diabetes Mellitus and Polymorphisms of the NKX2.5 Gene in Children with Congenital Heart Disease: A Single Centre-Based Case-Control Study. J. Diabetes Res. 2020, 2020, 3854630. [Google Scholar] [CrossRef]
- Benson, D.W. Genetic Origins of Pediatric Heart Disease. Pediatr. Cardiol. 2010, 31, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Dixit, R.; Narasimhan, C.; Balekundri, V.I.; Agrawal, D.; Kumar, A.; Mohapatra, B. Functional Analysis of Novel Genetic Variants of NKX2-5 Associated with Nonsyndromic Congenital Heart Disease. Am. J. Med. Genet. Part A 2021, 185, 3644–3663. [Google Scholar] [CrossRef]
- Rozqie, R.; Satwiko, M.G.; Anggrahini, D.W.; Sadewa, A.H.; Gunadi; Hartopo, A.B.; Mumpuni, H.; Dinarti, L.K. NKX2-5 Variants Screening in Patients with Atrial Septal Defect in Indonesia. BMC Med. Genom. 2022, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Reamon-Buettner, S.M.; Sattlegger, E.; Ciribilli, Y.; Inga, A.; Wessel, A.; Borlak, J. Transcriptional Defect of an Inherited NKX2-5 Haplotype Comprising a SNP, a Nonsynonymous and a Synonymous Mutation, Associated with Human Congenital Heart Disease. PLoS ONE 2013, 8, e83295. [Google Scholar] [CrossRef]
- Nazeer, N.U.; Bhat, M.A.; Rah, B.; Bhat, G.R.; Wani, S.I.; Yousuf, A.; Dar, A.M.; Afroze, D. Mutational Assessment in NKX2-5 and ACTC1 Genes in Patients with Congenital Cardiac Septal Defect (CCSD) from Ethnic Kashmiri Population. Int. J. Environ. Res. Public Health 2022, 19, 9884. [Google Scholar] [CrossRef]
- Xu, Y.J.; Qiu, X.B.; Yuan, F.; Shi, H.Y.; Xu, L.; Hou, X.M.; Qu, X.K.; Liu, X.; Huang, R.T.; Xue, S.; et al. Prevalence and Spectrum of NKX2.5 Mutations in Patients with Congenital Atrial Septal Defect and Atrioventricular Block. Mol. Med. Rep. 2017, 15, 2247–2254. [Google Scholar] [CrossRef]
- Qu, X.K.; Qiu, X.B.; Yuan, F.; Wang, J.; Zhao, C.M.; Liu, X.Y.; Zhang, X.L.; Li, R.G.; Xu, Y.J.; Hou, X.M.; et al. A Novel NKX2.5 Loss-of-Function Mutation Associated with Congenital Bicuspid Aortic Valve. Am. J. Cardiol. 2014, 114, 1891–1895. [Google Scholar] [CrossRef]
- Izumi, K.; Noon, S.; Wilkens, A.; Krantz, I.D. NKX2.5 Mutation Identification on Exome Sequencing in a Patient with Heterotaxy. Eur. J. Med. Genet. 2014, 57, 558–561. [Google Scholar] [CrossRef]
- Rupp, P.A.; Fouad, G.T.; Egelston, C.A.; Reifsteck, C.A.; Olson, S.B.; Knosp, W.M.; Glanville, R.W.; Thornburg, K.L.; Robinson, S.W.; Maslen, C.L. Identification, Genomic Organization and MRNA Expression of CRELD1, the Founding Member of a Unique Family of Matricellular Proteins. Gene 2002, 293, 47–57. [Google Scholar] [CrossRef]
- Mass, E.; Wachten, D.; Aschenbrenner, A.C.; Voelzmann, A.; Hoch, M. Murine Creld1 Controls Cardiac Development through Activation of Calcineurin/NFATc1 Signaling. Dev. Cell 2014, 28, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Redig, J.K.; Fouad, G.T.; Babcock, D.; Reshey, B.; Feingold, E.; Reeves, R.H.; Maslen, C.L. Allelic Interaction between CRELD1 and VEGFA in the Pathogenesis of Cardiac Atrioventricular Septal Defects. AIMS Genet. 2014, 01, 001–019. [Google Scholar] [CrossRef]
- Beckert, V.; Rassmann, S.; Kayvanjoo, A.H.; Klausen, C.; Bonaguro, L.; Botermann, D.S.; Krause, M.; Moreth, K.; Spielmann, N.; da Silva-Buttkus, P.; et al. Creld1 Regulates Myocardial Development and Function. J. Mol. Cell. Cardiol. 2021, 156, 45–56. [Google Scholar] [CrossRef]
- Asim, A.; Agarwal, S.; Panigrahi, I.; Sarangi, A.N.; Muthuswamy, S.; Kapoor, A. CRELD1 Gene Variants and Atrioventricular Septal Defects in Down Syndrome. Gene 2018, 641, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Bhaumik, P.; Ghosh, S.; Ozbek, U.; Feingold, E.; Maslen, C.; Sarkar, B.; Pramanik, V.; Biswas, P.; Bandyopadhyay, B.; et al. Polymorphic Haplotypes of CRELD1 Differentially Predispose Down Syndrome and Euploids Individuals to Atrioventricular Septal Defect. Am. J. Med. Genet. Part A 2012, 158, 2843–2848. [Google Scholar] [CrossRef]
- Robinson, S.W.; Morris, C.D.; Goldmuntz, E.; Reller, M.D.; Jones, M.A.; Steiner, R.D.; Maslen, C.L. Missense Mutations in CRELD1 Are Associated with Cardiac Atrioventricular Septal Defects. Am. J. Hum. Genet. 2003, 72, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, L.; Dinesh, S.M.; Savitha, M.R.; Krishnamurthy, B.; Narayanappa, D.; Ramachandra, N.B. A Maiden Report on CRELD1 Single-Nucleotide Polymorphism Association in Congenital Heart Disease Patients of Mysore, South India. Genet. Test. Mol. Biomark. 2011, 15, 483–487. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, J.; Yuan, L.; Li, F.; Wang, J.; Sun, K. Novel CRELD1 Gene Mutations in Patients with Atrioventricular Septal Defect. World J. Pediatr. 2010, 6, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Posch, M.G.; Perrot, A.; Schmitt, K.; Mittelhaus, S.; Esenwein, E.-M.; Stiller, B.; Geier, C.; Dietz, R.; Gessner, R.; Ozcelik, C.; et al. Mutations in GATA4, NKX2.5, CRELD1, and BMP4 Are Infrequently Found in Patients with Congenital Cardiac Septal Defects. Am. J. Med. Genet A 2008, 146, 251–253. [Google Scholar] [CrossRef]
- Williams, K.; Carson, J.; Lo, C. Genetics of Congenital Heart Disease. Biomolecules 2019, 9, 879. [Google Scholar] [CrossRef] [PubMed]
- Rykiel, G.; Gray, M.; Rongish, B.; Rugonyi, S. Transient Increase in VEGF-A Leads to Cardiac Tube Anomalies and Increased Risk of Congenital Heart Malformations. Anat. Rec. 2021, 304, 2685–2702. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Yang, Z.; Jin, M.; Zhai, K.; Wang, J.; Mao, Y.; Liu, Y.; Ding, M.; Wang, H.; Wang, F.; et al. ERp44 Is Required for Endocardial Cushion Development by Regulating VEGFA Secretion in Myocardium. Cell Prolif. 2022, 55, e13179. [Google Scholar] [CrossRef]
- Yan, L.; Ge, Q.; Xi, C.; Zhang, X.; Guo, Y. Genetic Variations of VEGF Gene Were Associated with Tetralogy of Fallot Risk in a Chinese Han Population. Genet. Test. Mol. Biomark. 2015, 19, 264–271. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.L.; Li, X.X.; Li, Q.C.; Ma, L.M.; Liu, G.L. VEGF Gene Polymorphisms Are Associated with Risk of Tetralogy of Fallot. Med. Sci. Monit. 2015, 21, 3474–3482. [Google Scholar] [CrossRef]
- Wang, W.; Xu, A.; Xu, H. The Roles of Vascular Endothelial Growth Factor Gene Polymorphisms in Congenital Heart Diseases: A Meta-Analysis. Growth Factors 2018, 36, 232–238. [Google Scholar] [CrossRef]
- Reuter, M.S.; Jobling, R.; Chaturvedi, R.R.; Manshaei, R.; Costain, G.; Heung, T.; Curtis, M.; Hosseini, S.M.; Liston, E.; Lowther, C.; et al. Haploinsufficiency of Vascular Endothelial Growth Factor Related Signaling Genes Is Associated with Tetralogy of Fallot. Genet. Med. 2019, 21, 1001–1007. [Google Scholar] [CrossRef]
- Mcculley, D.J.; Kang, J.; Martin, J.F.; Black, B.L. BMP4 Is Required in the Anterior Heart Field and Its Derivatives for Endocardial Cushion Remodeling, Outflow Tract Septation, and Semilunar Valve Development. Dev. Dyn. 2008, 237, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, J.; Morikawa, Y.; Bonilla-Claudio, M.; Klysik, E.; Martin, J.F. Bmp Signaling Represses Vegfa to Promote Outflow Tract Cushion Development. Development 2013, 140, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Brown, B.; Wang, Q. Inactivation of Bmp4 from the Tbx1 Expression Domain Causes Abnormal Pharyngeal Arch Artery and Cardiac Outflow Tract Remodeling. Cells Tissues Organs 2011, 193, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Deng, X.; Zhou, J.; Yan, P.; Zhao, E.Y.; Liu, S.L. Characterization of Human Bone Morphogenetic Protein Gene Variants for Possible Roles in Congenital Heart Disease. Mol. Med. Rep. 2016, 14, 1459–1464. [Google Scholar] [CrossRef]
- Qian, B.; Mo, R.; Da, M.; Peng, W. Common Variations in BMP4 Confer Genetic Susceptibility to Sporadic Congenital Heart Disease in a Han Chinese Population. Pediatr. Cardiol. 2014, 35, 1442–1447. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, H.; Liu, X.; Yang, Q. Identification of Variants of ISL1 Gene Promoter and Cellular Functions in Isolated Ventricular Septal Defects. Am. J. Physiol. Cell Physiol. 2021, 321, C443–C452. [Google Scholar] [CrossRef]
- Yin, X.; Chen, H.; Chen, Z.; Yang, Q.; Han, J. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023, 13, 358. [Google Scholar] [CrossRef]
- Wang, Z.; Song, H.M.; Wang, F.; Zhao, C.M.; Huang, R.T.; Xue, S.; Li, R.G.; Qiu, X.B.; Xu, Y.J.; Liu, X.Y.; et al. A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. Int Hear. J. 2019, 60, 1113–1122. [Google Scholar] [CrossRef]
- Blue, G.M.; Kirk, E.P.; Giannoulatou, E.; Hil, D.P.; Sholler, G.F. Advances in the Genetics of Congenital Heart Disease: A Clinician’s Guide. J. Am. Coll Cardiol. 2017, 69, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Bajolle, F.; Zaffran, S.; Bonnet, D. Genetics and Embryological Mechanisms of Congenital Heart Diseases. Arch. Cardiovasc. Dis. 2009, 102, 59–63. [Google Scholar] [CrossRef]
Non-Genetic Contribution~10% | Genetic Contribution~90% |
---|---|
Convincing evidence
| Aneuploidy (~13%)
|
Carnegie Stage | Age (DPC) | Events | CHD |
---|---|---|---|
CS8 | 17–19 | Development of the heart-forming region | |
CS9 | 19–21 | Embryonic folding and placement of the heart-forming region in the final position | |
CS10 | 22–23 | Formation of the heart tube | |
Looping | |||
Ventricular ballooning | |||
CS11 | 23–26 | Atrial ballooning | |
CS12 | 26–30 | Formation of the primary atrial septum | |
Development of the muscular part of the ventricular septum | Muscular VSD | ||
CS13 | 28–32 | Formation of the atrioventricular cushions | |
Attachment of the pulmonary veins to the left atrium | |||
CS14 | 31–35 | Appearance of the outflow tract ridges | |
CS15 | 35–38 | Formation of the secondary foramen | |
Beginning of the septation of the outflow tract | TA, TGA, TOF | ||
Migration of the neural crest cells to the outflow tract | DORV, pulmonary atresia | ||
CS16 | 37–42 | Closure of the ostium primum | AVSD, ASD I |
Outflow ridges approaching the ventricular septum | |||
CS17 | 42–44 | Formation of the secondary atrial septum | ASD II |
Separation of the atrioventricular communication | |||
Completion of the outflow tract septation | Membranous VSD | ||
CS18 | 44–48 | Formation of the atrioventricular valves | Tricuspid atresia |
Mutation Type | Location | Cardiac Phenotype | Other Phenotypes | Reference |
---|---|---|---|---|
Nonsense—LOF | c.577G>T (p.Gly193Ter) | TAPVR and ASD | Triphalangeal thumb | [41] |
Missense | c.322C>A (p.Pro108Thr) | Tricuspid atresia | - | [42] |
Compound (missense + nonsense) | c.791G>A + c.835C>T (p.Arg264Lys + p.Arg279Ter) | HLHS, VSD and PDA | Hypoplastic thumb | [43] |
Missense—GOF | c.373G>A (p.Gly125Arg) | Early onset paroxysmal AF, ASD and VSD | (Sub)luxation of the radial head, carpal synostosis, scoliosis and scapular dysplasia | [44] |
Missense—LOF | c.668C>T (p.Thr223Met) | Long QT syndrome, ASD and VSD | - | [45] |
Nonsense—LOF | c.835C>T (p.Arg279Ter) | DCM, bicuspid aortic valve, and first-degree AV block | Hypoplastic thumb | [46] |
Missense—LOF | c.710G>A (p.Arg237Gln) | DCM, ASD, sick sinus syndrome and AF | Mild pectus excavatum | [46] |
Microdeletion + microinsertion | c.627delinsGTGACTCA GGAAACGCTTTCCT GA | ASD and VSD | Bilateral dysplasia of radius and thumb | [47] |
Intragenic duplication | Dup12q24.1—11 kb (exons 1–6) | ASD, VSD and complete AV block | Bilateral dysplasia of radius and thumb | [48] |
Intragenic duplication | Dup12q24.21—48 kb (exons 2–9) | AVSD, pulmonary stenosis, HLHS, atrial flutter, AF and sick sinus syndrome | Bilateral ulnar hypoplasia, syndactyly and fifth finger clinodactyly | [49] |
Contiguous deletion | Del12q24.13-q24.21—3.1 Mb (including TBX5 and TBX3) | ASD, VSD, right pulmonary artery hypoplasia and high-grade second-degree AV block | Bilateral dysplasia of radius and thumb, fifth finger clinodactyly, absent nipples bilaterally, cryptorchidism and glandular hypospadias | [50] |
Contiguous duplication | Dup12q24.21—399 kb (including TBX5 and TBX3) | ASD, PDA, aortic stenosis, bicuspid aortic valve and AF | Absence of distal inter phalangeal joints of the thumb, hypoplastic thenar eminence, camptodactyly and supernumerary nipple | [51] |
Mutation Type | Location | Cardiac Phenotype | Other Phenotypes | Reference |
---|---|---|---|---|
Missense | c.431C>T (p.Ala144Val) | Pulmonary atresia and ASD | - | [42] |
Missense | c.487C>T (p.Pro163Ser) | ASD | Sexual development disorder | [66] |
Missense | c.886G>A (p.Gly296Ser) | VSD | - | [67] |
Missense | c.929T>C (p.Met310Thr) | ASD, AVSD, pulmonary stenosis, AF, paroxysmal VT and junctional premature beat with aberrant ventricular conduction | - | [68] |
Synonymous | c.99G>T (p.Ala33Ala) | ASD, VSD, coarctation of aorta and TOF | - | [69] |
Synonymous | c.822C>T (p.Cys274Cys) c.906C>T (p.His302His) | Bicuspid aortic valve | - | [70] |
SNP (regulatory variant) | g.31360T>C g.31436G>A g.31437C>A g.31487C>G g.31856C>T | ASD | - | [71] |
Insertion | Ins4+5G>A | TOF | - | [42] |
Microdeletion | Del8p23.1 | AVSD | Psychomotor delay | [42] |
Deletion | DelGATA4 | VSD, ASD and pulmonary stenosis | Craniofacial dysmorphism and ectopic kidney | [72] |
Deletion | Del8p23.1—between 2.945 and 6.352 Mb | DORV, AVSD, pulmonary atresia, TGA and ASD | Congenital diaphragmatic hernia and craniofacial dysmorphism | [73] |
Mutation Type | Location | Cardiac Phenotype | Other Phenotypes | Reference |
---|---|---|---|---|
Missense | c.182C>G (p.Ala61Gly) | VSD and coarctation of aorta | - | [87] |
Missense | c.284G>T (p.Arg95Leu) | VSD | - | [87] |
Missense | c.391G>A (p.Glu131Lys) | ASD and TOF | - | [87] |
Missense | c.443C>A (p.Ala148Glu) | DORV, TGA, ASD, VSD, coarctation of aorta and atretic aortic valve | - | [87] |
Missense | c.739C>G (p.Pro247Ala) | TOF | - | [87] |
Missense | c.413G>A (p.Arg138Glu) | Familial ASD | - | [88] |
Missense | c.561G>C (p.Gln187His) | Familial ASD | - | [88] |
Missense | c.355G>T (p.Ala119Ser) | HLHS | - | [89] |
Synonymous | Exon 2 | Septal defects | - | [90] |
Nonsense | c.541C>T (p.Gln181Ter) | ASD and AV block | - | [91] |
Nonsense | c.574A>T (p.Lys192Ter) | Bicuspid aortic valve | - | [92] |
Frameshift | c.397-400del | DORV, AVSD and TAPVR | Extracardiac heterotaxy syndrome features | [93] |
Mutation Type | Location | Cardiac Phenotype | Other Phenotypes | Reference |
---|---|---|---|---|
Missense | c.985C>T (p.Arg329Cys) | AVSD, VSD and PPHT | - | [100,101] |
Missense | c.932C>T (p.Thr311Ile) | AVSD | - | [100] |
Missense | c.320G>A (p.Arg107His) | AVSD, pulmonary atresia, dextrocardia and right aortic arch (heterotaxy syndrome) | - | [100] |
Missense | c.973G>A (p.Glu325Lys) | AVSD | Down syndrome | [98,102] |
Missense | c.857C>G (p.Pro286Arg) | AVSD | - | [102] |
Synonymous | c.1628G>A (p.Lys336Lys) | ASD | - | [103] |
SNP | c.-103G>T (5′UTR) | ASD | - | [103] |
SNP | c.1048+23G>T (intronic) | ASD | - | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolunduț, A.C.; Lazea, C.; Mihu, C.M. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review. Children 2023, 10, 812. https://doi.org/10.3390/children10050812
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review. Children. 2023; 10(5):812. https://doi.org/10.3390/children10050812
Chicago/Turabian StyleBolunduț, Alexandru Cristian, Cecilia Lazea, and Carmen Mihaela Mihu. 2023. "Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review" Children 10, no. 5: 812. https://doi.org/10.3390/children10050812
APA StyleBolunduț, A. C., Lazea, C., & Mihu, C. M. (2023). Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects—A Narrative Review. Children, 10(5), 812. https://doi.org/10.3390/children10050812