Lung Function in Children with Primary Ciliary Dyskinesia
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Spirometry to Study Lung Function in Children with PCD
Number of Patients with PCD, Age (Median (IQR) or Range) | FEV1 | % of Patients with Abnormal FEV1 | FVC | FEF25-75 | |
---|---|---|---|---|---|
Halbeisen et al., 2018 [14], mean Z-score (CI 95%) | 271 children, 6–9 y | −0.84 (−1.03 to −0.65) | 46% | −0.31 (−0.51 to −0.11) | N/A |
207 children, 10–13 y | −1.00 (−1.21 to −0.79) | −0.48 (−0.70 to −0.26) | N/A | ||
191 children, 14–17 y | −1.51 (−1.73 to −1.29) | −0.84 (−1.07 to −0.61) | N/A | ||
Davis et al., 2015 [15], median %pred (IQR) | 86 patients, 8 y (5–11) | 89 (67 to 99) | N/A | N/A | 68 (48 to 80) |
Maglione et al., 2014 [16], mean %pred and Z-score (SD) | 158 patients, 8.7 y (4.2–17.4) | 82.48 (20.38) −1.37 (1.63) | 35% | 88.77 (20.89) −0.88 (1.68) | 68.56 (29.64) −1.58 (1.53) |
Boon et al., 2014 [17], median Z-score (IQR) | 38 patients, 16.1 y (11.1–19.6) | −1.54 (−2.1 to −0.43) | N/A | N/A | −1.99 (−2.68 to −0.61) |
Noone et al., 2004 [18], median %pred (range) | 31 patients, 8 y (1–17) | 85 + 3 | N/A | N/A | N/A |
Ring et al., 2018 [19], median Z-score (range) | 22 patients, 11.8 y (6–18) | −1.28 (−2.7 to 0.1) | N/A | −0.3 (−2.3 to 0.7) | −1.9 (−2.9 to −0.3) |
Constant et al., 2021 [20], mean Z-score (min; max) | 6 patients, 13.8 y (11–19.2) | −1.0 (−2.8; −0.3) | N/A | −1.3 (−2.7; 0.2) | −1.5 (−2.6; 0.2) |
Kinghorn et al., 2020 [21], median Z-score and %pred (IQR) | 17 patients, 8.6 y (6.1–10.0) | −0.6 (−1.6; −0.2) 92% (82–98) | 18% | 0.05 (−0.4; 0.7) 101% (95–108) | −1.7 (−2.0; −1.0) 62 (50 to 78) |
Denizoglu Kulli et al., 2020 [22], mean %pred ± SD | 25 patients, 12.5 y ± 3.5 | 72.6 ± 15.5 | 66% | 86.7 ± 17.4 | 45.8 ± 26.7 |
Green et al., 2016 [23], median Z-score (IQR) | 28 patients, 12.4 y (10.7–14.6) | −1.3 (−1.7; −0.6) | 25% | −0.4 (−1.3; 0.5) | −1.8 (−2.4; −1.8) |
Halbeisen et al., 2022 [24], mean Z-score (SD) | 486 individuals, 10.94 y ± 4.35 | −1.22 (1.62) | N/A | −0.74 (1.71) | N/A |
Rubbo et al., 2020 [25], mean Z-score (SD) and mean %pred | 240 patients, 9.8 y (5.5–13.8) | −1.9 (1.4) 76.8% | N/A | −1.3 (1.5) 85.4% | N/A |
Magnin et al., 2012 [26], median Z-score (IQR) | 20 children, 7.6 y (4–11.7) | −1.2 (−1.8; −0.45) | N/A | N/A | N/A |
Nyilas et al., 2015 [27], median Z-score (IQR) and median %pred (IQR) | 30 children, 13.4 (10.4–17.1) | −0.5 (−1.6; 0.3) 99.1% (83.5%; 106.8%) | N/A | N/A | N/A |
3.2. Lung Clearance Index (LCI) in Children with PCD
3.3. Longitudinal Analysis of Respiratory Function in Children with PCD
Number of Patients with PCD and Median Length of Follow Up | FEV1 | FVC | FEF25-75 | |
---|---|---|---|---|
Ellerman et al., 1997 [40] | 12 children (median age at entrance 9.5 y) followed for a median of 7 y | Median: - at entrance to cohort 85%pred - at end of follow-up 85%pred | Median: - at entrance to cohort 72%pred - at end of follow-up 69%pred | N/A |
Hellinckx et al., 1998 [41] | 10 patients (mean age at entrance 15.2 y, SD 7) followed for 3–20 y | Mean change: +0.3%pred (SD 11.7) | N/A | N/A |
Halbeisen et al., 2022 [24] | 486 individuals (mean age at first measure 10.94 y, SD 4.35), median follow up time 4.14 y (IQR: 2.3–7.6) | Average annual change Z-score −0.06 (95% CI −0.072 to −0.057) | Average annual change Z-score −0.03 (95% CI −0.040 to −0.023) | N/A |
Vallet et al., 2013 [45] | 60 patients (mean age at first measure 6 y), median duration of follow-up 5 y (range 1–17 years) | No significant differences between first and last recorded evaluation | No significant differences between first and last recorded evaluation | N/A |
Maglione et al., 2014 [16] | 78 patients (median age at first spirometry 8.7 y, range 4.2–17.4), followed for 6 years | Mean slope: Z-score 0.05 (−0.10 to −0.01) Mean (SD) - first measurement: 82.48%pred (20.38); Z-score −1.37 (1.63) - 6 years: 83.76%pred (19.0); Z-score −1.39 (1.63) | Mean slope: Z-score −0.03 (−0.08 to 0.02) Mean (SD) - first measurement: 88.77%pred (20.89); Z-score −0.88 (1.68) - 6 years: 93.46%pred (17.17); Z-score −0.60 (1.57) | Mean slope: Z-score −0.06 (−0.11 to 0.02) Mean (SD) - first measurement: 68.56%pred (29.64); Z-score −1.58 (1.53) - 6 years: 65.22%pred (27.22); Z-score −1.81 (1.51) |
Davis et al., 2019 [46] | 137 children (mean age at enrollment 7.8 y, SD 4.6) followed for up to 5 y | Mean annual change: −0.57%pred | N/A | N/A |
Pifferi et al., 2020 [47] | 135 children (mean age at enrollment 10.24 y, SD 3.78), mean follow-up 5 y (range 1–10 y) | Mean annual change (Z-score): −0.89% per year | Mean annual change (Z-score): −0.70% per year | |
Magnin et al., 2012 [26] | 20 children (median age at diagnosis 7.6 y, IQR 4–11.7), median duration of follow up 15.4 y (IQR 13–20.9) | Mean annual decrease: Z-score −0.10; −0.89%pred | Mean annual decrease: Z-score −0.09; −0.50%pred | Mean annual decrease: Z-score −0.07; −1.73%pred |
Marthin et al., 2010 [48] | 74 children (median age at diagnosis 8.1 y, range 0–43.7), median follow-up 9.5 y (range, 1.5–30.2) | Three groups: - in 7 children FEV1%pred increased >10 percentage points - in 42 children stable - in 25 children FEV1%pred decreased >10 percentage points | Mean change from −28 to +28% | N/A |
3.4. Factors That Impact Lung Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goutaki, M.; Meier, A.B.; Halbeisen, F.S.; Lucas, J.S.; Dell, S.D.; Maurer, E.; Casaulta, C.; Jurca, M.; Spycher, B.D.; Kuehni, C.E. Clinical manifestations in primary ciliary dyskinesia: Systematic review and meta-analysis. Eur. Respir. J. 2016, 48, 1081–1095. [Google Scholar] [CrossRef]
- Lucas, J.S.; Davis, S.D.; Omran, H.; Shoemark, A. Primary ciliary dyskinesia in the genomics age. Lancet Respir. Med. 2019, 8, 202–216. [Google Scholar] [CrossRef]
- Lucas, J.S.; Alanin, M.C.; Collins, S.; Harris, A.; Johansen, H.K.; Nielsen, K.G.; Papon, J.F.; Robinson, P.; Walker, W.T. Clinical care of children with primary ciliary dyskinesia. Expert Rev. Respir. Med. 2017, 11, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.J.; Davis, S.D.; Ferkol, T.; Dell, S.D.; Rosenfeld, M.; Olivier, K.N. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: Insights into situs ambiguus and heterotaxy. Chest 2014, 146, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.R.; Daniels, L.A.; Davis, S.D.; Zariwala, M.A.; Leigh, M.W. Primary Ciliary Dyskinesia. Recent Advances in Diagnostics, Genetics, and Characterization of Clinical Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Mirra, V.; Werner, C.; Santamaria, F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front. Pediatr. 2017, 5, 135. [Google Scholar] [CrossRef]
- Schofield, L.M.; Horobin, H.E. Growing up with Primary Ciliary Dyskinesia in Bradford, UK: Exploring patients experiences as a physiotherapist. Physiother. Theory Pract. 2013, 30, 157–164. [Google Scholar] [CrossRef]
- Bush, A.; Chodhari, R.; Collins, N.; Copeland, F.; Hall, P.; Harcourt, J.; Hariri, M.; Hogg, C.; Lucas, J.S.A.; Mitchison, H.M.; et al. Primary ciliary dyskinesia: Current state of the art. Arch. Dis. Child. 2007, 92, 1136–1140. [Google Scholar] [CrossRef]
- Goutaki, M.; Halbeisen, F.S.; Spycher, B.D.; Maurer, E.; Belle, F.; Amirav, I.; Behan, L.; Boon, M.; Carr, S.; Casaulta, C.; et al. Growth and nutritional status, and their association with lung function: A study from the international Primary Ciliary Dyskinesia Cohort. Eur. Respir. J. 2017, 50, 1701659. [Google Scholar] [CrossRef]
- Batu, U.; Eralp, E.E.; Ergenekon, P.; Yegit, C.Y.; Cenk, M.; Gokdemir, Y.; Karadag, B. Comparison of Lung Clearence Index, Impulse Oscillometry and Spirometry in Children with Primary Ciliary Dyskinesia. Eur. Respir. J. 2021, 58 (Suppl. S65), PA3460. [Google Scholar] [CrossRef]
- Fırat, M.; Boşnak-Güçlü, M.; Şişmanlar-Eyüboğlu, T.; Aslan, A.T. Aerobic exercise capacity, cough strength, posture, and depression in primary ciliary dyskinesia. Pediatr. Pulmonol. 2022, 58, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Firat, M.; Bosnak-Guclu, M.; Sismanlar-Eyuboglu, T.; Tana-Aslan, A. Respiratory muscle strength, exercise capacity and physical activity in patients with primary ciliary dyskinesia: A cross-sectional study. Respir. Med. 2021, 191, 106719. [Google Scholar] [CrossRef] [PubMed]
- Halbeisen, F.S.; Jose, A.; de Jong, C.; Nyilas, S.; Latzin, P.; Kuehni, C.E.; Goutaki, M. Spirometric indices in primary ciliary dyskinesia: Systematic review and meta-analysis. ERJ Open Res. 2019, 5, 00231–02018. [Google Scholar] [CrossRef] [PubMed]
- Halbeisen, F.S.; Goutaki, M.; Spycher, B.D.; Amirav, I.; Behan, L.; Boon, M.; Hogg, C.; Casaulta, C.; Crowley, S.; Haarman, E.G.; et al. Lung function in patients with primary ciliary dyskinesia: An iPCD Cohort study. Eur. Respir. J. 2018, 52, 1801040. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.D.; Ferkol, T.W.; Rosenfeld, M.; Lee, H.-S.; Dell, S.D.; Sagel, S.D.; Milla, C.; Zariwala, M.A.; Pittman, J.E.; Shapiro, A.J.; et al. Clinical Features of Childhood Primary Ciliary Dyskinesia by Genotype and Ultrastructural Phenotype. Am. J. Respir. Crit. Care Med. 2015, 191, 316–324. [Google Scholar] [CrossRef]
- Maglione, M.; Bush, A.; Nielsen, K.G.; Hogg, C.; Montella, S.; Marthin, J.K.; Di Giorgio, A.; Santamaria, F. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr. Pulmonol. 2014, 49, 1243–1250. [Google Scholar] [CrossRef]
- Boon, M.; Vermeulen, F.L.; Gysemans, W.; Proesmans, M.; Jorissen, M.; De Boeck, K. Lung structure-function correlation in patients with primary ciliary dyskinesia. Thorax 2015, 70, 339–345. [Google Scholar] [CrossRef]
- Noone, P.G.; Leigh, M.W.; Sannuti, A.; Minnix, S.L.; Carson, J.L.; Hazucha, M. Primary ciliary dyskinesia: Diagnostic and phenotypic features. Am. J. Respir. Crit. Care Med. 2004, 169, 459–467. [Google Scholar] [CrossRef]
- Ring, A.M.; Buchvald, F.F.; Holgersen, M.G.; Green, K.; Nielsen, K.G. Fitness and lung function in children with primary ciliary dyskinesia and cystic fibrosis. Respir. Med. 2018, 139, 79–85. [Google Scholar] [CrossRef]
- Constant, C.; Descalço, A.; Silva, A.M.; Pereira, L.; Barreto, C.; Bandeira, T. Implementing nitrogen multiple breath washout as a clinical tool–A feasibility study. Pulmonology 2021, 27, 569–571. [Google Scholar] [CrossRef]
- Kinghorn, B.; McNamara, S.; Genatossio, A.; Sullivan, E.; Siegel, M.; Bauer, I.; Clem, C.; Johnson, R.C.; Davis, M.; Griffiths, A.; et al. Comparison of Multiple Breath Washout and Spirometry in Children with Primary Ciliary Dyskinesia and Cystic Fibrosis and Healthy Controls. Ann. Am. Thorac. Soc. 2020, 17, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Denizoglu Kulli, H.; Gurses, H.N.; Zeren, M.; Ucgun, H.; Cakir, E. Do pulmonary and extrapulmonary features differ among cystic fibrosis, primary ciliary dyskinesia, and healthy children? Pediatr. Pulmonol. 2020, 55, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Green, K.; Ejlertsen, J.S.; Madsen, A.; Buchvald, F.F.; Kongstad, T.; Kobbernagel, H.; Gustafsson, P.M.; Nielsen, K.G. Abbreviation modalities of nitrogen multiple-breath washout tests in school children with obstructed lung disease. Pediatr. Pulmonol. 2015, 51, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Halbeisen, F.S.; Pedersen, E.S.; Goutaki, M.; Spycher, B.D.; Amirav, I.; Boon, M.; Cohen-Cymberknoh, M.; Crowley, S.; Emiralioglu, N.; Haarman, E.G.; et al. Lung function from school age to adulthood in primary ciliary dyskinesia. Eur. Respir. J. 2022, 60, 2101918. [Google Scholar] [CrossRef]
- Rubbo, B.; Best, S.; Hirst, R.A.; Shoemark, A.; Goggin, P.; Carr, S.B.; Chetcuti, P.; Hogg, C.; Kenia, P.; Lucas, J.S.; et al. Clinical features and management of children with primary ciliary dyskinesia in England. Arch. Dis. Child. 2020, 105, 724–729. [Google Scholar] [CrossRef]
- Magnin, M.L.; Cros, P.; Beydon, N.; Mahloul, M.; Tamalet, A.; Escudier, E. Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr. Pulmonol. 2012, 47, 816–825. [Google Scholar] [CrossRef]
- Nyilas, S.; Schlegtendal, A.; Aebischer, C.C.; Latzin, P.; Koerner-Rettberg, C.; Yammine, S. Further evidence for an association between LCI and FEV1 in patients with PCD. Thorax 2015, 70, 896. [Google Scholar] [CrossRef][Green Version]
- Irving, S.J.; Ives, A.; Davies, G.; Donovan, J.; Edey, A.J.; Gill, S.S.; Nair, A.; Saunders, C.; Wijesekera, N.T.; Alton, E.W.F.W.; et al. Lung Clearance Index and High-Resolution Computed Tomography Scores in Primary Ciliary Dyskinesia. Am. J. Respir. Crit. Care Med. 2013, 188, 545–549. [Google Scholar] [CrossRef]
- Green, K.; Buchvald, F.F.; Marthin, J.K.; Hanel, B.; Gustafsson, P.M.; Nielsen, K.G. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 2011, 67, 49–53. [Google Scholar] [CrossRef]
- Maglione, M.; Bush, A.; Montella, S.; Mollica, C.; Manna, A.; Esposito, A. Progression of lung disease in primary ciliary dyskinesia: Is spirometry less accurate than CT? Pediatr. Pulmonol. 2012, 47, 498–504. [Google Scholar] [CrossRef]
- Singer, F.; Schlegtendal, A.; Nyilas, S.; Vermeulen, F.; Boon, M.; Koerner-Rettberg, C. Lung clearance index predicts pulmonary exacerbations in individuals with primary ciliary dyskinesia: A multicentre cohort study. Thorax 2021, 76, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Joachim, C.; Kirsch, I.; Uselmann, T.; Yu, Y.; Alfeis, N.; Berger, C.; Minso, R.; Rudolf, I.; Stolpe, C.; et al. Multicentre feasibility of multiple-breath washout in preschool children with cystic fibrosis and other lung diseases. ERJ Open Res. 2020, 6, 00408-2020. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Hall, M. In children with primary ciliary dyskinesia, which type of lung function test is the earliest determinant of decline in lung health: A systematic review. Pediatr. Pulmonol. 2022, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Kobbernagel, H.E.; Green, K.; Ring, A.M.; Buchvald, F.F.; Rosthøj, S.; Gustafsson, P.M.; Nielsen, K.G. One-year evolution and variability in multiple-breath washout indices in children and young adults with primary ciliary dyskinesia. Eur. Clin. Respir. J. 2019, 6, 1591841. [Google Scholar] [CrossRef]
- Pifferi, M.; Bush, A.; Pioggia, G.; Caramella, D.; Tartarisco, G.; Di Cicco, M.; Zangani, M.; Chinellato, I.; Maggi, F.; Tezza, G.; et al. Evaluation of pulmonary disease using static lung volumes in primary ciliary dyskinesia. Thorax 2012, 67, 993–999. [Google Scholar] [CrossRef][Green Version]
- Nyilas, S.; Bauman, G.; Pusterla, O.; Sommer, G.; Singer, F.; Stranzinger, E.; Heyer, C.; Ramsey, K.; Schlegtendal, A.; Benzrath, S.; et al. Structural and Functional Lung Impairment in Primary Ciliary Dyskinesia. Assessment with Magnetic Resonance Imaging and Multiple Breath Washout in Comparison to Spirometry. Ann. Am. Thorac. Soc. 2018, 15, 1434–1442. [Google Scholar] [CrossRef]
- Smith, L.J.; West, N.; Hughes, D.; Marshall, H.; Johns, C.S.; Stewart, N.J.; Chan, H.-F.; Rao, M.; Capener, D.J.; Bray, J.; et al. Imaging Lung Function Abnormalities in Primary Ciliary Dyskinesia Using Hyperpolarized Gas Ventilation MRI. Ann. Am. Thorac. Soc. 2018, 15, 1487–1490. [Google Scholar] [CrossRef]
- Irving, S.; Dixon, M.; Fassad, M.R.; Frost, E.; Hayward, J.; Kilpin, K.; Ollosson, S.; Onoufriadis, A.; Patel, M.P.; Scully, J.; et al. Primary Ciliary Dyskinesia Due to Microtubular Defects is Associated with Worse Lung Clearance Index. Lung 2018, 196, 231–238. [Google Scholar] [CrossRef]
- Corkey, C.W.; Levison, H.; Turner, J.A. The immotile cilia syndrome. A longitudinal survey. Am. Rev. Respir. Dis. 1981, 124, 544–548. [Google Scholar]
- Ellerman, A.; Bisgaard, H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur. Respir. J. 1997, 10, 2376–2379. [Google Scholar] [CrossRef]
- Hellinckx, J.; Demedts, M.; De Boeck, K. Primary ciliary dyskinesia: Evolution of pulmonary function. Eur. J. Pediatr. 1998, 157, 422–426. [Google Scholar] [CrossRef]
- Bui, D.S.; Lodge, C.J.; Burgess, J.A.; Lowe, A.J.; Perret, J.; Bui, M.Q.; Bowatte, G.; Gurrin, L.; Johns, D.P.; Thompson, B.R.; et al. Childhood predictors of lung function trajectories and future COPD risk: A prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018, 6, 535–544. [Google Scholar] [CrossRef]
- Marott, J.L.; Ingebrigtsen, T.S.; Çolak, Y.; Vestbo, J.; Lange, P. Lung Function Trajectories Leading to Chronic Obstructive Pulmonary Disease as Predictors of Exacerbations and Mortality. Am. J. Respir. Crit. Care Med. 2020, 202, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, J.; Bountziouka, V.; Lum, S.; Wade, A.; Stocks, J. Natural variability of lung function in young healthy school children. Eur. Respir. J. 2016, 48, 411–419. [Google Scholar] [CrossRef]
- Vallet, C.; Escudier, E.; Roudot-Thoraval, F.; Blanchon, S.; Fauroux, B.; Beydon, N.; Boulé, M.; Vojtek, A.M.; Amselem, S.; Clément, A.; et al. Primary ciliary dyskinesia presentation in 60 children according to ciliary ultrastructure. Eur. J. Pediatr. 2013, 172, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.D.; Rosenfeld, M.; Lee, H.-S.; Ferkol, T.W.; Sagel, S.D.; Dell, S.; Milla, C.; Pittman, J.E.; Shapiro, A.; Sullivan, K.M.; et al. Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype. Am. J. Respir. Crit. Care Med. 2019, 199, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Pifferi, M.; Bush, A.; Mariani, F.; Piras, M.; Michelucci, A.; Cangiotti, A.; Di Cicco, M.; Caligo, M.A.; Miccoli, M.; Boner, A.L.; et al. Lung Function Longitudinal Study by Phenotype and Genotype in Primary Ciliary Dyskinesia. Chest 2020, 158, 117–120. [Google Scholar] [CrossRef]
- Marthin, J.K.; Petersen, N.; Skovgaard, L.T.; Nielsen, K.G. Lung function in patients with primary ciliary dyskinesia: A cross-sectional and 3-decade longitudinal study. Am. J. Respir. Crit. Care Med. 2010, 181, 1262–1268. [Google Scholar] [CrossRef]
- Fuger, M.; Aupiais, C.; Thouvenin, G.; Taytard, J.; Tamalet, A.; Escudier, E.; Boizeau, P.; Corvol, H.; Beydon, N. Gas exchanges in children with cystic fibrosis or primary ciliary dyskinesia: A retrospective study. Respir. Physiol. Neurobiol. 2018, 251, 1–7. [Google Scholar] [CrossRef]
- Lucas, J.S.; Chetcuti, P.; Copeland, F.; Hogg, C.; Kenny, T.; Moya, E.; O’Callaghan, C.; Walker, W.T. Overcoming challenges in the management of primary ciliary dyskinesia: The UK model. Paediatr. Respir. Rev. 2013, 15, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Shoemark, A.; MacNeill, S.J.; Bhaludin, B.; Rogers, A.; Bilton, D.; Hansell, D.M.; Wilson, R.; Loebinger, M.R. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 2016, 48, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Kobbernagel, H.E.; Buchvald, F.F.; Haarman, E.G.; Casaulta, C.; Collins, S.A.; Hogg, C.; Kuehni, C.E.; Lucas, J.S.; Moser, C.; Quittner, A.L.; et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2020, 8, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Alanin, M.; Nielsen, K.; von Buchwald, C.; Skov, M.; Aanaes, K.; Høiby, N.; Johansen, H. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin. Microbiol. Infect. 2015, 21, 1093.e1–1093.e7. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F.; Waters, V.; Klingel, M.; McDonald, N.; Dell, S.; Leahy, T.R.; Yau, Y.; Grasemann, H. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur. Respir. J. 2015, 47, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Sunther, M.; Bush, A.; Hogg, C.; McCann, L.; Carr, S.B. Recovery of baseline lung function after pulmonary exacerbation in children with primary ciliary dyskinesia. Pediatr. Pulmonol. 2016, 51, 1362–1366. [Google Scholar] [CrossRef]
- Piatti, G.; De Santi, M.M.; Farolfi, A.; Zuccotti, G.V.; D’Auria, E.; Patria, M.F.; Torretta, S.; Consonni, D.; Ambrosetti, U. Exacerbations and Pseudomonas aeruginosa colonization are associated with altered lung structure and function in primary ciliary dyskinesia. BMC Pediatr. 2020, 20, 158. [Google Scholar] [CrossRef]
- Cohen-Cymberknoh, M.; Weigert, N.; Gileles-Hillel, A.; Breuer, O.; Simanovsky, N.; Boon, M.; De Boeck, K.; Barbato, A.; Snijders, D.; Collura, M.; et al. Clinical impact of Pseudomonas aeruginosa colonization in patients with Primary Ciliary Dyskinesia. Respir. Med. 2017, 131, 241–246. [Google Scholar] [CrossRef]
- Videbæk, K.; Buchvald, F.; Holgersen, M.G.; Henriksen, A.; Eriksson, F.; Garred, P.; Nielsen, K.G. The impact of mannose-binding lectin polymorphisms on lung function in primary ciliary dyskinesia. Pediatr. Pulmonol. 2019, 54, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Pifferi, M.; Bush, A.; Mulé, G.; Gracci, S.; Fonnesu, R.; Michelucci, A.; Cangiotti, A.; Caligo, M.A.; Miccoli, M.; Boner, A.L.; et al. Longitudinal Lung Volume Changes by Ultrastructure and Genotype in Primary Ciliary Dyskinesia. Ann. Am. Thorac. Soc. 2021, 18, 963–970. [Google Scholar] [CrossRef]
- Pifferi, M.; Bush, A.; Caramella, D.; Metelli, M.R.; Di Cicco, M.; Piras, M.; Gherarducci, G.; Capristo, C.; Maggi, F.; Peroni, D.; et al. Matrix metalloproteinass and airway remodeling and function in primary ciliary dyskinesia. Respir. Med. 2017, 124, 49–56. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koucký, V.; Uhlík, J.; Hoňková, L.; Koucký, M.; Doušová, T.; Pohunek, P. Ventilation Inhomogeneity and Bronchial Basement Membrane Changes in Chronic Neutrophilic Airway Inflammation. Chest 2020, 157, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Mauch, R.M.; Kmit, A.H.P.; Marson, F.A.D.L.; Levy, C.E.; Barros-Filho, A.D.A.; Ribeiro, J.D. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: A literature review. Rev. Paul. Pediatr. 2016, 34, 503–509. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, V.A.; Castaldo, R.J.; Tonazzo, V.; Zanconato, S.; Carraro, S. Lung Function in Children with Primary Ciliary Dyskinesia. Children 2023, 10, 290. https://doi.org/10.3390/children10020290
Ferraro VA, Castaldo RJ, Tonazzo V, Zanconato S, Carraro S. Lung Function in Children with Primary Ciliary Dyskinesia. Children. 2023; 10(2):290. https://doi.org/10.3390/children10020290
Chicago/Turabian StyleFerraro, Valentina Agnese, Raimondo Junior Castaldo, Valentina Tonazzo, Stefania Zanconato, and Silvia Carraro. 2023. "Lung Function in Children with Primary Ciliary Dyskinesia" Children 10, no. 2: 290. https://doi.org/10.3390/children10020290
APA StyleFerraro, V. A., Castaldo, R. J., Tonazzo, V., Zanconato, S., & Carraro, S. (2023). Lung Function in Children with Primary Ciliary Dyskinesia. Children, 10(2), 290. https://doi.org/10.3390/children10020290