Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Induction of Neonatal HIE Animal Model
2.2. MRI Examinations of Brain Injury
2.3. Dried Blood Spot Lipidomic Profiling by HPLC-MS
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Brain Morphological Alterations
3.2. DBS Metabolomic Profile in Positive Ion Mode
3.3. DBS Metabolomic Profile in Negative Ion Mode
3.4. Metabolic Pathways Involved in the Development of Hypoxia-Ischemia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volpe, J.J. Neonatal Encephalopathy: An Inadequate Term for Hypoxic-Ischemic Encephalopathy. Ann. Neurol. 2012, 72, 156–166. [Google Scholar] [CrossRef]
- Russ, J.B.; Simmons, R.; Glass, H.C. Neonatal Encephalopathy: Beyond Hypoxic-Ischemic Encephalopathy. Neoreviews 2021, 22, e148–e162. [Google Scholar] [CrossRef] [PubMed]
- Törn, A.E.; Hesselman, S.; Johansen, K.; Ågren, J.; Wikström, A.-K.; Jonsson, M. Outcomes in Children after Mild Neonatal Hypoxic Ischaemic Encephalopathy: A Population-Based Cohort Study. BJOG Int. J. Obstet. Gynaecol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Okereafor, A.; Allsop, J.; Counsell, S.J.; Fitzpatrick, J.; Azzopardi, D.; Rutherford, M.A.; Cowan, F.M. Patterns of Brain Injury in Neonates Exposed to Perinatal Sentinel Events. Pediatrics 2008, 121, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Pierrat, V.; Haouari, N.; Liska, A.; Thomas, D.; Subtil, D.; Truffert, P.; Groupe d’Etudes en Epidémiologie Périnatale. Prevalence, Causes, and Outcome at 2 Years of Age of Newborn Encephalopathy: Population Based Study. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F257–F261. [Google Scholar] [CrossRef]
- Edwards, A.D.; Brocklehurst, P.; Gunn, A.J.; Halliday, H.; Juszczak, E.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological Outcomes at 18 Months of Age after Moderate Hypothermia for Perinatal Hypoxic Ischaemic Encephalopathy: Synthesis and Meta-Analysis of Trial Data. BMJ 2010, 340, c363. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for Newborns with Hypoxic Ischaemic Encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Kariholu, U.; Montaldo, P.; Markati, T.; Lally, P.J.; Pryce, R.; Teiserskas, J.; Liow, N.; Oliveira, V.; Soe, A.; Shankaran, S.; et al. Therapeutic Hypothermia for Mild Neonatal Encephalopathy: A Systematic Review and Meta-Analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 225–228. [Google Scholar] [CrossRef]
- Jackson, T.C.; Kochanek, P.M. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther. Hypothermia Temp. Manag. 2019, 9, 13–47. [Google Scholar] [CrossRef]
- Natarajan, G.; Laptook, A.; Shankaran, S. Therapeutic Hypothermia: How Can We Optimize This Therapy to Further Improve Outcomes? Clin. Perinatol. 2018, 45, 241–255. [Google Scholar] [CrossRef]
- DuPont, T.L.; Chalak, L.F.; Morriss, M.C.; Burchfield, P.J.; Christie, L.; Sánchez, P.J. Short-Term Outcomes of Newborns with Perinatal Acidemia Who Are Not Eligible for Systemic Hypothermia Therapy. J. Pediatr. 2013, 162, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Walsh, B.H.; Boylan, G.B.; Murray, D.M. Mild Hypoxic Ischaemic Encephalopathy and Long Term Neurodevelopmental Outcome—A Systematic Review. Early Hum. Dev. 2018, 120, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Singhvi, D.P.; Montaldo, P.; Lally, P.J.; Mendoza, J.; Manerkar, S.; Shankaran, S.; Thayyil, S. Therapeutic Hypothermia in Mild Neonatal Encephalopathy: A National Survey of Practice in the UK. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F388–F390. [Google Scholar] [CrossRef] [PubMed]
- Prempunpong, C.; Chalak, L.F.; Garfinkle, J.; Shah, B.; Kalra, V.; Rollins, N.; Boyle, R.; Nguyen, K.-A.; Mir, I.; Pappas, A.; et al. Prospective Research on Infants with Mild Encephalopathy: The PRIME Study. J. Perinatol. 2018, 38, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Caramelo, I.; Coelho, M.; Rosado, M.; Cardoso, C.M.P.; Dinis, A.; Duarte, C.B.; Grãos, M.; Manadas, B. Biomarkers of Hypoxic-Ischemic Encephalopathy: A Systematic Review. World J. Pediatr. 2023, 19, 505–548. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, I.; Hilario, E.; Álvarez, A.; Alonso-Alconada, D. Neonatal Multiple Organ Failure after Perinatal Asphyxia. An. Pediatr. Engl. Ed. 2022, 97, 280.e1–280.e8. [Google Scholar] [CrossRef]
- Chun, P.T.; McPherson, R.J.; Marney, L.C.; Zangeneh, S.Z.; Parsons, B.A.; Shojaie, A.; Synovec, R.E.; Juul, S.E. Serial Plasma Metabolites Following Hypoxic-Ischemic Encephalopathy in a Nonhuman Primate Model. Dev. Neurosci. 2015, 37, 161–171. [Google Scholar] [CrossRef]
- Kuligowski, J.; Solberg, R.; Sánchez-Illana, Á.; Pankratov, L.; Parra-Llorca, A.; Quintás, G.; Saugstad, O.D.; Vento, M. Plasma Metabolite Score Correlates with Hypoxia Time in a Newly Born Piglet Model for Asphyxia. Redox Biol. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Massaro, A.N.; Chang, T.; Kadom, N.; Tsuchida, T.; Scafidi, J.; Glass, P.; McCarter, R.; Baumgart, S.; Vezina, G.; Nelson, K.B. Biomarkers of Brain Injury in Neonatal Encephalopathy Treated with Hypothermia. J. Pediatr. 2012, 161, 434–440. [Google Scholar] [CrossRef]
- Rice, J.E.; Vannucci, R.C.; Brierley, J.B. The Influence of Immaturity on Hypoxic-Ischemic Brain Damage in the Rat. Ann. Neurol. 1981, 9, 131–141. [Google Scholar] [CrossRef]
- Silachev, D.N.; Uchevatkin, A.A.; Pirogov, Y.A.; Zorov, D.B.; Isaev, N.K. Comparative Evaluation of Two Methods for Studies of Experimental Focal Ischemia: Magnetic Resonance Tomography and Triphenyltetrazoleum Detection of Brain Injuries. Bull. Exp. Biol. Med. 2009, 147, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Frankevich, N.; Tokareva, A.; Chagovets, V.; Starodubtseva, N.; Dolgushina, N.; Shmakov, R.; Sukhikh, G.; Frankevich, V. COVID-19 Infection during Pregnancy: Disruptions in Lipid Metabolism and Implications for Newborn Health. Int. J. Mol. Sci. 2023, 24, 13787. [Google Scholar] [CrossRef]
- Starodubtseva, N.L.; Tokareva, A.O.; Rodionov, V.V.; Brzhozovskiy, A.G.; Bugrova, A.E.; Chagovets, V.V.; Kometova, V.V.; Kukaev, E.N.; Soares, N.C.; Kovalev, G.I.; et al. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study. Biomedicines 2023, 11, 1786. [Google Scholar] [CrossRef] [PubMed]
- Tokareva, A.O.; Chagovets, V.V.; Kononikhin, A.S.; Starodubtseva, N.L.; Nikolaev, E.N.; Frankevich, V.E. Normalization Methods for Reducing Interbatch Effect without Quality Control Samples in Liquid Chromatography-Mass Spectrometry-Based Studies. Anal. Bioanal. Chem. 2021, 413, 3479–3486. [Google Scholar] [CrossRef] [PubMed]
- Tokareva, A.O.; Chagovets, V.V.; Kononikhin, A.S.; Starodubtseva, N.L.; Nikolaev, E.N.; Frankevich, V.E. Comparison of the Effectiveness of Variable Selection Method for Creating a Diagnostic Panel of Biomarkers for Mass Spectrometric Lipidome Analysis. J. Mass Spectrom. 2021, 56, e4702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, P.; Zhou, W.; Xia, S.; Zhou, W.; Zhou, X.; Cheng, X.; Shi, Y.; Lin, Z.; Song, D.; et al. Neonatal Hypoxic-Ischemic Encephalopathy Diagnosis and Treatment: A National Survey in China. BMC Pediatr. 2021, 21, 261. [Google Scholar] [CrossRef]
- van Laerhoven, H.; de Haan, T.R.; Offringa, M.; Post, B.; van der Lee, J.H. Prognostic Tests in Term Neonates with Hypoxic-Ischemic Encephalopathy: A Systematic Review. Pediatrics 2013, 131, 88–98. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Cascio, M.A.; Ferrand, A.; Shevell, M.; Racine, E. The Complexity of Physicians’ Understanding and Management of Prognostic Uncertainty in Neonatal Hypoxic-Ischemic Encephalopathy. J. Perinatol. 2019, 39, 278–285. [Google Scholar] [CrossRef]
- Natarajan, N.; Pardo, A.C. Challenges in Neurologic Prognostication after Neonatal Brain Injury. Semin. Perinatol. 2017, 41, 117–123. [Google Scholar] [CrossRef]
- Nanavati, T.; Seemaladinne, N.; Regier, M.; Yossuck, P.; Pergami, P. Can We Predict Functional Outcome in Neonates with Hypoxic Ischemic Encephalopathy by the Combination of Neuroimaging and Electroencephalography? Pediatr. Neonatol. 2015, 56, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Polat, M.; Simşek, A.; Tansuğ, N.; Sezer, R.G.; Ozkol, M.; Başpınar, P.; Tekgül, H. Prediction of Neurodevelopmental Outcome in Term Neonates with Hypoxic-Ischemic Encephalopathy. Eur. J. Paediatr. Neurol. 2013, 17, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A.; Kushwaha, J.S.; Plegue, M.A.; Selewski, D.T.; Barks, J.D.E. An Evaluation of Cerebral and Systemic Predictors of 18-Month Outcomes for Neonates With Hypoxic Ischemic Encephalopathy. J. Child Neurol. 2015, 30, 1526–1531. [Google Scholar] [CrossRef]
- Chang, T.; du Plessis, A. Neurodiagnostic Techniques in Neonatal Critical Care. Curr. Neurol. Neurosci. Rep. 2012, 12, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Starodubtseva, N.L.; Eldarov, C.M.; Kirtbaya, A.R.; Balashova, E.N.; Gryzunova, A.S.; Ionov, O.V.; Zubkov, V.V.; Silachev, D.N. Recent Advances in Diagnostics of Neonatal Hypoxic Ischemic Encephalopathy. Bull. Russ. State Med. Univ. 2022, 4, 5–16. [Google Scholar] [CrossRef]
- Fanos, V.; Antonucci, R.; Barberini, L.; Noto, A.; Atzori, L. Clinical Application of Metabolomics in Neonatology. J. Matern. Fetal Neonatal Med. 2012, 25 (Suppl. 1), 104–109. [Google Scholar] [CrossRef]
- Vannucci, R.C.; Vannucci, S.J. Perinatal Hypoxic-Ischemic Brain Damage: Evolution of an Animal Model. Dev. Neurosci. 2005, 27, 81–86. [Google Scholar] [CrossRef]
- Vannucci, R.C.; Connor, J.R.; Mauger, D.T.; Palmer, C.; Smith, M.B.; Towfighi, J.; Vannucci, S.J. Rat Model of Perinatal Hypoxic-Ischemic Brain Damage. J. Neurosci. Res. 1999, 55, 158–163. [Google Scholar] [CrossRef]
- Fanos, V.; Noto, A.; Xanthos, T.; Lussu, M.; Murgia, F.; Barberini, L.; Finco, G.; d’Aloja, E.; Papalois, A.; Iacovidou, N.; et al. Metabolomics Network Characterization of Resuscitation after Normocapnic Hypoxia in a Newborn Piglet Model Supports the Hypothesis That Room Air Is Better. BioMed Res. Int. 2014, 2014, 731620. [Google Scholar] [CrossRef]
- Lee, W.L.A.; Michael-Titus, A.T.; Shah, D.K. Hypoxic-Ischaemic Encephalopathy and the Blood-Brain Barrier in Neonates. Dev. Neurosci. 2017, 39, 49–58. [Google Scholar] [CrossRef]
- Arduini, A.; Escobar, J.; Vento, M.; Escrig, R.; Quintás, G.; Sastre, J.; Saugstad, O.D.; Solberg, R. Metabolic Adaptation and Neuroprotection Differ in the Retina and Choroid in a Piglet Model of Acute Postnatal Hypoxia. Pediatr. Res. 2014, 76, 127–134. [Google Scholar] [CrossRef]
- Liu, J.; Sheldon, R.A.; Segal, M.R.; Kelly, M.J.S.; Pelton, J.G.; Ferriero, D.M.; James, T.L.; Litt, L. 1H Nuclear Magnetic Resonance Brain Metabolomics in Neonatal Mice after Hypoxia-Ischemia Distinguished Normothermic Recovery from Mild Hypothermia Recoveries. Pediatr. Res. 2013, 74, 170–179. [Google Scholar] [CrossRef]
- Vannucci, S.J.; Back, S.A. The Vannucci Model of Hypoxic-Ischemic Injury in the Neonatal Rodent: 40 Years Later. Dev. Neurosci. 2022, 44, 186–193. [Google Scholar] [CrossRef]
- Rumajogee, P.; Bregman, T.; Miller, S.P.; Yager, J.Y.; Fehlings, M.G. Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review. Front. Neurol. 2016, 7, 57. [Google Scholar] [CrossRef]
- McCandless, S.E.; Wright, E.J. Mandatory Newborn Screening in the United States: History, Current Status, and Existential Challenges. Birth Defects Res. 2020, 112, 350–366. [Google Scholar] [CrossRef]
- Koulman, A.; Prentice, P.; Wong, M.C.Y.; Matthews, L.; Bond, N.J.; Eiden, M.; Griffin, J.L.; Dunger, D.B. The Development and Validation of a Fast and Robust Dried Blood Spot Based Lipid Profiling Method to Study Infant Metabolism. Metabolomics 2014, 10, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Nordfalk, F.; Ekstrøm, C.T. Newborn Dried Blood Spot Samples in Denmark: The Hidden Figures of Secondary Use and Research Participation. Eur. J. Hum. Genet. 2019, 27, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, M.A.; Papakonstantinou, E.; Benaki, D.; Spraul, M.; Shulpis, K.; Koupparis, M.A.; Mikros, E. Application of Nuclear Magnetic Resonance Spectroscopy Combined with Principal Component Analysis in Detecting Inborn Errors of Metabolism Using Blood Spots: A Metabonomic Approach. Anal. Chim. Acta 2004, 511, 303–312. [Google Scholar] [CrossRef]
- Cascant-Vilaplana, M.M.; Lara-Cantón, I.; Núñez-Ramiro, A.; Solaz-García, Á.; Llorens-Salvador, R.; Quintás, G.; HYPOTOP Study Group; Kuligowski, J.; Vento, M. Longitudinal Perturbations of Plasma Nuclear Magnetic Resonance Profiles in Neonatal Encephalopathy. Pediatr. Res. 2023, 94, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Hanna, V.S.; Hafez, E.A.A. Synopsis of Arachidonic Acid Metabolism: A Review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef]
- Greco, P.; Nencini, G.; Piva, I.; Scioscia, M.; Volta, C.A.; Spadaro, S.; Neri, M.; Bonaccorsi, G.; Greco, F.; Cocco, I.; et al. Pathophysiology of Hypoxic–Ischemic Encephalopathy: A Review of the Past and a View on the Future. Acta Neurol. Belg. 2020, 120, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Rink, C.; Khanna, S. Significance of Brain Tissue Oxygenation and the Arachidonic Acid Cascade in Stroke. Antioxid. Redox Signal. 2011, 14, 1889–1903. [Google Scholar] [CrossRef] [PubMed]
- Adibhatla, R.M.; Hatcher, J.F. Phospholipase A(2), Reactive Oxygen Species, and Lipid Peroxidation in CNS Pathologies. BMB Rep. 2008, 41, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Kinouchi, H.; Imaizumi, S.; Yoshimoto, T.; Yamamoto, H.; Motomiya, M. Changes of Polyphosphoinositides, Lysophospholipid, and Free Fatty Acids in Transient Cerebral Ischemia of Rat Brain. Mol. Chem. Neuropathol. 1990, 12, 215–228. [Google Scholar] [CrossRef]
- Ousman, S.S.; David, S. Lysophosphatidylcholine Induces Rapid Recruitment and Activation of Macrophages in the Adult Mouse Spinal Cord. Glia 2000, 30, 92–104. [Google Scholar] [CrossRef]
- Schilling, T.; Lehmann, F.; Rückert, B.; Eder, C. Physiological Mechanisms of Lysophosphatidylcholine-Induced de-Ramification of Murine Microglia. J. Physiol. 2004, 557, 105–120. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Dose, J.M.; Scheff, S.W.; Prasad, M.R. Time Course of Changes in Lactate and Free Fatty Acids after Experimental Brain Injury and Relationship to Morphologic Damage. Exp. Neurol. 1997, 146, 240–249. [Google Scholar] [CrossRef]
- Phillis, J.W.; Horrocks, L.A.; Farooqui, A.A. Cyclooxygenases, Lipoxygenases, and Epoxygenases in CNS: Their Role and Involvement in Neurological Disorders. Brain Res. Rev. 2006, 52, 201–243. [Google Scholar] [CrossRef]
- Choque, B.; Catheline, D.; Rioux, V.; Legrand, P. Linoleic Acid: Between Doubts and Certainties. Biochimie 2014, 96, 14–21. [Google Scholar] [CrossRef]
- Hennebelle, M.; Zhang, Z.; Metherel, A.H.; Kitson, A.P.; Otoki, Y.; Richardson, C.E.; Yang, J.; Lee, K.S.S.; Hammock, B.D.; Zhang, L.; et al. Linoleic Acid Participates in the Response to Ischemic Brain Injury through Oxidized Metabolites That Regulate Neurotransmission. Sci. Rep. 2017, 7, 4342. [Google Scholar] [CrossRef]
- Gürsoy-Ozdemir, Y.; Can, A.; Dalkara, T. Reperfusion-Induced Oxidative/Nitrative Injury to Neurovascular Unit after Focal Cerebral Ischemia. Stroke 2004, 35, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Modulation of Inflammation in Brain: A Matter of Fat. J. Neurochem. 2007, 101, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Muralikrishna Adibhatla, R.; Hatcher, J.F. Phospholipase A2, Reactive Oxygen Species, and Lipid Peroxidation in Cerebral Ischemia. Free Radic. Biol. Med. 2006, 40, 376–387. [Google Scholar] [CrossRef]
- Harder, D.R.; Gebremedhin, D.; Narayanan, J.; Jefcoat, C.; Falck, J.R.; Campbell, W.B.; Roman, R. Formation and Action of a P-450 4A Metabolite of Arachidonic Acid in Cat Cerebral Microvessels. Am. J. Physiol. 1994, 266, H2098–H2107. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Carpenter, K.L.; Hutchinson, P.J.; Smielewski, P.; Helmy, A. Candidate Neuroinflammatory Markers of Cerebral Autoregulation Dysfunction in Human Acute Brain Injury. J. Cereb. Blood Flow Metab. 2023, 43, 1237–1253. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, B.; Lee, J.-H.; Armstrong, J.S.; Kulikowicz, E.; Bhalala, U.S.; Martin, L.J.; Koehler, R.C.; Yang, Z.-J. Additive Neuroprotection of a 20-HETE Inhibitor with Delayed Therapeutic Hypothermia after Hypoxia-Ischemia in Neonatal Piglets. Dev. Neurosci. 2015, 37, 376–389. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Carter, E.L.; Kibler, K.K.; Kwansa, H.; Crafa, D.A.; Martin, L.J.; Roman, R.J.; Harder, D.R.; Koehler, R.C. Attenuation of Neonatal Ischemic Brain Damage Using a 20-HETE Synthesis Inhibitor. J. Neurochem. 2012, 121, 168–179. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, H.-L.; Zhang, X.-P.; Jiang, H.-L. Arachidonic Acid Attenuates Brain Damage in a Rat Model of Ischemia/Reperfusion by Inhibiting Inflammatory Response and Oxidative Stress. Hum. Exp. Toxicol. 2018, 37, 135–141. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Yu, B.-Y.; Fu, C.-C.; He, M.-Z.; Zhu, J.-H.; Chen, B.-W.; Zheng, Y.-H.; Chen, S.-Q.; Fu, X.-Q.; Li, P.-J.; et al. LXA4 Protects against Hypoxic-Ischemic Damage in Neonatal Rats by Reducing the Inflammatory Response via the IκB/NF-κB Pathway. Int. Immunopharmacol. 2020, 89, 107095. [Google Scholar] [CrossRef]
- Buonocore, G.; Perrone, S.; Tataranno, M.L. Oxygen Toxicity: Chemistry and Biology of Reactive Oxygen Species. Semin. Fetal Neonatal Med. 2010, 15, 186–190. [Google Scholar] [CrossRef]
- Kurhaluk, N. The Effectiveness of L-Arginine in Clinical Conditions Associated with Hypoxia. Int. J. Mol. Sci. 2023, 24, 8205. [Google Scholar] [CrossRef]
- Qin, X.; Cheng, J.; Zhong, Y.; Mahgoub, O.K.; Akter, F.; Fan, Y.; Aldughaim, M.; Xie, Q.; Qin, L.; Gu, L.; et al. Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Front. Mol. Neurosci. 2019, 12, 88. [Google Scholar] [CrossRef]
- Victor, S.; Rocha-Ferreira, E.; Rahim, A.; Hagberg, H.; Edwards, D. New Possibilities for Neuroprotection in Neonatal Hypoxic-Ischemic Encephalopathy. Eur. J. Pediatr. 2022, 181, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Silachev, D.N.; Plotnikov, E.Y.; Pevzner, I.B.; Zorova, L.D.; Balakireva, A.V.; Gulyaev, M.V.; Pirogov, Y.A.; Skulachev, V.P.; Zorov, D.B. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic–Ischemic Brain Injury. Molecules 2018, 23, 1871. [Google Scholar] [CrossRef] [PubMed]
- Sasso, S.; Dalmedico, L.; Delwing-Dal Magro, D.; Wyse, A.T.S.; Delwing-de Lima, D. Effect of N-Acetylarginine, a Metabolite Accumulated in Hyperargininemia, on Parameters of Oxidative Stress in Rats: Protective Role of Vitamins and L-NAME. Cell Biochem. Funct. 2014, 32, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Anandi, V.S.; Shaila, B. Evaluation of Factors Associated with Elevated Newborn 17-Hydroxyprogesterone Levels. J. Pediatr. Endocrinol. Metab. 2017, 30, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro-Ramos, J.D.; Núñez-Ramiro, A.; Llorens-Salvador, R.; Parra-Llorca, A.; Sánchez-Illana, Á.; Quintás, G.; Boronat-González, N.; Martínez-Rodilla, J.; Kuligowski, J.; Vento, M.; et al. Metabolic Phenotypes of Hypoxic-Ischemic Encephalopathy with Normal vs. Pathologic Magnetic Resonance Imaging Outcomes. Metabolites 2020, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Concepcion, K.R.; Zhang, L. Corticosteroids and Perinatal Hypoxic-Ischemic Brain Injury. Drug Discov. Today 2018, 23, 1718–1732. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Q.; Kong, D.; Zhou, C.; Zhou, J.; Han, J.; Zhou, Y.; Jin, G.; Hua, X.; Wang, J.; et al. Gender Difference in the Effect of Progesterone on Neonatal Hypoxic/Ischemic Brain Injury in Mouse. Exp. Neurol. 2018, 306, 190–198. [Google Scholar] [CrossRef]
- Debuf, M.J.; Carkeek, K.; Piersigilli, F. A Metabolomic Approach in Search of Neurobiomarkers of Perinatal Asphyxia: A Review of the Current Literature. Front. Pediatr. 2021, 9, 674585. [Google Scholar] [CrossRef]
- Walsh, B.H.; Broadhurst, D.I.; Mandal, R.; Wishart, D.S.; Boylan, G.B.; Kenny, L.C.; Murray, D.M. The Metabolomic Profile of Umbilical Cord Blood in Neonatal Hypoxic Ischaemic Encephalopathy. PLoS ONE 2012, 7, e50520. [Google Scholar] [CrossRef]
- Sánchez-Illana, Á.; Thayyil, S.; Montaldo, P.; Jenkins, D.; Quintás, G.; Oger, C.; Galano, J.-M.; Vigor, C.; Durand, T.; Vento, M.; et al. Novel Free-Radical Mediated Lipid Peroxidation Biomarkers in Newborn Plasma. Anal. Chim. Acta 2017, 996, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.; Martherus, T.; Lopriore, E.; Giera, M.; McGillick, E.V.; Hutten, J.; van Leuteren, R.W.; van Kaam, A.H.; Hooper, S.B.; Te Pas, A.B. The Effect of Initial High vs. Low FiO2 on Breathing Effort in Preterm Infants at Birth: A Randomized Controlled Trial. Front. Pediatr. 2019, 7, 504. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Heep, A.; Odd, D. Biochemical and Clinical Predictors of Hypoxic-Ischemic Encephalopathy after Perinatal Asphyxia. J. Matern. Fetal Neonatal. Med. 2018, 31, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Reinke, S.N.; Walsh, B.H.; Boylan, G.B.; Sykes, B.D.; Kenny, L.C.; Murray, D.M.; Broadhurst, D.I. 1H NMR Derived Metabolomic Profile of Neonatal Asphyxia in Umbilical Cord Serum: Implications for Hypoxic Ischemic Encephalopathy. J. Proteome Res. 2013, 12, 4230–4239. [Google Scholar] [CrossRef]
- Ahearne, C.E.; Denihan, N.M.; Walsh, B.H.; Reinke, S.N.; Kenny, L.C.; Boylan, G.B.; Broadhurst, D.I.; Murray, D.M. Early Cord Metabolite Index and Outcome in Perinatal Asphyxia and Hypoxic-Ischaemic Encephalopathy. Neonatology 2016, 110, 296–302. [Google Scholar] [CrossRef]
- Wilson, I. Global Metabolic Profiling (Metabonomics/Metabolomics) Using Dried Blood Spots: Advantages and Pitfalls. Bioanalysis 2011, 3, 2255–2257. [Google Scholar] [CrossRef]
- Michopoulos, F.; Theodoridis, G.; Smith, C.J.; Wilson, I.D. Metabolite Profiles from Dried Blood Spots for Metabonomic Studies Using UPLC Combined with Orthogonal Acceleration ToF-MS: Effects of Different Papers and Sample Storage Stability. Bioanalysis 2011, 3, 2757–2767. [Google Scholar] [CrossRef]
- Stratmann, G.; Sall, J.W.; May, L.D.V.; Loepke, A.W.; Lee, M.T. Beyond Anesthetic Properties: The Effects of Isoflurane on Brain Cell Death, Neurogenesis, and Long-Term Neurocognitive Function. Anesth. Analg. 2010, 110, 431–437. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, L.; Feng, D.; Yu, Z.; Gao, R.; Sun, Y.; Chen, G. Neuroprotection Provided by Isoflurane Pre-Conditioning and Post-Conditioning. Med. Gas Res. 2017, 7, 48–55. [Google Scholar] [CrossRef]
- Silachev, D.N.; Usatikova, E.A.; Pevzner, I.B.; Zorova, L.D.; Babenko, V.A.; Gulyaev, M.V.; Pirogov, Y.A.; Plotnikov, E.Y.; Zorov, D.B. Effect of Anesthetics on Efficiency of Remote Ischemic Preconditioning. Biochemistry 2017, 82, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Silachev, D.N.; Shubina, M.I.; Iankauskas, S.S.; Mkrtchian, V.P.; Manskikh, V.N.; Guliaev, M.V.; Zorov, D.B. Evaluation of a long-term sensomotor deficit after neonatal rat brain ischemia/hypoxia. Zh. Vyssh. Nerv. Deiat. Im. IP Pavlova 2013, 63, 405–416. [Google Scholar] [CrossRef]
m/z | Metabolite | Adduct | Fold Change | p-Value |
---|---|---|---|---|
166.084 | Phenylalanine | M + H | −6.46 | 0.5 |
377.1911 | 18-Oxocortisol | M + H | −5.53 | 0.02 |
433.3341 | MG(22:2) | M + Na | −5.19 | 0.01 |
353.2694 | MG(16:0) | M + Na | −5 | 0.01 |
611.5234 | TG(34:0) | M + H | −4.17 | 0 |
217.1292 | N-a-Acetyl-L-arginine | M + H | −3.56 | 0.02 |
578.4194 | LysoPC(22:1) | M + H | −2.84 | 0.04 |
381.2952 | MG(18:0) | M + Na | −2.71 | 0.04 |
744.555 | PE(36:2) | M + H | −2.36 | 0.03 |
913.7763 | OxTG(58:10) | M + H | −2.35 | 0.02 |
880.7142 | Plasmenyl-PC(42:0) | M + Na | −2.16 | 0.01 |
343.2658 | Pregnanediol | M + Na | −2.14 | 0.04 |
700.4877 | PE-Nme(30:0) | M + Na | 2.01 | 0.01 |
792.5673 | OxPC(34:1) | M + H | 2.04 | 0.01 |
506.3589 | Lyso-Plasmenyl-PC(18:1) | M + H | 2.15 | 0.01 |
667.5317 | DG(38:4) | M + Na | 2.27 | 0.02 |
898.5567 | OxPE(44:8) | M + Na | 2.31 | 0.01 |
823.5297 | PA(44:8) | M + Na | 2.72 | 0.02 |
865.7681 | OxTG(54:6) | M + H | 2.77 | 0 |
518.3246 | LysoPC(18:3) | M + H | 3.99 | 0 |
542.3258 | LysoPC(20:5) | M + H | 7.82 | 0 |
293.16 | Tetradecanedioic acid | M + Cl | −1.63 | 0.01 |
609.51 | TG(34:0) | M − H | −1.63 | 0.04 |
694.42 | PE(30:2) | M + Cl | 1.81 | 0 |
746.50 | OxPE(34:2) | M − H | −3.08 | 0.01 |
834.49 | PC(38:9) | M + Cl | 1.68 | 0.02 |
845.49 | PI(32:0) | M + Cl | −1.87 | 0.04 |
852.50 | OxPC(38:8) | M + Cl | 1.86 | 0.01 |
853.50 | PGP(36:2) | M − H | −1.87 | 0.03 |
879.74 | TG(54:5) | M − H | 1.98 | 0.02 |
893.74 | TG(52:2) | M + Cl | −1.57 | 0.02 |
905.46 | OxPI(36:6) | M + Cl | 1.64 | 0.02 |
913.48 | PIP(34:2) | M − H | 1.60 | 0.04 |
914.68 | Plasmalyl-PC(44:4) | M + Cl | 1.61 | 0.01 |
Pathway Name | p-Value |
---|---|
Positive ion mode | |
Retinol metabolism | 7.9 × 10−12 |
Arachidonic acid metabolism | 8.8 × 10−7 |
Linoleic acid metabolism | 4.7 × 10−6 |
Unsaturated fatty acid biosynthesis | 9.7 × 10−5 |
Phospholipids metabolism | 0.005 |
Steroid biosynthesis | 0.04 |
Negative ion mode | |
Steroid biosynthesis | 6.5 × 10−4 |
Bile acid biosynthesis | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevtsova, Y.; Eldarov, C.; Starodubtseva, N.; Goryunov, K.; Chagovets, V.; Ionov, O.; Plotnikov, E.; Silachev, D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. Children 2023, 10, 1693. https://doi.org/10.3390/children10101693
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. Children. 2023; 10(10):1693. https://doi.org/10.3390/children10101693
Chicago/Turabian StyleShevtsova, Yulia, Chupalav Eldarov, Natalia Starodubtseva, Kirill Goryunov, Vitaliy Chagovets, Oleg Ionov, Egor Plotnikov, and Denis Silachev. 2023. "Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model" Children 10, no. 10: 1693. https://doi.org/10.3390/children10101693
APA StyleShevtsova, Y., Eldarov, C., Starodubtseva, N., Goryunov, K., Chagovets, V., Ionov, O., Plotnikov, E., & Silachev, D. (2023). Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. Children, 10(10), 1693. https://doi.org/10.3390/children10101693