Factors Affecting Dyslipidemia among Korean Adolescents: An Analysis Using the 8th Korea National Health and Nutrition Examination Survey (2021)
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Data Source and Study Population
2.3. Study Variables
2.3.1. Dyslipidemia
2.3.2. Demographic, Lifestyle, Psychological, and Family History Variables of Adolescents
2.3.3. Physiological and Biochemical Variables of Adolescents
2.4. Data Analysis
3. Results
3.1. Comparison of Demographic, Lifestyle, Psychological and Family History Variables in the Normal Group and the Dyslipidemia Group (n = 381, N = 3,072,013)
3.2. Differences in Physiological and Biochemical Indicators When Comparing the Normal Group and the Dyslipidemia Group (n = 381, N = 3,072,013)
3.3. Factors Affecting Dyslipidemia among Korean Male and Female Adolescents (n = 381, N = 3,072,013)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, D.Y.; Kim, S.H.; Seo, M.Y.; Kang, S.Y.; Park, M.J. Trends in serum lipid profiles among Korean adolescents, 2007–2018. Diabetes Metab. Syndr. Obes. 2021, 14, 4189–4197. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.K.; Song, Y.M.; Kim, S.H.; Park, M.J. Short stature is associated with increased risk of dyslipidemia in Korean adolescents and adults. Sci. Rep. 2019, 9, 14090. [Google Scholar] [CrossRef] [PubMed]
- McGill, H.C.; McMahan, C.A.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 2001, 103, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Rosenbloom, A.; Silverstein, J. Childhood obesity. J. Clin. Endocrinol. Metab. 2004, 89, 4211–4218. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Kim, E.Y.; Kim, J.H.; Yoo, J.-H.; Yi, K.H.; Chae, H.W.; Choi, J.-H.; Kim, J.Y.; Hwang, I.T.; The Committee of Dyslipidemia of Korean Children and Adolescents on behalf of Korean Society of Pediatric Endocrinology (KSPE). 2017 clinical practice guidelines for dyslipidemia of Korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 199–207. [Google Scholar] [CrossRef]
- National Heart, Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents; summary report. Pediatrics 2011, 128, S213–S256. [Google Scholar] [CrossRef]
- Lim, H.J.; Xue, H.; Wang, Y. Association between obesity and metabolic co-morbidities among children and adolescents in South Korea based on national data. BMC Public Health 2014, 14, 279. [Google Scholar] [CrossRef]
- Nam, J.H.; Shin, J.; Jang, S.-I.; Kim, J.H.; Han, K.-T.; Lee, J.K.; Lim, Y.J.; Park, E.-C. Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey in South Korea. BMJ Open 2019, 9, e024731. [Google Scholar] [CrossRef]
- Byun, J.S.; Kim, J.N.; Song, Y.S.; Roh, Y.K.; Choi, M.K. The relationship between hyperuricemia and triglyceride glucose index: Based on 2016 Korea National Health and Nutrition Examination Survey. Korean J. Fam. Pract. 2019, 9, 266–271. [Google Scholar] [CrossRef]
- Chu, S.Y.; Jung, J.H.; Park, M.J.; Kim, S.H. Risk assessment of metabolic syndrome in adolescents using the triglyceride/high-density lipoprotein cholesterol ratio and the total cholesterol/high-density lipoprotein cholesterol ratio. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 41–48. [Google Scholar] [CrossRef]
- Park, J.M.; Kang, S.M.; Lee, J.W.; Lee, J.W.; Kim, S.W.; Lee, J.H.; Cho, J.B. Correlation between the ratio of triglyceride to high-density lipoprotein cholesterol and fasting glucose & hemoglobin A1C. Korean J. Fam. Pract. 2015, 5, 462–467. [Google Scholar]
- Jeong, H.R.; Shim, Y.S.; Lee, H.S.; Hwang, J.S. Hemoglobin and hematocrit levels are positively associated with blood pressure in children and adolescents 10 to 18 years old. Sci. Rep. 2021, 11, 19052. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.A.; Almeida, G.G.; Leão Martins, R.I.; Cunha, M.B.; Belo, V.A.; dos Santos, J.E.T.; Mourão-Júnior, C.A.; Lanna, C.M.M. The role of uric acid in the insulin resistance in children and adolescents with obesity. Rev. Paul. Pediatr. 2015, 33, 431–436. [Google Scholar] [CrossRef][Green Version]
- Park, H.K.; Hwang, J.S.; Moon, J.S.; Lee, J.A.; Kim, D.H.; Lim, J.S. Healthy range of serum alanine aminotransferase and its predictive power for cardiovascular risk in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 686–691. [Google Scholar] [CrossRef]
- Park, S.H.; Park, H.Y.; Kang, J.W.; Park, J.S.; Shin, K.J. Aminotransferase upper reference limits and the prevalence of elevated aminotransferases in the Korean adolescent population. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 668–672. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Guidelines for the Use of Raw Data from the 8th (2019–2021) Korea National Health and Nutrition Examination Survey (KNHANES); Report No. 117002. Available online: https://knhanes.kdca.go.kr/knhanes/sub03/sub03_02_05.do (accessed on 15 May 2023).
- Roberts, W.C. The Friedewald-Levy-Fredrickson formula for calculating low-density lipoprotein cholesterol, the basis for lipid-lowering therapy. Am. J. Cardiol. 1988, 62, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yun, S.; Hwang, S.-S.; Shim, J.O.; Chae, H.W.; Lee, Y.J.; Lee, J.H.; Kim, S.C.; Lim, D.; Yang, S.W.; et al. The 2017 Korean national growth charts for children and adolescents: Development, improvement, and prospects. Korean J. Pediatr. 2018, 61, 135–149. [Google Scholar] [CrossRef]
- Sung, T.J.; Kim, D.H.; Hong, Y.J.; Son, B.K.; Chang, K.J.; Park, J.Y.; Kim, S.K. Effective screening test for obesity in obese adolescents and the correlation among obesity index, body mass index and serum lipid profile. J. Korean Pediatr. Soc. 2003, 46, 217–223. [Google Scholar]
- Nho, H.N.; Kim, C.R.; Uhm, J.H.; Kim, J.T.; Jin, S.M.; Seo, J.Y.; Hahn, H.W.; Park, H.Y.; Yoon, H.S.; Ahn, Y.M.; et al. The prevalence of obesity and metabolic abnormalities in Korean pediatric population. Korean J. Pediatr. Gastroenterol. Nutr. 2009, 12, 207–214. [Google Scholar] [CrossRef]
- Freedman, D.S.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. The relation of overweight to cardiovascular risk factors among children and adolescents: The Bogalusa Heart Study. Pediatrics 1999, 103, 1175–1182. [Google Scholar] [CrossRef]
- Reinehr, T.; Andler, W.; Denzer, C.; Siegried, W.; Mayer, H.; Wabitsch, M. Cardiovascular risk factors in overweight German children and adolescents: Relation to gender, age and degree of overweight. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Jeon, S.; Lee, H.S.; Choi, H.S.; Suh, J.; Kwon, A.; Kim, H.-S.; Chae, H.W. Trends of dyslipidemia in Korean youth according to sex and body mass index: Based on the Korea National Health and Nutrition Examination Survey (2007–2018). J. Pediatr. 2021, 237, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.E.; Choo, J.N. Childhood obesity and cardiovascular health: Using 2010–2012 data of the Korea National Health and Nutrition Examination Survey. Korean J. Health Promot. 2017, 17, 109–118. [Google Scholar] [CrossRef]
- Savva, S.; Tornaritis, M.; Savva, M.; Kourides, Y.; Panagi, A.; Silikiotou, N.; Georgiou, C.; Kafatos, A. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1453–1458. [Google Scholar] [CrossRef]
- Gil-Campos, M.; Aguilera, C.M.; Cañete, R.; Gil, A. Uric acid is associated with features of insulin resistance syndrome in obese children at prepubertal stage. Nutr. Hosp. 2009, 24, 607–613. [Google Scholar]
- Cardoso, A.S.; Gonzaga, N.C.; Medeiros, C.C.; Carvalho, D.F. Association of uric acid levels with components of metabolic syndrome and non-alcoholic fatty liver disease in overweight or obese children and adolescents. J. Pediatr. 2013, 89, 412–418. [Google Scholar] [CrossRef]
- Viazzi, F.; Antolini, L.; Giussani, M.; Brambilla, P.; Galbiati, S.; Mastriani, S.; Stella, A.; Pontremoli, R.; Valsecchi, M.G.; Genovesi, S. Serum uric acid and blood pressure in children at cardiovascular risk. Pediatrics 2013, 132, e93–e99. [Google Scholar] [CrossRef]
- Civantos Modino, S.; Guijarro de Armas, M.G.; Monereo Mejías, S.; Montaño Martínez, J.M.; Iglesias Bolaños, P.; Merino Viveros, M.; Ladero Quesada, J.M. Hyperuricemia and metabolic syndrome in children with overweight and obesity. Endocrinol. Nutr. 2012, 59, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Cantisani, V.; Anania, C.; Bonaiuto, E.; Martino, F.; Pascone, R.; Chiesa, C. Serum uric acid and its association with metabolic syndrome and carotid atherosclerosis in obese children. Eur. J. Endocrinol. 2009, 160, 45–52. [Google Scholar] [CrossRef]
- Cho, N.H.; Jang, H.C.; Choi, S.H.; Kim, H.R.; Lee, H.K.; Chan, J.C.; Lim, S. Abnormal liver function test predicts type 2 diabetes: A community-based prospective study. Diabetes Care 2007, 30, 2566–2568. [Google Scholar] [CrossRef]
- Patel, D.A.; Srinivasan, S.R.; Xu, J.H.; Chen, W.; Berenson, G.S. Persistent elevation of liver function enzymes within the reference range is associated with increased cardiovascular risk in young adults: The Bogalusa Heart Study. Metabolism 2007, 56, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.E.; Shin, C.Y.; Yoon, Y.S.; Park, H.S. Elevated alanine aminotransferase levels predict mortality from cardiovascular disease and diabetes in Koreans. Atherosclerosis 2009, 205, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hwang, J.S.; Park, H.K.; Lee, H.S.; Kim, H.S.; Kim, E.Y.; Lim, J.S. Serum lipid concentrations, prevalence of dyslipidemia, and percentage eligible for pharmacological treatment of Korean children and adolescents; data from the Korea National Health and Nutrition Examination Survey IV (2007–2009). PLoS ONE 2012, 7, e49253. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, K.; Takahashi, E. Non-HDL cholesterol is a more superior predictor of small-dense LDL cholesterol than LDL cholesterol in Japanese subjects with TG levels < 400 mg/dL. J. Atheroscler. Thromb. 2016, 23, 1126–1137. [Google Scholar]
- Liu, A.; Reaven, G.M. Is measurement of non-HDL cholesterol an effective way to identify the metabolic syndrome? Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1122–1127. [Google Scholar] [CrossRef]
- Blaha, M.J.; Blumenthal, R.S.; Brinton, E.A.; Jacobson, T.A. National Lipid Association Taskforce on Non-HDL Cholesterol: The importance of non-HDL cholesterol reporting in lipid management. J. Clin. Lipidol. 2008, 2, 267–273. [Google Scholar] [CrossRef]
- Virani, S.S. Non-HDL cholesterol as a metric of good quality of care: Opportunities and challenges. Tex. Heart Inst. J. 2011, 38, 160–162. [Google Scholar]
- Shim, Y.S.; Baek, J.W.; Kang, M.J.; Oh, Y.J.; Yang, S.; Hwang, I.T. Reference values for the triglyceride to high-density lipoprotein cholesterol ratio and non-high-density lipoprotein cholesterol in Korean children and adolescents: The Korea National Health and Nutrition Examination Surveys 2007–2013. J. Atheroscler. Thromb. 2016, 23, 1334–1344. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Na, Y.A. Distribution of the fasting lipid levels and validation of the reference interval in Korean adolescents. Korean J. Clin. Lab. Sci. 2018, 50, 253–260. [Google Scholar] [CrossRef]
- Kimm, H.; Lee, S.W.; Lee, H.S.; Shim, K.W.; Cho, C.Y.; Yun, J.E.; Jee, S.H. Associations between lipid measures and metabolic syndrome, insulin resistance and adiponectin.-Usefulness of lipid ratios in Korean men and women-. Circ. J. 2010, 74, 931–937. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Bovet, P.; Faeh, D.; Gabriel, A.; Tappy, L. The prediction of insulin resistance with serum triglyceride and high-density lipoprotein cholesterol levels in an East African population. Arch. Intern. Med. 2006, 166, 1236–1237. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.J. The relation among adolescents metabolic syndrome, dietary life, physical activity and mental health-Using 7th national nutrition survey of 1st year (2016)-. J. Korea Acad. Ind. Coop. Soc. 2019, 20, 158–168. [Google Scholar]
- Jeong, J.H.; Choi, Y.S.; Kim, S.M.; Choi, S.Y.; Kim, J.E.; Kim, E.Y.; Lee, H.Y.; Jung, J.H.; Jin, R. Correlation between physical activity status and dyslipidemia in Korean adults: The 2010 Korea National Health and Nutrition Examination Survey. Korean J. Clin. Geriatr. 2014, 15, 35–44. [Google Scholar] [CrossRef]
- Lira, F.S.; Zanchi, N.E.; Lima-Silva, A.E.; Pires, F.O.; Bertuzzi, R.C.; Santos, R.V.; Caperuto, E.C.; Kiss, M.A.; Seelaender, M. Acute high-intensity exercise with low energy expenditure reduced LDL-C and total cholesterol in men. Eur. J. Appl. Physiol. 2009, 107, 203–210. [Google Scholar] [CrossRef]
- Park, D.H.; Ransone, J.W. Effects of submaximal exercise on high-density lipoprotein-cholesterol subfractions. Int. J. Sports Med. 2003, 24, 245–251. [Google Scholar] [CrossRef]
- Magkos, F.; Tsekouras, Y.E.; Prentzas, K.I.; Basioukas, K.N.; Matsama, S.G.; Yanni, A.E.; Kavouras, S.A.; Sidossis, L.S. Acute exercise-induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J. Appl. Physiol. 2008, 105, 1228–1236. [Google Scholar] [CrossRef]
- Lee, N.C.; Kim, M.J.; Choi, H.J.; Lee, J.S.; Jung, D. A study on the prevalence and risk of family history for chronic diseases: Findings from the Korea National Health and Nutrition Examination Survey 2019. J. Converg. Inf. Technol. 2021, 11, 160–167. [Google Scholar]
Variables | Categories | Normal (n = 273, N = 2,208,197) | Dyslipidemia (n = 108, N = 863,816) | F * (p) |
---|---|---|---|---|
n (%) | n (%) | |||
Sex | Male | 140 (68.7) | 61 (31.3) | 1.48 (0.227) |
Female | 133 (75.4) | 47 (24.6) | ||
Age (years) | 12–14 | 133 (71.9) | 51 (28.1) | 0.00 (0.990) |
15–18 | 140 (71.9) | 57 (28.1) | ||
Household income † | Low | 24 (67.1) | 14 (32.9) | 0.70 (0.551) |
Middle low | 65 (65.8) | 27 (34.2) | ||
Middle high | 96 (76.8) | 28 (23.2) | ||
High | 87 (72.7) | 39 (27.3) | ||
Smoking experience | No | 253 (70.7) | 103 (29.3) | 1.58 (0.211) |
Yes | 20 (82.4) | 5 (17.6) | ||
Drinking experience | No | 224 (71.4) | 91 (28.6) | 0.07 (0.793) |
Yes | 49 (73.4) | 17 (26.6) | ||
Physical activity at least 60 min/day | None/last 7 days | 179 (70.7) | 73 (29.3) | 2.57 (0.082) |
1–3 days/week | 61 (67.4) | 31 (32.6) | ||
4–7 days/week | 33 (88.6) | 4 (11.4) | ||
Stress perception level | Much | 62 (74.7) | 26 (25.3) | 1.06 (0.348) |
A little | 156 (68.9) | 67 (31.1) | ||
Hardly | 55 (78.1) | 15 (21.9) | ||
Diagnosis of hyperlipidemia (father) † | No | 238 (71.0) | 101 (29.0) | 0.40 (0.640) |
Yes | 28 (78.7) | 5 (21.3) | ||
Do not know/ No answer | 6 (82.8) | 2 (17.2) | ||
Diagnosis of hyperlipidemia (mother) † | No | 265 (73.4) | 99 (26.6) | 7.81 (0.001) |
Yes | 0 (0.0) | 8 (100.0) | ||
Do not know/ No answer | 7 (83.8) | 1 (16.2) |
Variables | Categories | Normal (n = 273, N = 2,208,197) | Dyslipidemia (n = 108, N = 863,816) | t or F * (p) |
---|---|---|---|---|
n (%) or M ± SE | n (%) or M ± SE | |||
BMI percentile † | Underweight/ Normal | 210 (81.2) | 54 (18.8) | 20.41 (<0.001) |
Overweight | 25 (62.3) | 13 (37.7) | ||
Obesity | 35 (41.4) | 41 (58.6) | ||
Height (cm) † | 165.22 ± 0.72 | 166.08 ± 1.01 | −0.71 (0.480) | |
Waist circumference (cm) † | 71.18 ± 0.76 | 80.29 ± 2.00 | −4.16 (<0.001) | |
SBP (mmHg) † | 107.25 ± 0.74 | 109.43 ± 1.03 | −1.73 (0.085) | |
DBP (mmHg) † | 66.96 ± 0.75 | 67.45 ± 0.89 | −0.45 (0.655) | |
TC (mg/dL) | 154.98 ± 1.43 | 176.37 ± 4.10 | −5.28 (<0.001) | |
TG (mg/dL) | 65.11 ± 1.88 | 120.98 ± 5.41 | −10.57 (<0.001) | |
LDL-C (mg/dL) | 88.56 ± 1.28 | 108.41 ± 3.32 | −5.83 (<0.001) | |
HDL-C (mg/dL) | 53.40 ± 0.69 | 43.77 ± 1.35 | 6.11 (<0.001) | |
Non-HDL-C (mg/dL) | 101.58 ± 1.42 | 132.61 ± 3.25 | −9.38 (<0.001) | |
TG/HDL-C (mg/dL) | 1.26 ± 0.04 | 2.92 ± 0.15 | −10.93 (<0.001) | |
TC/HDL-C (mg/dL) | 2.95 ± 0.04 | 4.13 ± 0.10 | −10.97 (<0.001) | |
Hb (g/dL) † | 13.91 ± 0.09 | 14.02 ± 0.17 | −0.55 (0.581) | |
Hct (%) † | 42.51 ± 0.24 | 42.90 ± 0.45 | −0.75 (0.455) | |
FPG (mg/dL) | 91.38 ± 0.52 | 92.17 ± 0.80 | −0.83 (0.406) | |
HbA1C (%) † | 5.38 ± 0.02 | 5.42 ± 0.03 | −1.01 (0.315) | |
Serum uric acid (mg/dL) † | 5.47 ± 0.11 | 6.41 ± 0.20 | −4.04 (<0.001) | |
AST (IU/L) | 19.82 ± 0.52 | 23.23 ± 1.79 | −1.76 (0.079) | |
ALT (IU/L) | 14.96 ± 0.77 | 24.12 ± 2.93 | −2.98 (0.003) |
Variables (Reference) | Categories | Male (n = 201, N = 1,624,503) | Female (n = 180, N = 1,447,510) | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
Age (12–14 years) | 15–18 years | 1.07 (0.54, 2.10) | 0.847 | 0.91 (0.42, 1.96) | 0.806 |
Household income (High) † | Low | 1.08 (0.28, 4.13) | 0.912 | 1.62 (0.52, 5.07) | 0.402 |
Middle low | 1.79 (0.64, 5.02) | 0.267 | 0.93 (0.36, 2.41) | 0.873 | |
Middle high | 0.82 (0.31, 2.21) | 0.696 | 0.77 (0.33, 1.82) | 0.548 | |
Smoking experience (No) | Yes | 0.27 (0.07, 1.04) | 0.056 | 1.27 (0.26, 6.27) | 0.769 |
Drinking experience (No) | Yes | 0.74 (0.25, 2.23) | 0.590 | 1.12 (0.39, 3.26) | 0.831 |
Physical activity at least 60 min/day (None) | 1–3/week | 1.08 (0.49, 2.37) | 0.856 | 1.32 (0.55, 3.20) | 0.536 |
4–7/week | 0.24 (0.06, 0.97) | 0.045 | 0.46 (0.06, 3.27) | 0.431 | |
Stress perception level (Hardly) | Much | 1.85 (0.59, 5.78) | 0.291 | 0.91 (0.26, 3.23) | 0.886 |
A little | 1.71 (0.75, 3.86) | 0.198 | 1.49 (0.52, 4.28) | 0.458 | |
BMI percentile (Underweight/Normal) † | Overweight | 2.23 (0.77, 6.48) | 0.138 | 3.02 (0.98, 9.35) | 0.055 |
Obesity | 5.26 (2.51, 11.03) | <0.001 | 7.76 (2.94, 20.52) | <0.001 | |
Height (cm) † | 1.00 (0.96, 1.04) | 0.976 | 1.01 (0.94, 1.08) | 0.891 | |
Waist circumference (cm) † | 1.06 (1.03, 1.09) | <0.001 | 1.13 (1.06, 1.20) | <0.001 | |
SBP (mmHg) † | 1.03 (1.00, 1.06) | 0.092 | 1.01 (0.97, 1.05) | 0.748 | |
DBP (mmHg) † | 1.02 (0.98, 1.07) | 0.315 | 0.98 (0.93, 1.03) | 0.393 | |
TC (mg/dL) | 1.03 (1.01, 1.04) | <0.001 | 1.04 (1.02, 1.06) | <0.001 | |
TG (mg/dL) | 1.06 (1.04, 1.08) | <0.001 | 1.04 (1.03, 1.06) | <0.001 | |
LDL-C (mg/dL) | 1.03 (1.02, 1.05) | <0.001 | 1.04 (1.02, 1.06) | <0.001 | |
HDL-C (mg/dL) | 0.88 (0.82, 0.93) | <0.001 | 0.88 (0.81, 0.96) | 0.002 | |
Non-HDL-C (mg/dL) | 1.05 (1.03, 1.07) | <0.001 | 1.07 (1.05, 1.09) | <0.001 | |
TG/HDL-C (mg/dL) | 13.44 (6.55, 27.57) | <0.001 | 6.81 (3.79, 12.25) | <0.001 | |
TC/HDL-C (mg/dL) | 19.91 (9.71, 40.84) | <0.001 | 32.61 (9.86, 107.88) | <0.001 | |
Hb (g/dL) † | 1.14 (0.72, 1.81) | 0.575 | 0.83 (0.59, 1.16) | 0.278 | |
Hct (%) † | 1.04 (0.88, 1.24) | 0.639 | 0.95 (0.82, 1.09) | 0.455 | |
FPG (mg/dL) | 1.02 (0.97, 1.07) | 0.476 | 1.01 (0.95, 1.07) | 0.764 | |
HbA1C (%) † | 0.96 (0.24, 3.91) | 0.959 | 3.06 (0.54, 17.26) | 0.203 | |
Serum uric acid (mg/dL) † | 1.56 (1.17, 2.06) | 0.002 | 2.27 (1.54, 3.35) | <0.001 | |
AST (IU/L) | 1.02 (0.99, 1.05) | 0.166 | 1.09 (0.98, 1.21) | 0.116 | |
ALT (IU/L) | 1.03 (1.01, 1.05) | 0.005 | 1.08 (1.02, 1.15) | 0.009 |
Variables | Categories | Adjusted OR | 95% CI | p |
---|---|---|---|---|
BMI percentile † | Underweight/ Normal | 1.00 | ||
Overweight | 1.38 | (0.23, 8.16) | 0.721 | |
Obesity | 0.54 | (0.20, 1.50) | 0.237 | |
TC (mg/dL) | 0.70 | (0.54, 0.90) | 0.005 | |
TG (mg/dL) | 1.08 | (1.03, 1.15) | 0.005 | |
LDL-C (mg/dL) | 1.47 | (1.16, 1.88) | 0.002 | |
HDL-C (mg/dL) | 1.00 | (1.00, 1.00) | - | |
Serum uric acid (mg/dL) † | 1.45 | (1.07, 1.97) | 0.002 | |
ALT (IU/L) | 1.01 | (0.99, 1.03) | 0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, J.-H.; Bang, K.-S.; Jang, S.-Y. Factors Affecting Dyslipidemia among Korean Adolescents: An Analysis Using the 8th Korea National Health and Nutrition Examination Survey (2021). Children 2023, 10, 1618. https://doi.org/10.3390/children10101618
Choe J-H, Bang K-S, Jang S-Y. Factors Affecting Dyslipidemia among Korean Adolescents: An Analysis Using the 8th Korea National Health and Nutrition Examination Survey (2021). Children. 2023; 10(10):1618. https://doi.org/10.3390/children10101618
Chicago/Turabian StyleChoe, Ji-Hye, Kyung-Sook Bang, and Sang-Youn Jang. 2023. "Factors Affecting Dyslipidemia among Korean Adolescents: An Analysis Using the 8th Korea National Health and Nutrition Examination Survey (2021)" Children 10, no. 10: 1618. https://doi.org/10.3390/children10101618
APA StyleChoe, J.-H., Bang, K.-S., & Jang, S.-Y. (2023). Factors Affecting Dyslipidemia among Korean Adolescents: An Analysis Using the 8th Korea National Health and Nutrition Examination Survey (2021). Children, 10(10), 1618. https://doi.org/10.3390/children10101618