Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Setting and Participants
2.2. Procedure
2.3. The Exergame Setting
2.4. Measures
2.4.1. Anthropometry
2.4.2. Enjoyment
2.4.3. Self-Reported Habitual Physical Activity and Interest in Sports
2.4.4. Teacher and Study Staff Feedback
2.4.5. Aerobic Fitness
− 3.248 × age + 0.1536
× maximal shuttle run speed × age
2.4.6. Heart Rate
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Dobbins, M.; De Corby, K.; Robeson, P.; Husson, H.; Tirilis, D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst. Rev. 2009, 1, CD007651. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents. A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- De Bock, F. Promotion of physical activity in childhood and adolescence (Bewegungsförderung im Kindes- und Jugendalter). In Handbook on Physical Activity Promotion and Health (Handbuch Bewegungsförderung und Gesundheit); Verlag Hans Huber AG: Bern, Switzerland, 2012. [Google Scholar]
- Ravens-Sieberer, U.; Thomas, C. Health Behavior in School-Aged Children; Results of the HBSC Youth Health Study 2002 in Collaboration with the WHO (Gesundheitsverhalten von Schülern in Berlin. Ergebnisse der HBSC-Jugendgesundheitsstudie 2002 im Auftrag der WHO); Robert Koch-Institut: Berlin, Germany, 2003; ISBN 3896060767. [Google Scholar]
- Cale, L.; Harris, J. School-based physical activity interventions: Effectiveness, trends, issues, implications and recommendations for practice. Sport Educ. Soc. 2006, 11, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Vaghetti, C.A.O.; Monteiro-Junior, R.S.; Finco, M.D.; Reategui, E.; Da Costa Botelho, S.S. Exergames experience in physical education: A review. Phys. Cult. Sport. Stud. Res. 2018, 78, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.; Temple, V. A systematic review of dropout from organized sport among children and youth. Eur. Phys. Educ. Rev. 2015, 21, 114–131. [Google Scholar] [CrossRef]
- Yan, J.H.; McCullagh, P. Cultural Influence on Youth’s Motivation of Participation in Physical Activity. J. Sport Behav. 2004, 27, 378–390. [Google Scholar]
- Lakicevic, N.; Gentile, A.; Mehrabi, S.; Cassar, S.; Parker, K.; Roklicer, R.; Bianco, A.; Drid, P. Make Fitness Fun: Could Novelty Be the Key Determinant for Physical Activity Adherence. Front. Psychol. 2020, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Allender, S.; Cowburn, G.; Foster, C. Understanding participation in sport and physical activity among children and adults: A review of qualitative studies. Health Educ. Res. 2006, 21, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z. Fight fire with fire? Promoting physical activity and health through active video games. J. Sport Health Sci. 2017, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, T. Exergaming: Hope for future physical activity? or blight on mankind? J. Sport Health Sci. 2017, 6, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Yang, S. Defining exergames and exergaming. In Proceedings of the Meaningful Play Conference 2010, East Lansing, MI, USA, 21–23 October 2010. [Google Scholar]
- Huard Pelletier, V.; Lessard, A.; Piché, F.; Tétreau, C.; Descarreaux, M. Video games and their associations with physical health: A scoping review. BMJ Open Sport Exerc. Med. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Mentzoni, R.A.; Brunborg, G.S.; Molde, H.; Myrseth, H.; Skouverøe, K.J.M.; Hetland, J.; Pallesen, S. Problematic video game use: Estimated prevalence and associations with mental and physical health. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Vandewater, E.A.; Shim, M.S.; Caplovitz, A.G. Linking obesity and activity level with children’s television and video game use. J. Adolesc. 2004, 27, 71–85. [Google Scholar] [CrossRef]
- O’Loughlin, E.K.; Dutczak, H.; Kakinami, L.; Consalvo, M.; McGrath, J.J.; Barnett, T.A. Exergaming in Youth and Young Adults: A Narrative Overview. Games Health J. 2020, 9, 314–338. [Google Scholar] [CrossRef]
- Lanningham-Foster, L.; Foster, R.C.; McCrady, S.K.; Jensen, T.B.; Mitre, N.; Levine, J.A. Activity-Promoting Video Games and Increased Energy Expenditure. J. Pediatr. 2009, 154, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Mellecker, R.R.; McManus, A.M. Energy expenditure and cardiovascular responses to seated and active gaming in children. Arch. Pediatr. Adolesc. Med. 2008, 162, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Lin, J.H.; Crouse, J. Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Lee, J.; Stodden, D.; Gao, Z. Impact of Exergaming on Children’s Motor Skill Competence and Health-Related Fitness: A Quasi-Experimental Study. J. Clin. Med. 2018, 7, 261. [Google Scholar] [CrossRef] [Green Version]
- Maddison, R.; Mhurchu, C.N.; Jull, A.; Prapavessis, H.; Rodgers, A. Energy Expended Playing Video Console Games: An Opportunity to Increase Children’s Physical Activity Ralph. Pediatr. Exerc. Sci. 2007, 19, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.L.; Pratt, L.V.; Hester, C.N.; Short, K.R. Playing active video games increases energy expenditure in children. Pediatrics 2009, 124, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Vernadakis, N.; Zetou, E.; Derri, V.; Bebetsos, E.; Filippou, F. The Differences between Less Fit and Overweight Children on Enjoyment of Exergames, Other Physical Activity and Sedentary Behaviours. Procedia Soc. Behav. Sci. 2014, 152, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhang, T.; Stodden, D. Children’s physical activity levels and psychological correlates in interactive dance versus aerobic dance. J. Sport Health Sci. 2013, 2, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Wong, M.K.; Yang, Y.H.; Chiu, H.Y.; Teng, C.I. Impact of Playing Exergames on Mood States: A Randomized Controlled Trial. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 246–250. [Google Scholar] [CrossRef]
- O’Loughlin, E.K.; Dugas, E.N.; Sabiston, C.M.; O’Loughlin, J.L. Prevalence and correlates of exergaming in youth. Pediatrics 2012, 130, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Townsend, J.; Gurvitch, R. Integrating technology into physical education: Enhancing multiple intelligences. Teach. Elem. Phys. Educ. 2002, 13, 35–38. [Google Scholar]
- Hansen, L.; Sanders, S. Interactive Gaming: Changing the Face of Fitness. Florida Alliance Health Phys. Educ. Recreat. Danc. Sport J. 2008, 46, 38–41. [Google Scholar]
- Baranowski, T.; Buday, R.; Thompson, D.I.; Baranowski, J. Playing for Real. Video Games and Stories for Health-Related Behavior Change. Am. J. Prev. Med. 2008, 34, 74–82.e10. [Google Scholar] [CrossRef]
- Lwin, M.O.; Malik, S. Can exergames impart health messages? Game play, framing, and drivers of physical activity among children. J. Health Commun. 2014, 19, 136–151. [Google Scholar] [CrossRef]
- Ye, S.; Pope, Z.C.; Lee, J.E.; Gao, Z. Effects of school-based exergaming on urban children’s physical activity and cardiorespiratory fitness: A quasi-experimental study. Int. J. Environ. Res. Public Health 2019, 16, 4080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Pope, Z.; Lee, J.E.; Stodden, D.; Roncesvalles, N.; Pasco, D.; Huang, C.C.; Feng, D. Impact of exergaming on young children’s school day energy expenditure and moderate-to-vigorous physical activity levels. J. Sport Health Sci. 2017, 6, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Hannan, P.; Xiang, P.; Stodden, D.F.; Valdez, V.E. Video game-based exercise, Latino children’s physical health, and academic achievement. Am. J. Prev. Med. 2013, 44, S240–S246. [Google Scholar] [CrossRef] [PubMed]
- Röglin, L.; Martin-Niedecken, A.L.; Ketelhut, S. Exercising Digitally: A Multi-Perspective Analysis of Exergames for Physical Activity and Health Promotion. In Creating Digitally: Shifting Boundaries: Arts and Technologies–Contemporary Applications and Concepts; Brooks, A.L., Ed.; Springer: Cham, Germany, 2023; in press. [Google Scholar]
- Daley, A.J. Can exergaming contribute to improving physical activity levels and health outcomes in children? Pediatrics 2009, 124, 763–771. [Google Scholar] [CrossRef]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch. Pediatr. Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef]
- Nani, S.; Matsouka, O.; Antoniou, P. Can ten weeks intervention with exergames contribute to better subjective vitality and physical health. Sport Sci. Health 2019, 15, 43–47. [Google Scholar] [CrossRef]
- Marshall, J.; Linehan, C. Are Exer-Games Exercise? A Scoping Review of the Short Term Effects of Exertion Games. IEEE Trans. Games 2020, 14, 160–169. [Google Scholar] [CrossRef]
- Zaczynski, M.; Whitehead, A. Establishing Design Guidelines in Interactive Exercise Gaming: Preliminary Data from Two Posing Studies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 2014, Toronto, ON, Canada, 26 April–1 May 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1875–1884. [Google Scholar] [CrossRef]
- Kari, T. Can exergaming promote physical fitness and physical activity?: A systematic review of systematic reviews. Int. J. Gaming Comput. Simul. 2014, 6, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Martin-Niedecken, A.L.; Mekler, E.D. The ExerCube: Participatory Design of an Immersive Fitness Game Environment. In Serious Games; JCSG 2018. Lecture Notes in Computer Science; Göbel, S., Garcia-Agundez, A., Tregel, T., Ma, M., Hauge, J.B., Oliveira, M., Marsh, T., Caserman, P., Eds.; Springer: Cham, Switzerland, 2018; Volume 11243, pp. 263–275. [Google Scholar] [CrossRef]
- Röglin, L.; Ketelhut, S.; Ketelhut, K.; Kircher, E.; Ketelhut, R.G.; Martin-Niedecken, A.L.; Hottenrott, K.; Stoll, O. Adaptive High-Intensity Exergaming: The More Enjoyable Alternative to Conventional Training Approaches Despite Working Harder. Games Health J. 2021, 10, 400–407. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Mahrer, A.; Rogers, K.; de Bruin, E.D.; Schättin, A. “HIIT” the ExerCube: Comparing the Effectiveness of Functional High-Intensity Interval Training in Conventional vs. Exergame-Based Training. Front. Comput. Sci. 2020, 2, 33. [Google Scholar] [CrossRef]
- Ketelhut, S.; Röglin, L.; Kircher, E.; Martin-Niedecken, A.L.; Ketelhut, R.; Hottenrott, K.; Ketelhut, K. The New Way to Exercise? Evaluating an Innovative Heart-rate-controlled Exergame. Int. J. Sports Med. 2022, 43, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Coners, H.; Himmelmann, W.; Hebebrand, J.; Hesker, H.; Remschmidt, H.; Schäfer, H. Percentile curves for body mass index for weight assessment in children and adolescents aged ten years and older (Perzentilkurven für den Body-Mass-Index zur Gewichtsbeurteilung bei Kindern und Jugendlichen ab einem Alter von zehn Jahren). Kinderarzt 1996, 27, 1002–1007. [Google Scholar]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Bös, K.; Worth, A.; Opper, E.; Oberger, J.; Wagner, M.; Jekauc, D.; Woll, A. Motoric Ability and Activity in Children and Adolescents–Results of the MoMo Study (Motorische Fähigkeit und Aktivität von Kindern und Jugendlichen–Ergebnisse der MoMo–Studie). Diabetes Aktuell 2009, 7, 367–371. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Segura, E.M.; Rogers, K.; Niedecken, S.; Vidal, L.T. Towards socially immersive fitness games: An exploratory evaluation through embodied sketching. In Proceedings of the CHI Play 2019–Extended Abstracts of the Annual Symposium Computer-Human Interaction in Play, Barcelona, Spain, 22–25 October 2019; pp. 525–534. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Jekauc, D.; Voelkle, M.; Wagner, M.O.; Mewes, N.; Woll, A. Reliability, validity, and measurement invariance of the german version of the physical activity enjoyment scale. J. Pediatr. Psychol. 2013, 38, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Paxton, R.J.; Nigg, C.; Motl, R.W.; Yamashita, M.; Chung, R.; Battista, J.; Chang, J.A. Physical activity enjoyment scale short form–does it fit for children? Res. Q. Exerc. Sport 2008, 79, 423–427. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is It Really Robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology 2010, 6, 147–151. [Google Scholar] [CrossRef]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid option. María. Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Pescatello, L.S.; Riebe, D.; Arena, R. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Chanal, J.; Cheval, B.; Courvoisier, D.S.; Paumier, D. Developmental relations between motivation types and physical activity in elementary school children. Psychol. Sport Exerc. 2019, 43, 233–242. [Google Scholar] [CrossRef]
- Sun, H. Impact of exergames on physical activity and motivation in elementary school students: A follow-up study. J. Sport Health Sci. 2013, 2, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Lau, P.W.C.; Wang, J.J.; Maddison, R. A Randomized-Controlled Trial of School-Based Active Videogame Intervention on Chinese Children’s Aerobic Fitness, Physical Activity Level, and Psychological Correlates. Games Health J. 2016, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dishman, R.K.; Motl, R.W.; Saunders, R.; Felton, G.; Ward, D.S.; Dowda, M.; Pate, R.R. Enjoyment mediates effects of a school-based physical-activity intervention. Med. Sci. Sports Exerc. 2005, 37, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.J.; Sallis, J.F.; Slymen, D.J.; McKenzie, T.L. A longitudinal study of children’s enjoyment of physical education. Pediatr. Exerc. Sci. 2003, 15, 170–178. [Google Scholar] [CrossRef]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Wallhead, T.L.; Ntoumanis, N. Effects of a Sport Education Intervention on Students’ Motivational Responses in Physical Education. J. Teach. Phys. Educ. 2004, 23, 4–18. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D.; Horita, L.T.L.; Zbogar, D.; Scott, J.M.; Esch, B.T.A.; Rhodes, R.E. The health benefits of interactive video game exercise. Appl. Physiol. Nutr. Metab. 2007, 32, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.J.; Simmers, C.S. Exergaming. Virtual inspiration, real perspiration. Young Consum. 2009, 10, 35–45. [Google Scholar] [CrossRef]
- Molina, K.I.; Ricci, N.A.; De Moraes, S.A.; Perracini, M.R. Virtual reality using games for improving physical functioning in older adults: A systematic review. J. Neuroeng. Rehabil. 2014, 11, 156. [Google Scholar] [CrossRef] [Green Version]
- Street, T.D.; Lacey, S.J.; Langdon, R.R. Gaming Your Way to Health: A Systematic Review of Exergaming Programs to Increase Health and Exercise Behaviors in Adults. Games Health J. 2017, 6, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.H.; Gorely, T.; Marshall, S.J.; Murdey, I.; Cameron, N. Physical activity and sedentary behaviours in youth: Issues and controversies. J. R. Soc. Promot. Health 2004, 124, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.; Katz, L.; Kooiman, B. Exergaming and physical education: A qualitative examination from the teachers’ perspective. J. Case Stud. Educ. 2015, 4, 1–14. [Google Scholar]
- Finco, M.D.; Reategui, E.; Zaro, M.A.; Sheehan, D.D.; Katz, L. Exergaming as an alternative for students unmotivated to participate in regular physical education classes. Int. J. Game Based Learn. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.A.; Yen, S.; Wlasiuk, L.; Newman, T.B.; Lustig, R. Feasibility of a Dance Videogame to Promote Weight Loss Among Overweight Children and Adolescents. Arch. Pediatr. Adolesc. Med. 2007, 161, 105–107. [Google Scholar] [CrossRef]
- Baranowski, T.; Abdelsamad, D.; Baranowski, J.; O’Connor, T.M.; Thompson, D.; Barnett, A.; Cerin, E.; Chen, T.A. Impact of an active video game on healthy children’s physical activity. Pediatrics 2012, 129, e636–e642. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Carroll, B.; Loumidis, J. Children’s Perceived Competence and Enjoyment in Physical Education and Physical Activity Outside School. Eur. Phys. Educ. Rev. 2001, 7, 24–43. [Google Scholar] [CrossRef]
- Fairclough, S. Physical Activity, Perceived Competence and Enjoyment During High School Physical Education. Eur. J. Phys. Educ. 2003, 8, 5–18. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Sweetser, P.; Wyeth, P. GameFlow. A model for evaluating player enjoyment in games. Comput. Entertain. 2005, 3, 3. [Google Scholar] [CrossRef]
- Sinclair, J.; Hingston, P.; Masek, M. Considerations for the design of exergames. In Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, Perth, Australia, 1–4 December 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 289–295. [Google Scholar] [CrossRef]
- Klimmt, C. Dimensions and determinants of the enjoyment of playing digital games: A three-level model. In Level Up. Digital Games Research Conference, Proceedings of the International Digital Games Research Conference, Utrecht, The Netherlands, 4–6 November 2003; Copier, M., Raessens, J., Eds.; Utrecht University, Faculty of the Arts: Utrecht, The Netherlands, 2003; pp. 246–257. [Google Scholar]
- Mellecker, R.; Lyons, E.J.; Baranowski, T. Disentangling Fun and Enjoyment in Exergames Using an Expanded Design, Play, Experience Framework: A Narrative Review. Games Health J. 2013, 2, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Martin-Niedecken, A.L.; Schättin, A. Let the Body’n’Brain Games Begin: Toward Innovative Training Approaches in eSports Athletes. Front. Psychol. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Quaiser-Pohl, C.; Geiser, C.; Lehmann, W. The relationship between computer-game preference, gender, and mental-rotation ability. Pers. Individ. Dif. 2006, 40, 609–619. [Google Scholar] [CrossRef]
- Terlecki, M.S.; Newcombe, N.S. How important is the digital divide? the relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles 2005, 53, 433–441. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Alkandari, J.R.; Bauman, A.E.; Blair, S.N.; Brownson, R.C.; et al. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Pearce, M.S.; Basterfield, L.; Mann, K.D.; Parkinson, K.N.; Adamson, A.J.; Reilly, J.J. Early predictors of objectively measured physical activity and sedentary behaviour in 8-10 year old children: The gateshead millennium study. PLoS ONE 2012, 7, e137975. [Google Scholar] [CrossRef] [Green Version]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Peng, W.; Crouse, J. Playing in parallel: The effects of multiplayer modes in active video game on motivation and physical exertion. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 423–427. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, Z.; Kuwahara, K. Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected. Prog. Cardiovasc. Dis. 2020, 63, 531–532. [Google Scholar] [CrossRef]
- Puccinelli, P.J.; da Costa, T.S.; Seffrin, A.; de Lira, C.A.B.; Vancini, R.L.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.; Hill, L.; Andrade, M.S. Correction to: Reduced level of physical activity during COVID-19 pandemic is associated with depression and anxiety levels:An internet-based survey. BMC Public Health 2021, 21, 613. [Google Scholar] [CrossRef]
- Soltani, P.; Figueiredo, P.; Vilas-Boas, J.P. Does exergaming drive future physical activity and sport intentions? J. Health Psychol. 2021, 26, 2173–2185. [Google Scholar] [CrossRef]
Item | Total (n = 27) | Female (n = 14) | Male (n = 13) |
---|---|---|---|
Height (cm) | 148.4 ± 9.2 | 150.1 ± 10.9 | 146.5 ± 6.4 |
Body mass (kg) | 46.2 ± 12.8 | 46.0 ± 14.5 | 46.5 ± 10.6 |
Waist circumference (cm) | 67.6 ± 10.1 | 64.8 ± 8.5 | 70.8 ± 10.8 |
BMI (kg·m−2) | 20.7 ± 4.2 | 20.0 ± 4.3 | 21.5 ± 3.9 |
WHtR | 0.45 ± 0.06 | 0.43 ± 0.04 | 0.48 ± 0.06 |
VO2max (mL/kg/min) | 44.70 ± 3.5 | 44.70 ± 3.5 | 44.74 ± 3.4 |
Physical activity level (days/week with over 60 min) | 3.6 ± 2.2 | 3.1 ± 2.1 | 4.2 ± 2.2 |
General interest in sports (1 = no interest; 5 = very interested) | 4.1 ± 0.9 | 4.0 ± 1.1 | 4.3 ± 0.8 |
Variable | Unstandardized Coefficient | Standardized Coefficient | Std. Error |
---|---|---|---|
Constant | 61.445 | ||
Gender | 0.881 | 0.070 | 2.876 |
BMI (kg·m−2) | −0.066 | −0.164 | 0.119 |
WHtR | 54.133 | 0.534 | 43.837 |
Physical activity level (days/week with over 60 min) | −0.024 | −0.008 | 0.573 |
General interest in sports (1 = no interest; 5 = very interested) | 2.026 | 0.313 | 1.487 |
VO2max (mL/kg/min) | −0.077 | −0.040 | 0.527 |
R2 | 0.315 | ||
Adjusted R2 | 0.110 | ||
F (df = 6;20) | 1.535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röglin, L.; Stoll, O.; Ketelhut, K.; Martin-Niedecken, A.L.; Ketelhut, S. Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention. Children 2023, 10, 144. https://doi.org/10.3390/children10010144
Röglin L, Stoll O, Ketelhut K, Martin-Niedecken AL, Ketelhut S. Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention. Children. 2023; 10(1):144. https://doi.org/10.3390/children10010144
Chicago/Turabian StyleRöglin, Lisa, Oliver Stoll, Kerstin Ketelhut, Anna Lisa Martin-Niedecken, and Sascha Ketelhut. 2023. "Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention" Children 10, no. 1: 144. https://doi.org/10.3390/children10010144
APA StyleRöglin, L., Stoll, O., Ketelhut, K., Martin-Niedecken, A. L., & Ketelhut, S. (2023). Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention. Children, 10(1), 144. https://doi.org/10.3390/children10010144