Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development
Abstract
:1. Introduction
2. Trends of Marijuana and Opioid Use during Pregnancy in Recent Decades
3. Patterns of Congenital Defects and Behavioral Changes Seen in Children Exposed to Marijuana in Utero
4. Patterns of Congenital Defects and Behavioral Changes Seen after Prenatal Exposure to Opioid in Humans
5. Zebrafish: A Model System to Study the Effect of Marijuana and Opioid on Development and Behavior
5.1. Zebrafish Endocannabinoid Biology: A Gene-Level Comparison with Human
5.2. Zebrafish Opioid Biology—Why the Zebrafish Is a Useful System to Study the Effects of Opioids
5.3. Zebrafish Studies on Effects of Embryonic Cannabinoid Exposure on Development
5.4. Zebrafish Studies Examining Effects of Embryonic Opioid Exposure on Development
5.5. Zebrafish Studies Examine Behavioral Defects Associated to Embryonic Exposure to Marijuana or Opioid
6. Summary
Funding
Conflicts of Interest
References
- State Marijuana Laws in 2019 Map. Governing-The future of states and localities. Available online: https://www.governing.com/gov-data/safety-justice/state-marijuana-laws-map-medical-recreational.html (accessed on 20 July 2020).
- Bose, J.; Hedden, L.A.; Lipari, R.N.; Park-Lee, E. Key Substance Use and Mental Health Indicators in the United States: Results from the 2017 National Survey on Drug Use and Health; Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2018. [Google Scholar]
- Huestis, M.A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 2007, 4, 1770–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmedic, Z.; Chandra, S.; Slade, D.; Denham, H.; Foster, S.; Patel, A.S.; Ross, S.A.; Khan, I.A.; ElSohly, M.A. Potency trends of Delta9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. J. Forensic Sci. 2010, 55, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Hayes, C.J.; Martin, B.C. Characteristics of Initial Prescription Episodes and Likelihood of Long-Term Opioid Use—United States, 2006–2015. Morb. Mortal. Wkly. Rep. 2017, 66, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, C.L.; O’Donnell, J.; Kariisa, M.; Seth, P.; Scholl, L.; Gladden, R.M. Opportunities to Prevent Overdose Deaths Involving Prescription and Illicit Opioids, 11 States, July 2016–June 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Information Sheet on Opioid Overdose. Available online: https://www.who.int/substance_abuse/information-sheet/en/ (accessed on 30 June 2020).
- Opioid Overdose. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/drugoverdose/index.html (accessed on 20 July 2020).
- McHugh, R.K.; Wigderson, S.; Greenfield, S.F. Epidemiology of substance use in reproductive-age women. Obstet. Gynecol. Clin. North Am. 2014, 41, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Forray, A. Substance use during pregnancy. F1000Research 2016, 5. [Google Scholar] [CrossRef]
- Cerda, M.; Wall, M.; Keyes, K.M.; Galea, S.; Hasin, D. Medical marijuana laws in 50 states: Investigating the relationship between state legalization of medical marijuana and marijuana use, abuse and dependence. Drug Alcohol Depend. 2012, 120, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.Y.; Farr, S.L.; Tong, V.T.; Creanga, A.A.; Callaghan, W.M. Prevalence and patterns of marijuana use among pregnant and nonpregnant women of reproductive age. Am. J. Obstet. Gynecol. 2015, 213, 201.e1–201e.10. [Google Scholar] [CrossRef]
- Oh, S.; Salas-Wright, C.P.; Vaughn, M.G.; DiNitto, D.M. Marijuana use during pregnancy: A comparison of trends and correlates among married and unmarried pregnant women. Drug Alcohol Depend. 2017, 181, 229–233. [Google Scholar] [CrossRef]
- Young-Wolff, K.C.; Tucker, L.Y.; Alexeeff, S.; Armstrong, M.A.; Conway, A.; Weisner, C.; Goler, N. Trends in Self-reported and Biochemically Tested Marijuana Use Among Pregnant Females in California From 2009–2016. JAMA 2017, 318, 2490–2491. [Google Scholar] [CrossRef]
- Ailes, E.C.; Dawson, A.L.; Lind, J.N.; Gilboa, S.M.; Frey, M.T.; Broussard, C.S.; Honein, M.A. Opioid Prescription Claims Among Women of Reproductive Age – United States, 2008–2012. In Morbidity and Mortality Weekly Report (MMWR); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2015; Volume 64, pp. 37–41. [Google Scholar]
- Mack, K.A.; Jones, C.M.; Paulozzi, L.J. Vital signs: Overdoses of prescription opioid pain relievers and other drugs among women—United States, 1999–2010. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 537–542. [Google Scholar]
- Patrick, S.W.; Schumacher, R.E.; Benneyworth, B.D.; Krans, E.E.; McAllister, J.M.; Davis, M.M. Neonatal Abstinence Syndrome and Associated Health Care Expenditures: United States, 2000–2009. JAMA 2012, 307, 1934–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, R.J.; Hernandez-Diaz, S.; Bateman, B.T.; Huybrechts, K.F. Increase in prescription opioid use during pregnancy among Medicaid-enrolled women. Obstet. Gynecol. 2014, 123, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Bateman, B.T.; Hernandez-Diaz, S.; Rathmell, J.P.; Seeger, J.D.; Doherty, M.; Fischer, M.A.; Huybrechts, K.F. Patterns of opioid utilization in pregnancy in a large cohort of commercial insurance beneficiaries in the United States. Anesthesiology 2014, 120, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Han, B.; Compton, W.M.; Blanco, C. Marijuana Use During Stages of Pregnancy in the United States. Ann. Intern. Med. 2017, 166, 763–764. [Google Scholar] [CrossRef] [PubMed]
- Yazdy, M.M.; Desai, R.J.; Brogly, S.B. Prescription Opioids in Pregnancy and Birth Outcomes: A Review of the Literature. J. Pediatr. Genet. 2015, 4, 56–70. [Google Scholar] [CrossRef]
- Martins, F.; Oppolzer, D.; Santos, C.; Barroso, M.; Gallardo, E. Opioid Use in Pregnant Women and Neonatal Abstinence Syndrome-A Review of the Literature. Toxics 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Desai, R.J.; Huybrechts, K.F.; Hernandez-Diaz, S.; Mogun, H.; Patorno, E.; Kaltenbach, K.; Kerzner, L.S.; Bateman, B.T. Exposure to prescription opioid analgesics in utero and risk of neonatal abstinence syndrome: Population based cohort study. BMJ 2015, 350, h2102. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Compton, W.M.; Wargo, E.M. The Risks of Marijuana Use During Pregnancy. JAMA 2017, 317, 129–130. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Cannabis Teratology Explains Current Patterns of Coloradan Congenital Defects: The Contribution of Increased Cannabinoid Exposure to Rising Teratological Trends. Clin. Pediatr. 2019, 58, 1085–1123. [Google Scholar] [CrossRef]
- van Gelder, M.M.; Reefhuis, J.; Caton, A.R.; Werler, M.M.; Druschel, C.M.; Roeleveld, N.; National Birth Defects Prevention, S. Maternal periconceptional illicit drug use and the risk of congenital malformations. Epidemiology 2009, 20, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Willford, J.A.; Chandler, L.S.; Goldschmidt, L.; Day, N.L. Effects of prenatal tobacco, alcohol and marijuana exposure on processing speed, visual-motor coordination, and interhemispheric transfer. Neurotoxicol. Teratol. 2010, 32, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, P.A.; Watkinson, B. Visuoperceptual functioning differs in 9- to 12-year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 2000, 22, 11–20. [Google Scholar] [CrossRef]
- Day, N.L.; Goldschmidt, L.; Thomas, C.A. Prenatal marijuana exposure contributes to the prediction of marijuana use at age 14. Addiction 2006, 101, 1313–1322. [Google Scholar] [CrossRef]
- Broussard, C.S.; Rasmussen, S.A.; Reefhuis, J.; Friedman, J.M.; Jann, M.W.; Riehle-Colarusso, T.; Honein, M.A. Maternal treatment with opioid analgesics and risk for birth defects. Am. J. Obstet. Gynecol. 2011, 204, 314-e1. [Google Scholar] [CrossRef]
- Yazdy, M.M.; Mitchell, A.A.; Tinker, S.C.; Parker, S.E.; Werler, M.M. Periconceptional use of opioids and the risk of neural tube defects. Obstet. Gynecol. 2013, 122, 838–844. [Google Scholar] [CrossRef]
- Minnes, S.; Lang, A.; Singer, L. Prenatal tobacco, marijuana, stimulant, and opiate exposure: Outcomes and practice implications. Addict. Sci. Clin. Pract. 2011, 6, 57–70. [Google Scholar]
- Ross, E.J.; Graham, D.L.; Money, K.M.; Stanwood, G.D. Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn. Neuropsychopharmacology 2015, 40, 61–87. [Google Scholar] [CrossRef]
- Lind, J.N.; Interrante, J.D.; Ailes, E.C.; Gilboa, S.M.; Khan, S.; Frey, M.T.; Dawson, A.L.; Honein, M.A.; Dowling, N.F.; Razzaghi, H.; et al. Maternal Use of Opioids During Pregnancy and Congenital Malformations: A Systematic Review. Pediatrics 2017, 139, e20164131. [Google Scholar] [CrossRef] [Green Version]
- Neonatal Abstinence Syndrome (NAS) Among Newborn Hospitalizations. 2019. Available online: www.hcup-us.ahrq.gov/faststats/nas/nasmap.jsp (accessed on 20 July 2020).
- Data and Statistics About Opioid Use During Pregnancy. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6402a1.htm (accessed on 20 July 2020).
- Bunikowski, R.; Grimmer, I.; Heiser, A.; Metze, B.; Schäfer, A.; Obladen, M. Neurodevelopmental outcome after prenatal exposure to opiates. Eur. J. Pediatrics 1998, 157, 724–730. [Google Scholar] [CrossRef]
- Conradt, E.; Flannery, T.; Aschner, J.L.; Annett, R.D.; Croen, L.A.; Duarte, C.S.; Friedman, A.M.; Guille, C.; Hedderson, M.M.; Hofheimer, J.A.; et al. Prenatal Opioid Exposure: Neurodevelopmental Consequences and Future Research Priorities. Pediatrics 2019, 144. [Google Scholar] [CrossRef] [PubMed]
- Reddy, U.M.; Davis, J.M.; Ren, Z.; Greene, M.F.; Opioid Use in Pregnancy, N.A.S.; Childhood Outcomes Workshop Invited, S. Opioid Use in Pregnancy, Neonatal Abstinence Syndrome, and Childhood Outcomes: Executive Summary of a Joint Workshop by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, American College of Obstetricians and Gynecologists, American Academy of Pediatrics, Society for Maternal-Fetal Medicine, Centers for Disease Control and Prevention, and the March of Dimes Foundation. Obstet. Gynecol. 2017, 130, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Demin, K.A.; Meshalkina, D.A.; Kysil, E.V.; Antonova, K.A.; Volgin, A.D.; Yakovlev, O.A.; Alekseeva, P.A.; Firuleva, M.M.; Lakstygal, A.M.; de Abreu, M.S.; et al. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Oliveri, A.; Levin, E.D. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, K.M.; Mukherjee, K.; Cornell, R.A.; Liao, E.C. Zebrafish models of orofacial clefts. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2017, 246, 897–914. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Marrs, J.A. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function. Int. J. Mol. Sci. 2016, 17, 2123. [Google Scholar] [CrossRef] [Green Version]
- Gerlai, R. Using zebrafish to unravel the genetics of complex brain disorders. Curr. Top. Behav. Neurosci. 2012, 12, 3–24. [Google Scholar] [CrossRef]
- Klee, E.W.; Schneider, H.; Clark, K.J.; Cousin, M.A.; Ebbert, J.O.; Hooten, W.M.; Karpyak, V.M.; Warner, D.O.; Ekker, S.C. Zebrafish: A model for the study of addiction genetics. Hum. Genet. 2012, 131, 977–1008. [Google Scholar] [CrossRef] [Green Version]
- Marrs, J.A.; Clendenon, S.G.; Ratcliffe, D.R.; Fielding, S.M.; Liu, Q.; Bosron, W.F. Zebrafish fetal alcohol syndrome model: Effects of ethanol are rescued by retinoic acid supplement. Alcohol 2010, 44, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Marrs, J.A. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2013, 242, 1184–1201. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Marrs, J.A. Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish. Toxics 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Muralidharan, P.; Curtis, C.L.; McClintick, J.N.; Buente, B.B.; Holdgrafer, D.J.; Ogbeifun, O.; Olorungbounmi, O.C.; Patino, L.; Lucas, R.; et al. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. Biol. Open 2013, 2, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmah, S.; Muralidharan, P.; Marrs, J.A. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish. PLoS ONE 2016, 11, e0161205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmah, S.; Srivastava, R.; McClintick, J.N.; Janga, S.C.; Edenberg, H.J.; Marrs, J.A. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci. Rep. 2020, 10, 3951. [Google Scholar] [CrossRef] [Green Version]
- Muralidharan, P.; Sarmah, S.; Marrs, J.A. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 2015, 49, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Muralidharan, P.; Sarmah, S.; Marrs, J.A. Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model. PLoS ONE 2018, 13, e0201659. [Google Scholar] [CrossRef]
- Muralidharan, P.; Sarmah, S.; Zhou, F.C.; Marrs, J.A. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets. Brain Sci. 2013, 3, 964–991. [Google Scholar] [CrossRef] [Green Version]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Basnet, R.M.; Zizioli, D.; Taweedet, S.; Finazzi, D.; Memo, M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Kalueff, A.V.; Echevarria, D.J.; Stewart, A.M. Gaining translational momentum: More zebrafish models for neuroscience research. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 1–6. [Google Scholar] [CrossRef]
- Oltrabella, F.; Melgoza, A.; Nguyen, B.; Guo, S. Role of the endocannabinoid system in vertebrates: Emphasis on the zebrafish model. Dev. Growth Differ. 2017, 59, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Krug, R.G., II; Clark, K.J. Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene 2015, 570, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.S.; Rastegar, S.; Strahle, U. Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 2006, 138, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Gibert, Y.; Berekelya, L.; Bernard, L.; Brunet, F.; Guillot, E.; Le Bail, J.C.; Sanchez, J.A.; Galzin, A.M.; Triqueneaux, G.; et al. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol. Endocrinol. 2012, 26, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Chambers, D.; Hobbs, C.; Doherty, P.; Graham, A. The endocannabinoid receptor, CB1, is required for normal axonal growth and fasciculation. Mol. Cell Neurosci. 2008, 38, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martin, I.; Herrero-Turrion, M.J.; Marron Fdez de Velasco, E.; Gonzalez-Sarmiento, R.; Rodriguez, R.E. Characterization of two duplicate zebrafish Cb2-like cannabinoid receptors. Gene 2007, 389, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Alexa, K.; Cortes, M.; Schatzman-Bone, S.; Kim, A.J.; Mukhopadhyay, B.; Cinar, R.; Kunos, G.; North, T.E.; Goessling, W. Cannabinoid receptor signaling regulates liver development and metabolism. Development 2016, 143, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Martella, A.; Sepe, R.M.; Silvestri, C.; Zang, J.; Fasano, G.; Carnevali, O.; De Girolamo, P.; Neuhauss, S.C.; Sordino, P.; Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. FASEB J. 2016, 30, 4275–4288. [Google Scholar] [CrossRef] [Green Version]
- Thisse, B.; Thisse, C. Fast Release Clones: A High Throughput Expression Analysis. Available online: https://zfin.org/ (accessed on 20 July 2020).
- Tingaud-Sequeira, A.; Raldua, D.; Lavie, J.; Mathieu, G.; Bordier, M.; Knoll-Gellida, A.; Rambeau, P.; Coupry, I.; Andre, M.; Malm, E.; et al. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC. Neurobiol. Dis. 2017, 98, 36–51. [Google Scholar] [CrossRef]
- Krug, R.G., II; Lee, H.B.; El Khoury, L.Y.; Sigafoos, A.N.; Petersen, M.O.; Clark, K.J. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS ONE 2018, 13, e0190897. [Google Scholar] [CrossRef] [Green Version]
- Thisse, B.; Pflumio, S.; Fürthauer, M.; Loppin, B.; Heyer, V.; Degrave, A.; Woehl, R.; Lux, A.; Steffan, T.; Charbonnier, X.Q.; et al. Expression of the Zebrafish Genome During Embryogenesis. Available online: https://zfin.org/ (accessed on 20 July 2020).
- Rodriguez-Martin, I.; Marron Fernandez de Velasco, E.; Rodriguez, R.E. Characterization of cannabinoid-binding sites in zebrafish brain. Neurosci. Lett. 2007, 413, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Connors, K.A.; Valenti, T.W.; Lawless, K.; Sackerman, J.; Onaivi, E.S.; Brooks, B.W.; Gould, G.G. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. Aquat. Toxicol. 2014, 151, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Simon, F.M.; Rodriguez, R.E. Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 2008, 151, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Macho Sanchez-Simon, F.; Rodriguez, R.E. Expression of the nociceptin receptor during zebrafish development: Influence of morphine and nociceptin. Int. J. Dev. Neurosci. 2009, 27, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bellido, R.; Barreto-Valer, K.; Sanchez-Simon, F.M.; Rodriguez, R.E. Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS ONE 2012, 7, e50885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, I.A.; To, T.T.; Wortmann, S.; Burmester, T.; Winkler, C.; Meyer, S.R.; Neuner, C.; Fassnacht, M.; Allolio, B. The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochem. Biophys. Res. Commun. 2003, 303, 1121–1128. [Google Scholar] [CrossRef]
- Faught, E.; Vijayan, M.M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci. Rep. 2018, 8, 18081. [Google Scholar] [CrossRef] [Green Version]
- Eachus, H.; Bright, C.; Cunliffe, V.T.; Placzek, M.; Wood, J.D.; Watt, P.J. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function. Hum. Mol. Genet. 2017, 26, 1992–2005. [Google Scholar] [CrossRef]
- Nasif, S.; de Souza, F.S.; Gonzalez, L.E.; Yamashita, M.; Orquera, D.P.; Low, M.J.; Rubinstein, M. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl. Acad. Sci. USA 2015, 112, E1861–E1870. [Google Scholar] [CrossRef] [Green Version]
- Tarifeno-Saldivia, E.; Lavergne, A.; Bernard, A.; Padamata, K.; Bergemann, D.; Voz, M.L.; Manfroid, I.; Peers, B. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol. 2017, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Lleras-Forero, L.; Tambalo, M.; Christophorou, N.; Chambers, D.; Houart, C.; Streit, A. Neuropeptides: Developmental signals in placode progenitor formation. Dev. Cell 2013, 26, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, I.G.; Schoppik, D.; Shi, V.J.; Zimmerman, S.; Coleman, H.A.; Greenwood, J.; Soucy, E.R.; Schier, A.F. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J. Neurosci. 2014, 34, 3142–3160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, W.; Volgin, A.D.; Alpyshov, E.T.; Friend, A.J.; Strekalova, T.V.; de Abreu, M.S.; Collins, C.; Amstislavskaya, T.G.; Demin, K.A.; Kalueff, A.V. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019, 404, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.T.; Amin, M.R.; Shah, P.; Ali, D.W. Motor neuron development in zebrafish is altered by brief (5-hr) exposures to THC ((9)-tetrahydrocannabinol) or CBD (cannabidiol) during gastrulation. Sci. Rep. 2018, 8, 10518. [Google Scholar] [CrossRef] [Green Version]
- Carty, D.R.; Thornton, C.; Gledhill, J.H.; Willett, K.L. Developmental Effects of Cannabidiol and Delta9-Tetrahydrocannabinol in Zebrafish. Toxicol. Sci. 2018, 162, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.R.; Ahmed, K.T.; Ali, D.W. Early Exposure to THC Alters M-Cell Development in Zebrafish Embryos. Biomedicines 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J. The toxicologic and teratologic effects of delta-9-tetrahydrocannabinol in the zebrafish embryo. Toxicol. Appl. Pharmacol. 1975, 32, 184–190. [Google Scholar] [CrossRef]
- Esain, V.; Kwan, W.; Carroll, K.J.; Cortes, M.; Liu, S.Y.; Frechette, G.M.; Sheward, L.M.; Nissim, S.; Goessling, W.; North, T.E. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity. Stem Cells 2015, 33, 2596–2612. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, G.; D’Atri, I.; Cottone, E.; Mackie, K.; Shainer, I.; Gothilf, Y.; Provero, P.; Bovolin, P.; Merlo, G.R. Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos. Int. J. Mol. Sci. 2019, 21, 168. [Google Scholar] [CrossRef] [Green Version]
- Migliarini, B.; Carnevali, O. A novel role for the endocannabinoid system during zebrafish development. Mol. Cell Endocrinol. 2009, 299, 172–177. [Google Scholar] [CrossRef]
- Boa-Amponsem, O.; Zhang, C.; Mukhopadhyay, S.; Ardrey, I.; Cole, G.J. Ethanol and cannabinoids interact to alter behavior in a zebrafish fetal alcohol spectrum disorder model. Birth Defects Res. 2019, 111, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Simon, F.M.; Arenzana, F.J.; Rodriguez, R.E. In vivo effects of morphine on neuronal fate and opioid receptor expression in zebrafish embryos. Eur. J. Neurosci. 2010, 32, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gonzalez, A.; Garcia-Concejo, A.; Leon-Lobera, F.; Rodriguez, R.E. Morphine delays neural stem cells differentiation by facilitating Nestin overexpression. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Turrion, M.J.; Rodriguez-Martin, I.; Lopez-Bellido, R.; Rodriguez, R.E. Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: Identification of new genes associated with neuronal function and mu opioid receptor expression. BMC Genom. 2014, 15, 874. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, Y. The Use of Larval Zebrafish (Danio rerio) Model for Identifying New Anxiolytic Drugs from Herbal Medicine. Zebrafish 2018, 15, 321–339. [Google Scholar] [CrossRef]
- Maximino, C.; de Brito, T.M.; da Silva Batista, A.W.; Herculano, A.M.; Morato, S.; Gouveia, A. Measuring anxiety in zebrafish: A critical review. Behav. Brain Res. 2010, 214, 157–171. [Google Scholar] [CrossRef]
- Khor, B.-S.; Amar Jamil, M.F.; Adenan, M.I.; Chong Shu-Chien, A. Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish. PLOS ONE 2011, 6, e28340. [Google Scholar] [CrossRef] [Green Version]
- Ongoing Emergencies & Disasters. Available online: https://www.cms.gov/About-CMS/Agency-Information/Emergency/EPRO/Current-Emergencies/Ongoing-emergencies (accessed on 20 July 2020).
- Rennekamp, A.J.; Huang, X.P.; Wang, Y.; Patel, S.; Lorello, P.J.; Cade, L.; Gonzales, A.P.; Yeh, J.R.; Caldarone, B.J.; Roth, B.L.; et al. sigma1 receptor ligands control a switch between passive and active threat responses. Nat. Chem. Biol. 2016, 12, 552–558. [Google Scholar] [CrossRef]
- Leung, L.C.; Mourrain, P. Drug discovery: Zebrafish uncover novel antipsychotics. Nat. Chem. Biol. 2016, 12, 468–469. [Google Scholar] [CrossRef]
- Bruni, G.; Rennekamp, A.J.; Velenich, A.; McCarroll, M.; Gendelev, L.; Fertsch, E.; Taylor, J.; Lakhani, P.; Lensen, D.; Evron, T.; et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat. Chem. Biol. 2016, 12, 559–566. [Google Scholar] [CrossRef]
Gene Name | Maternal Deposition (Detected by RT-PCR) | First Zygotic Expression (Detected by RT-PCR) | Expressions in the Tissue (Detected by in situ Hybridization) |
---|---|---|---|
cannabinoid receptor 1 (cnr1) | yes [58] | 1 dpf [58] | pre-optic area at 30 hpf; telencephalon, diencephalon, and midbrain at 50 hpf; olfactory bulb, midbrain, endoderm and liver at 72 and 96 hpf |
cannabinoid receptor 2 (cnr2) | yes [58] | 4 hpf * [58] | developing central nervous system at 24, and 48 hpf [64]; developing central nervous system, endoderm and liver at 72 and 96 hpf [64] |
diacylglycerol lipase 1a (dagla) | yes (low expression) [58] | 4 hpf * [58] | whole organism at 5–9 somite [65]; cranial ganglion, hindbrain, hypothalamus, midbrain, tegmentum, telencephalon at 48 hpf [62] |
diacylglycerol lipase 1b (daglb) | yes (high expression) [58] | 4 hpf * [58] | no in situ data at the embryo/larval stage |
N-acyl phosphatidyl-ethanolamine phospholipase d (napepld) | yes (low expression) [58] | 4 hpf * [58] | whole organism from 5 somite to 4 dpf [65] |
ab-hydrolase domain containing 4 (abhd4) | yes (high expression) [58] | 4 hpf * [58] | whole organism from 1 cell to 4 dpf [65,66], |
Glycerophospho-diester phosphodiesterase 1 (gde1) | yes (high expression) [58] | 4 hpf * [58] | basal level expression throughout the body at 1 cell to pec-fin stage [66]. |
ab-hydrolase domain containing 6a (abhd6a) | yes (low expression) [58] | 24 hpf [58] | no in situ data available |
ab-hydrolase domain containing 6b (abhd6b) | yes (moderate expression) [57] | 72 hpf [58] | no in situ data available |
ab-hydrolase domain containing 12 (abhd12) | yes (high expression) [57] | 4 hpf [58] | brain, gill, neuromast at 5dpf [67] |
fatty acid amide hydrolase family (faah) | yes [57] | 24 hpf [58] | intestinal bulb, liver at long-pec to 4 dpf [68] |
fatty acid amide hydrolase family 2a (faah2a) | yes [58] | 24 hpf [58] | intestinal bulb, liver at long-pec to 4 dpf [66,68] |
fatty acid amide hydrolase family 2a (faah2a) | yes [68] | 3 hpf | intestinal bulb, liver at long-pec to 4 dpf [68] |
monoglyceride lipase (mgll) | no [58] | 4 hpf [58] | whole organism at 5–9 somite [65] brain, eye, pectoral fin, pronephric duct, pharynx at stages 26 somite to long-pec [65,69]. |
Gene Name | Maternal Deposition (Detected by RT-PCR) | First Zygotic Expression (Detected by RT-PCR) | Expressions in the Tissue (Detected by in situ Hybridization) |
---|---|---|---|
mu-opioid receptor (oprm1) | yes [72] | 3 hpf * [45,72] | telencephalon, epiphysis, diencephalon, midbrain, isthmus, cerebellum, pretectum, and hindbrain at 24 hpf; tegmentum, hypophysis, otic vesicle, and pectoral flipper at 48 hpf [45,72] |
kappa-opioid receptor (oprk1) | yes (low expression) [65] | 3 hpf [45,72] | no in situ data of the developing stages available |
delta-opioid receptor (oprd1a) | yes (moderate expression) [65] | 3 hpf [45,72] | whole organism at tail-bud stage [74]; telencephalon, epiphysis, pretectum, and cerebellum at 24 hpf; hindbrain, spinal cord, and tegmentum at 30–36 hpf [45,72] |
delta-opioid receptor (oprd1b) | Yes (moderate expression) [65] | 3 hpf [45,72] | whole organism at tail-bud stage [74]; telencephalon, epiphysis, diencephalon, midbrain, isthmus, cerebellum, pretectum, hindbrain, myotomes and spinal cord at 24 hpf [45,72] |
nociception receptor (oprl1) | yes [73] | 3 hpf [73] | diencephalon, hindbrain, midbrain, pretectum, telencephalon at 24 hpf [72] |
prodynorphin (pdyn) | no data available | no data available | hypothalamus, lateral region at 2 dpfhindbrain, neuron at 5 dpf |
proopiomelanocortin a (pomca) | yes [75] | shield [75] | whole organism at 64 cell [76]; Pituitary, hypothalamus at 2–5 dpf [77,78] |
proopiomelanocortin b (pomcb) | no data available | no data available | preoptic area at 3 dpf [78] |
proenkephalin a (penka) | no data available | no data available | diencephalon, epiphysis, dorsal telencephalon subpopulation of dorsal spinal cord neurons at 22–25 somite, 30–42 hpf [66]; central nervous system, retina at 5 dpf [66] |
proenkephalin b (penkb) | no data available | no data available | dorsal posterior midbrain, diencephalon, spinal cord, posterior pronephric ducts at 22–25 somite, 30–42 hpf, and additionally hindbrain at 60 hpf [66] |
prepronociceptin a (pnoca) | no data available | no data available | alpha pancreatic cells at 30 hpf [79], posterior pancreatic bud at 2 dpf [79] |
prepronociceptin b (pnocb) | no data available | no data available | neurogenic field, preplacodal ectoderm at bud to 1–4 somites [80]; brain at 5 dpf [81] |
Compound | Target | Concentration | Treatment Period |
---|---|---|---|
∆9-Tetrahydro-cannabinol (THC) | CNR1/2 agonist | 2–10 mg/L [83] 1–16 µM (0.3–5.0 mg/L) [84] 6 mg/L [85] 1 ppm–10 ppm [86] | 5.25–10.75 hpf 2–96 hpf 5.25–10.75 hpf blastula-24 hpf |
Cannabidiol (CBD) | CNR1/2 agonist | 1–4 mg/L [83] 0.25–4 µM (0.07–1.25 mg/L) [84] | 5.25–10.75 hpf 2–96 hpf |
2-Arachidonoyl-glycerol (2-AG) | Endogenous CB | 5 µM [87] | 18–24, 30–36, or 30–96 hpf |
Anandamide (AEA) | Endogenous CB | 5 µM [87] | 18–24, 30–36, or 30–96 hpf |
O2545 | CNR1/2 agonist | 5 µM [87] | 12–30 hpf |
Arachidonyl-2’-chloroethylamide (ACEA) | CNR1 agonist | 5 µM [87] | 5.25–6.25, 8–10, 24–27 hpf |
AM1241 | CNR2 agonist | 5–10 µM [87] | 18–24, 30–36, 30–96 hpf |
JWH015 | CNR2 agonist | JW 5–10 µM [87] | 12–30 hpf |
WIN55,212-2 | CNR1 agonist | 1 nM–1 µM [88] | 0–72, 0–96 hpf |
AM251 | CNR1 antagonist | 100 nM–5 µM [88]; 10 nM, 20 nM [89] | 0–72, 0–96 hpf |
Rimonabant (SR141716A) | CNR1 antagonist | 1 nM–1 µM [88] | 0–72, 0–96 hpf |
AM630 | CNR2 antagonist | 5–10 μM [87] | 18–24, 30–38, 30–48, 30–96 hpf |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmah, S.; Sales Cadena, M.R.; Cadena, P.G.; Marrs, J.A. Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development. Biomedicines 2020, 8, 279. https://doi.org/10.3390/biomedicines8080279
Sarmah S, Sales Cadena MR, Cadena PG, Marrs JA. Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development. Biomedicines. 2020; 8(8):279. https://doi.org/10.3390/biomedicines8080279
Chicago/Turabian StyleSarmah, Swapnalee, Marilia Ribeiro Sales Cadena, Pabyton Gonçalves Cadena, and James A. Marrs. 2020. "Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development" Biomedicines 8, no. 8: 279. https://doi.org/10.3390/biomedicines8080279
APA StyleSarmah, S., Sales Cadena, M. R., Cadena, P. G., & Marrs, J. A. (2020). Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development. Biomedicines, 8(8), 279. https://doi.org/10.3390/biomedicines8080279