Astemizole Sensitizes Adrenocortical Carcinoma Cells to Doxorubicin by Inhibiting Patched Drug Efflux Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Biological Material
2.2. Screening on the Resistance to Doxorubicin of Yeast Expressing Human Ptch1
2.3. Cytotoxicity Assays
2.4. Synergy Analysis of Drug Combination
2.5. Apoptosis Measurements
2.6. Proliferation
2.7. Clone Formation
2.8. Spheroid Formation in 3D Culture
2.9. SDS-PAGE and Western Blotting
2.10. Efflux Measurements
2.11. Electrophysiology
2.12. In Silico Docking
2.13. Profiling and Pharmacokinetic Studies
2.14. Statistical Analysis
3. Results
3.1. Identification of a New Inhibitor of the Resistance to Doxorubicin and the Doxorubicin Efflux Conferred by Ptch1 to Yeast
3.2. Astemizole Increases the Cytotoxicity of ACC Standard Treatment
3.3. Astemizole Increases the Pro-Apoptotic, Anti-Proliferative and Anti-Clonogenic Effects of Doxorubicin
3.4. Astemizole Inhibits Doxorubicin Efflux from ACC Cells
3.5. Astemizole Inhibits Cholesterol Efflux from ACC Cells
3.6. Astemizole Binds to Ptch1 in the Same Binding Pocket as Cholesterol and Doxorubicin
3.7. Astemizole is Cytotoxic for ACC Cells
3.8. Astemizole Properties
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fassnacht, M.; Allolio, B. Clinical management of adrenocortical carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 273–289. [Google Scholar] [CrossRef]
- Kebebew, E.; Reiff, E.; Duh, Q.Y.; Clark, O.H.; McMillan, A. Extent of disease at presentation and outcome for adrenocortical carcinoma: Have we made progress? World J. Surg. 2006, 30, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Bertherat, J.; Arlt, W.; Beuschlein, F.; Chanson, P.; Mantero, F.; Plouin, P.F. Adrenal tumours and hormone excess. Editorial. Ann. Endocrinol. (Paris) 2009, 70, 147. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.J.; Gillis, A.; Alobuia, W.M.; Wild, H.; Kebebew, E. Surgery for adrenocortical carcinoma: When and how? Best Pract. Res. Clin. Endocrinol. Metab. 2020, 3, 101408. [Google Scholar] [CrossRef] [PubMed]
- Lalli, E.; Luconi, M. The next step: Mechanisms driving adrenocortical carcinoma metastasis. Endocr. Relat. Cancer 2018, 25, R31–R48. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, M.; Terzolo, M.; Allolio, B.; Baudin, E.; Haak, H.; Berruti, A.; Welin, S.; Schade-Brittinger, C.; Lacroix, A.; Jarzab, B.; et al. Combination chemotherapy in advanced adrenocortical carcinoma. N. Engl. J. Med. 2012, 366, 2189–2197. [Google Scholar] [CrossRef]
- Baudin, E.; Pellegriti, G.; Bonnay, M.; Penfornis, A.; Laplanche, A.; Vassal, G.; Schlumberger, M. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p’DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer 2001, 92, 1385–1392. [Google Scholar] [CrossRef]
- Haak, H.R.; Hermans, J.; van de Velde, C.J.; Lentjes, E.G.; Goslings, B.M.; Fleuren, G.J.; Krans, H.M. Optimal treatment of adrenocortical carcinoma with mitotane: Results in a consecutive series of 96 patients. Br. J. Cancer 1994, 69, 947–951. [Google Scholar] [CrossRef]
- Fassnacht, M.; Libé, R.; Kroiss, M.; Allolio, B. Adrenocortical carcinoma: A clinician’s update. Nat. Rev. Endocrinol. 2011, 7, 323–335. [Google Scholar] [CrossRef]
- Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005, 14, 35–48. [Google Scholar] [CrossRef]
- Queiroz, K.C.; Ruela-de-Sousa, R.R.; Fuhler, G.M.; Aberson, H.L.; Ferreira, C.V.; Peppelenbosch, M.P.; Spek, C.A. Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene 2010, 29, 6314–6322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saze, Z.; Terashima, M.; Kogure, M.; Ohsuka, F.; Suzuki, H.; Gotoh, M. Activation of the sonic hedgehog pathway and its prognostic impact in patients with gastric cancer. Dig Surg. 2012, 29, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hasanovic, A.; Ruggiero, C.; Jung, S.; Rapa, I.; Signetti, L.; Hadj, M.B.; Terzolo, M.; Beuschlein, F.; Volante, M.; Hantel, C.; et al. Targeting the multidrug transporter Patched potentiates chemotherapy efficiency on adrenocortical carcinoma in vitro and in vivo. Int. J. Cancer 2018, 143, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Bidet, M.; Tomico, A.; Martin, P.; Guizouarn, H.; Mollat, P.; Mus-Veteau, I. The Hedgehog receptor Patched functions in multidrug transport and chemotherapy resistance. Mol. Cancer Res. 2012, 10, 1496–1508. [Google Scholar] [CrossRef] [Green Version]
- Hasanovic, A.; Mus-Veteau, I. Targeting the Multidrug Transporter Ptch1 Potentiates Chemotherapy Efficiency. Cells 2018, 7, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.; Spugnini, E.P.; Assaraf, Y.G.; Azzarito, T.; Rauch, C.; Fais, S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updates 2015, 23, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Damaghi, M.; Wojtkowiak, J.W.; Gillies, R.J. pH sensing and regulation in cancer. Front. Physiol. 2013, 17, 370. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, L.; Mus-Veteau, I. Method to Screen Multidrug Transport Inhibitors Using Yeast Overexpressing a Human MDR Transporter. Methods Mol. Biol. 2016, 1432, 303–318. [Google Scholar]
- Fiorini, L.; Tribalat, M.-A.; Sauvard, L.; Cazareth, J.; Lalli, E.; Broutin, I.; Thomas, O.P.; Mus-Veteau, I. Natural paniceins from Mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells. Oncotarget 2015, 6, 22282–22287. [Google Scholar] [CrossRef] [Green Version]
- Signetti, L.; Elizarov, N.; Simsir, M.; Paquet, A.; Douguet, D.; Labbal, F.; Debayle, D.; Di Giorgio, A.; Biou, V.; Girard, C.; et al. Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant BrafV600E Melanoma. Cancers (Basel) 2020, 12, 1500. [Google Scholar] [CrossRef]
- Kroiss, M.; Sbiera, S.; Kendl, S.; Kurlbaum, M.; Fassnacht, M. Drug Synergism of Proteasome Inhibitors and Mitotane by Complementary Activation of ER Stress in Adrenocortical Carcinoma Cells. Horm. Cancer 2016, 7, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Choveau, F.S.; El Harchi, A.; Rodriguez, N.; Louérat-Oriou, B.; Baró, I.; Demolombe, S.; Charpentier, F.; Loussouarn, G. Transfer of rolf S3-S4 linker to HERG eliminates activation gating but spares inactivation. Biophys. J. 2009, 97, 1323–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Cao, P.; Hu, M.; Gao, S.; Yan, N.; Gong, X. Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm. Nat. Commun. 2019, 10, 2320. [Google Scholar] [CrossRef] [Green Version]
- Shapovalov, M.V.; Dunbrack, R.L., Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011, 19, 844–858. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Stierand, K.; Maass, P.C.; Rarey, M. Molecular Complexes at a Glance: Automated Generation of two-dimensional Complex Diagrams. Bioinformatics 2006, 22, 1710–1716. [Google Scholar] [CrossRef]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. Proteins Plus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.M.; Di Tommaso, P.; Taly, J.F.; Notredame, C. Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinform. 2012, 13, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidet, M.; Joubert, O.; Lacombe, B.; Nehmé, R.; Mollat, P.; Brétillon, L.; Faure, H.; Bittman, R.; Ruat, M.; Mus-Veteau, I. The Hedgehog Receptor Patched Contributes to Cholesterol Efflux. PLoS ONE 2011, 6, e23834. [Google Scholar] [CrossRef] [PubMed]
- Dingerdissen, H.M.; Torcivia-Rodriguez, J.; Hu, Y.; Chang, T.C.; Mazumder, R.; Kahsay, R. BioMuta and BioXpress: Mutation and expression knowledgebases for cancer biomarker discovery. Nucleic Acids Res. 2018, 46, D1128–D1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez-López, M.G.; Zúñiga-García, V.; Hernández-Gallegos, E.; Vera, E.; Chasiquiza-Anchatuña, C.A.; Viteri-Yánez, M.; Sanchez-Ramos, J.; Garrido, E.; Camacho, J. The combination astemizole-gefitinib as a potential therapy for human lung cancer. Onco Targets Ther. 2017, 10, 5795–5803. [Google Scholar] [CrossRef] [Green Version]
- García-Quiroz, J.; González-González, M.E.; Díaz, L.; Ordaz-Rosado, D.; Segovia-Mendoza, M.; Prado-García, H.; Larrea, F.; García-Becerra, R. Astemizole, an inhibitor of ether-à-go-go-1 potassium channel, increases the activity of the tyrosine kinase inhibitor gefitinib in breast cancer cells. Rev. Invest. Clin. 2019, 71, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Li, M.; You, Q.; Xia, L. A novel structure-based virtual screening model for the hERG channel blockers. Biochem. Biophys. Res. Commun. 2007, 355, 889–894. [Google Scholar] [CrossRef]
- Zhou, Z.; Vorperian, V.R.; Gong, Q.; Zhang, S.; January, G.T. Block of HERG Potassium Channels by the Antihistamine Astemizole and its Metabolites Desmethylastemizole and Norastemizole. J. Cardiovasc. Electrophysiol. 1999, 10, 836–843. [Google Scholar] [CrossRef]
- Ellegaard, A.M.; Dehlendorff, C.; Vind, A.C.; Anand, A.; Cederkvist, L.; Petersen, N.H.; Nylandsted, J.; Stenvang, J.; Mellemgaard, A.; Østerlind, K.; et al. Repurposing cationic amphiphilic antihistamines for cancer treatment. EBioMedicine 2016, 9, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Fujita, R.; Takayanagi, M.; Takayanagi, Y.; Sasaki, K. Reversal of acquired resistance to doxorubicin in K562 human leukemia cells by astemizole. Biol. Pharm. Bull. 2000, 23, 112–115. [Google Scholar] [CrossRef] [Green Version]
- Jehle, J.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Novel roles for hERG K (+) channels in cell proliferation and apoptosis. Cell Death Dis. 2011, 2, e193. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.R.; Stonier, P.D. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J. Clin. Pharm. Ther. 2019, 44, 6–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dxr-IC50 (µM) | ||
---|---|---|
Treatment | Without Astemizole | With Astemizole |
Dxr | 17.3 ± 3.6 | 1.65 ± 0.4 |
EDM | 15.93 ± 4 | 1.84 ± 0.7 |
Ligand | Amino Acid Involved |
---|---|
Cholesterol | V125, E126, L128, W129, *L427*, *L431*, F434, N496, *A497*, A498, T499, V502, *I567*, *A569*, L570, *F573*, L775, D776, L777, I780, Q794, Y801, F987, Y1013, F1017, W1018, Q1020, S1079, V1081, F1147, I1148, Y1151, F1152 |
Astemizole | V125, L128, W129, *L427*, *L431*, F434, N496, *A497*, A498, T499, *A569*, L570, L775, D776, L777, T778, D779, I780, F790, I791, A792, Q794, F795, K796, F798, Y801, Y1013, F1017, W1018, V1081, F1147 |
Doxorubicin | N124, V125, L128, W129, F422, T424, *L427*, *L431*, G774, L775, D776, L777, F1017, W1018, Y1021, S1079 |
LogD7.4 | Aqueous Solubility (µM) | RLM T1/2 (min) | RLM (µL/min/mg) | HLM T1/2 (min) | HLM (µL/min/mg) | Ppb (%) |
---|---|---|---|---|---|---|
3.5 | 22.1 | 31 | < 115.5 | > 60 | < 115.5 | 99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanovic, A.; Simsir, M.; Choveau, F.S.; Lalli, E.; Mus-Veteau, I. Astemizole Sensitizes Adrenocortical Carcinoma Cells to Doxorubicin by Inhibiting Patched Drug Efflux Activity. Biomedicines 2020, 8, 251. https://doi.org/10.3390/biomedicines8080251
Hasanovic A, Simsir M, Choveau FS, Lalli E, Mus-Veteau I. Astemizole Sensitizes Adrenocortical Carcinoma Cells to Doxorubicin by Inhibiting Patched Drug Efflux Activity. Biomedicines. 2020; 8(8):251. https://doi.org/10.3390/biomedicines8080251
Chicago/Turabian StyleHasanovic, Anida, Méliné Simsir, Frank S. Choveau, Enzo Lalli, and Isabelle Mus-Veteau. 2020. "Astemizole Sensitizes Adrenocortical Carcinoma Cells to Doxorubicin by Inhibiting Patched Drug Efflux Activity" Biomedicines 8, no. 8: 251. https://doi.org/10.3390/biomedicines8080251
APA StyleHasanovic, A., Simsir, M., Choveau, F. S., Lalli, E., & Mus-Veteau, I. (2020). Astemizole Sensitizes Adrenocortical Carcinoma Cells to Doxorubicin by Inhibiting Patched Drug Efflux Activity. Biomedicines, 8(8), 251. https://doi.org/10.3390/biomedicines8080251