Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder
Abstract
:1. Introduction
2. The Maternal Immune System in Foetal Development
2.1. Mechanisms Promoting Foetal Tolerance
2.2. Programming the Foetal Immune System
3. Maternal Autoantibodies in ASD
3.1. Mechanisms by Which Maternal Autoantibodies Affect the Prenatal Environment
3.2. Mothers of Children with ASD Have Circulating Foetal Brain-Reactive Antibodies
3.3. Foetal Brain-Reactive Antibodies Target Specific Antigens in the Developing Brain
3.4. Foetal Brain-Reactive Antibodies Affect Foetal Behaviour
4. Maternal Cytokines in ASD
4.1. Maternal Immune Activation (MIA) Mouse Model for ASD
4.2. Maternal Immune Activation Alters Maternal Cytokine Profiles
4.3. Mechanisms by Which Cytokines Affect the Prenatal Environment
4.3.1. Interleukin-6
4.3.2. Interleukin-17
4.3.3. Interleukin-1β (IL-1β)
5. A Role for the Maternal Microbiome in ASD?
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- King, B.H.; Navot, N.; Bernier, R.; Webb, S.J. Update on Diagnostic Classification in Autism. Curr. Opin. Psychiatry 2014, 27, 105–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global; Regional; And National Incidence; Prevalence; And Years Lived with Disability for 328 Diseases And Injuries for 195 Countries; 1990–2016, A Systematic Analysis for The Global Burden Of Disease Study. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The Epidemiology and Global Burden of Autism Spectrum Disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G.; Schumann, C.M.; Nordahl, C.W. Neuroanatomy of Autism. Trends Neurosci. 2008, 31, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C. The Neuroanatomy of Autism Spectrum Disorder, An Overview of Structural Neuroimaging Findings and Their Translatability to The Clinical Setting. Autism 2017, 21, 18–28. [Google Scholar] [CrossRef]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder, Classification; Diagnosis and Therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef]
- Levitt, P.; Campbell, D.B. The Genetic and Neurobiologic Compass Points Toward Common Signaling Dysfunctions in Autism Spectrum Disorders. J. Clin. Investig. 2009, 119, 747–754. [Google Scholar] [CrossRef]
- Betancur, C. Etiological Heterogeneity in Autism Spectrum Disorders, More Than 100 Genetic and Genomic Disorders and Still Counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef] [Green Version]
- Gaugler, T.; Klei, L.; Sanders, S.J.; Bodea, C.A.; Goldberg, A.P.; Lee, A.B.; Mahajan, M.; Manaa, D.; Pawitan, Y.; Reichert, J.; et al. Most Genetic Risk for Autism Resides with Common Variation. Nat. Genet. 2014, 46, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Tick, B.; Bolton, P.; Happe, F.; Rutter, M.; Rijsdijk, F. Heritability of Autism Spectrum Disorders, A Meta-Analysis of Twin Studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Thompson, L.; Youngstrom, E.A.; Law, P.; Hardan, A.Y.; Eng, C.; Morris, N. A Twin Study of Heritable and Shared Environmental Contributions to Autism. J. Autism Dev. Disord. 2014, 44, 2013–2025. [Google Scholar] [CrossRef] [Green Version]
- Nardone, S.; Elliott, E. The Interaction between the Immune System and Epigenetics in The Etiology of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilbo, S.D.; Block, C.L.; Bolton, J.L.; Hanamsagar, R.; Tran, P.K. Beyond Infection—Maternal Immune Activation by Environmental Factors; Microglial Development; and Relevance for Autism Spectrum Disorders. Exp. Neurol. 2018, 299, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; et al. Genetic Heritability and Shared Environmental Factors Among Twin Pairs with Autism. Arch. Gen. Psychiatry 2011, 68, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Gronborg, T.K.; Schendel, D.E.; Parner, E.T. Recurrence of Autism Spectrum Disorders in Full- and Half-Siblings and Trends Over Time, A Population-Based Cohort Study. JAMA Pediatr. 2013, 167, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Estes, M.L.; Mcallister, A.K. Immune Mediators in The Brain and Peripheral Tissues in Autism Spectrum Disorder. Nat. Rev. Neurosci. 2015, 16, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Genetic Syndromes; Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD). Front. Neurosci. 2016, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front. Behav. Neurosci. 2018, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Chess, S. Autism in Children with Congenital Rubella. J. Autism Child Schizophr. 1971, 1, 33–47. [Google Scholar] [CrossRef]
- Estes, M.L.; Mcallister, A.K. Maternal Immune Activation, Implications for Neuropsychiatric Disorders. Science 2016, 353, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Wei, H. Decidual Natural Killer Cells and The Immune Microenvironment at the Maternal-Fetal Interface. Sci. China Life Sci. 2016, 59, 1224–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racicot, K.; Kwon, J.Y.; Aldo, P.; Silasi, M.; Mor, G. Understanding the Complexity of The Immune System During Pregnancy. Am. J. Reprod. Immunol. 2014, 72, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Cardenas, I. The Immune System in Pregnancy, A Unique Complexity. Am. J. Reprod. Immunol. (N. Y. 1989) 2010, 63, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Leon-Juarez, M.; Martinez-Castillo, M.; Gonzalez-Garcia, L.D.; Helguera-Repetto, A.C.; Zaga-Clavellina, V.; Garcia-Cordero, J.; Flores-Pliego, A.; Herrera-Salazar, A.; Vazquez-Martinez, E.R.; Reyes-Munoz, E. Cellular and Molecular Mechanisms of Viral Infection in The Human Placenta. Pathog. Dis. 2017, 29, 75. [Google Scholar] [CrossRef] [Green Version]
- Billingham, R.E.; Brent, L.; Medawar, P.B. Actively Acquired Tolerance of Foreign Cells. Nature 1953, 172, 603–606. [Google Scholar] [CrossRef]
- Morelli, S.S.; Mandal, M.; Goldsmith, L.T.; Kashani, B.N.; Ponzio, N.M. The Maternal Immune System During Pregnancy and Its Influence on Fetal Development. Res. Rep. Biol. 2015, 6, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Moffett, A.; Colucci, F. Uterine Nk Cells, Active Regulators at the Maternal-Fetal Interface. J. Clin. Investig. 2014, 124, 1872–1879. [Google Scholar] [CrossRef]
- Ruocco, M.G.; Chaouat, G.; Florez, L.; Bensussan, A.; Klatzmann, D. Regulatory T-Cells in Pregnancy, Historical Perspective; State of the Art; and Burning Questions. Front. Immunol. 2014, 5, 389. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, A.; Van De Water, J. The Role of The Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, M.P. T Cells in Pregnancy. Chem. Immunol. Allergy 2005, 89, 3–9. [Google Scholar] [PubMed]
- Zenclussen, A.C. Regulatory T Cells in Pregnancy. Springer Semin. Immunopathol. 2006, 28, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Fox-Edmiston, E.; Van De Water, J. Maternal Anti-Fetal Brain Igg Autoantibodies and Autism Spectrum Disorder, Current Knowledge and Its Implications for Potential Therapeutics. CNS Drugs 2015, 29, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, D.; Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Croen, L.A.; Pessah, I.N.; Van De Water, J. Autism, Maternally Derived Antibodies Specific for Fetal Brain Proteins. Neurotoxicology 2008, 29, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.; Amaral, D.; Van De Water, J. Maternal and Fetal Antibrain Antibodies in Development and Disease. Dev. Neurobiol. 2012, 72, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Garty, B.Z.; Ludomirsky, A.; Danon, Y.L.; Peter, J.B.; Douglas, S.D. Placental Transfer of Immunoglobulin G Subclasses. Clin. Diagn. Lab. Immunol. 1994, 1, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Simister, N.E. Placental Transport of Immunoglobulin G. Vaccine 2003, 21, 3365–3369. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Abu-Raya, B.; Jiang, Y.; Alter, G.; Marchant, A. Transfer of Maternal Immunity and Programming of The Newborn Immune System. Semin. Immunopathol. 2017, 39, 605–613. [Google Scholar] [CrossRef]
- Ghetie, V.; Ward, E.S. Multiple Roles for The Major Histocompatibility Complex Class I-Related Receptor FCRN. Annu. Rev. Immunol. 2000, 18, 739–766. [Google Scholar] [CrossRef]
- Roopenian, D.C.; Akilesh, S. Fcrn, The Neonatal Fc Receptor Comes of Age. Nat. Rev. Immunol. 2007, 7, 715. [Google Scholar] [CrossRef]
- Money, J.; Bobrow, N.A.; Clarke, F.C. Autism and Autoimmune Disease, A Family Study. J. Autism Child Schizophr. 1971, 1, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Comi, A.M.; Zimmerman, A.W.; Frye, V.H.; Law, P.A.; Peeden, J.N. Familial Clustering of Autoimmune Disorders and Evaluation of Medical Risk Factors in Autism. J. Child Neurol. 1999, 14, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Sweeten, T.L.; Bowyer, S.L.; Posey, D.J.; Halberstadt, G.M.; Mcdougle, C.J. Increased Prevalence of Familial Autoimmunity in Probands with Pervasive Developmental Disorders. Pediatrics 2003, 112, E420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atladottir, H.O.; Pedersen, M.G.; Thorsen, P.; Mortensen, P.B.; Deleuran, B.; Eaton, W.W.; Parner, E.T. Association of Family History of Autoimmune Diseases and Autism Spectrum Disorders. Pediatrics 2009, 124, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Keil, A.; Daniels, J.L.; Forssen, U.; Hultman, C.; Cnattingius, S.; Soderberg, K.C.; Feychting, M.; Sparen, P. Parental Autoimmune Diseases Associated with Autism Spectrum Disorders in Offspring. Epidemiology 2010, 21, 805–808. [Google Scholar] [CrossRef] [Green Version]
- Brimberg, L.; Sadiq, A.; Gregersen, P.K.; Diamond, B. Brain-Reactive Igg Correlates with Autoimmunity in Mothers of a Child with An Autism Spectrum Disorder. Mol. Psychiatry 2013, 18, 1171–1177. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Xie, G.; Hou, J.; Mao, P. Family History of Autoimmune Diseases Is Associated with An Increased Risk of Autism in Children, A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2015, 55, 322–332. [Google Scholar] [CrossRef]
- Chen, S.W.; Zhong, X.S.; Jiang, L.N.; Zheng, X.Y.; Xiong, Y.Q.; Ma, S.J.; Qiu, M.; Huo, S.T.; Ge, J.; Chen, Q. Maternal Autoimmune Diseases and the Risk of Autism Spectrum Disorders in Offspring, A Systematic Review and Meta-Analysis. Behav. Brain Res. 2016, 296, 61–69. [Google Scholar] [CrossRef]
- Croen, L.A.; Grether, J.K.; Yoshida, C.K.; Odouli, R.; Van De Water, J. Maternal Autoimmune Diseases; Asthma and Allergies; and Childhood Autism Spectrum Disorders, A Case-Control Study. Arch. Pediatr. Adolesc. Med. 2005, 159, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.L.; Van De Water, J. Maternal Autoantibody Related Autism, Mechanisms and Pathways. Mol. Psychiatry 2019, 24, 252–265. [Google Scholar] [CrossRef]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. Igg Placental Transfer in Healthy and Pathological Pregnancies. Clin. Dev. Immunol. 2012, 2012, 985646. [Google Scholar] [CrossRef] [PubMed]
- Diamond, B.; Honig, G.; Mader, S.; Brimberg, L.; Volpe, B.T. Brain-Reactive Antibodies and Disease. Annu. Rev. Immunol. 2013, 31, 345–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabanlit, M.; Wills, S.; Goines, P.; Ashwood, P.; Van de Water, J. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci. 2007, 1107, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Goines, P.; Haapanen, L.; Boyce, R.; Duncanson, P.; Braunschweig, D.; Delwiche, L.; Hansen, R.; Hertz-Picciotto, I.; Ashwood, P.; Van de Water, J. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav. Immun. 2011, 25, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Piras, I.S.; Haapanen, L.; Napolioni, V.; Sacco, R.; Van de Water, J.; Persico, A.M. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with Autism Spectrum Disorder. Brain Behav. Immun. 2014, 38, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.M. Antinuclear Antibodies, Diagnostic Markers for Autoimmune Diseases and Probes for Cell Biology. Adv. Immunol. 1989, 44, 93–151. [Google Scholar]
- Dalton, P.; Deacon, R.; Blamire, A.; Pike, M.; Mckinlay, I.; Stein, J.; Styles, P.; Vincent, A. Maternal Neuronal Antibodies Associated with Autism and A Language Disorder. Ann. Neurol. 2003, 53, 533–537. [Google Scholar] [CrossRef]
- Zimmerman, A.W.; Connors, S.L.; Matteson, K.J.; Lee, L.C.; Singer, H.S.; Castaneda, J.A.; Pearce, D.A. Maternal Antibrain Antibodies in Autismbrain. Behav. Immun. 2007, 21, 351–357. [Google Scholar] [CrossRef]
- Braunschweig, D.; Van De Water, J. Maternal Autoantibodies in Autism. Arch. Neurol. 2012, 69, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, D.; Duncanson, P.; Boyce, R.; Hansen, R.; Ashwood, P.; Pessah, I.N.; Hertz-Picciotto, I.; Van De Water, J. Behavioral Correlates of Maternal Antibody Status Among Children with Autism. J. Autism Dev. Disord. 2012, 42, 1435–1445. [Google Scholar] [CrossRef] [Green Version]
- Croen, L.A.; Braunschweig, D.; Haapanen, L.; Yoshida, C.K.; Fireman, B.; Grether, J.K.; Kharrazi, M.; Hansen, R.L.; Ashwood, P.; Van De Water, J. Maternal Mid-Pregnancy Autoantibodies to Fetal Brain Protein, The Early Markers for Autism Study. Biol. Psychiatry 2008, 64, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Singer, H.S.; Morris, C.M.; Gause, C.D.; Gillin, P.K.; Crawford, S.; Zimmerman, A.W. Antibodies Against Fetal Brain in Sera of Mothers with Autistic Children. J. Neuroimmunol. 2008, 194, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.B.; Suliman, H.B.; Siniscalco, D.; Antonucci, N.; ElKafrawy, P. De novo Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins. Behav. Sci. 2019, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunschweig, D.; Krakowiak, P.; Duncanson, P.; Boyce, R.; Hansen, R.L.; Ashwood, P.; Hertz-Picciotto, I.; Pessah, I.N.; Van De Water, J. Autism-Specific Maternal Autoantibodies Recognize Critical Proteins in Developing Brain. Transl. Psychiatry 2013, 3, E277. [Google Scholar] [CrossRef] [PubMed]
- Mazón-Cabrera, R.; Vandormael, P.; Somers, V. Antigenic targets of patient and maternal autoantibodies in autism spectrum disorder. Front. Immunol. 2019, 10, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinman, M.Q.; Gao, V.; Alberini, C.M. The Role of Lactate-Mediated Metabolic Coupling Between Astrocytes and Neurons in Long-Term Memory Formation. Front. Integr. Neurosci. 2016, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Quach, T.T.; Duchemin, A.M.; Rogemond, V.; Aguera, M.; Honnorat, J.; Belin, M.F.; Kolattukudy, P.E. Involvement of Collapsin Response Mediator Proteins in The Neurite Extension Induced by Neurotrophins in Dorsal Root Ganglion Neurons. Mol. Cell. Neurosci. 2004, 25, 433–443. [Google Scholar] [CrossRef]
- Lopes, M.H.; Hajj, G.N.; Muras, A.G.; Mancini, G.L.; Castro, R.M.; Ribeiro, K.C.; Brentani, R.R.; Linden, R.; Martins, V.R. Interaction of Cellular Prion and Stress-Inducible Protein 1 Promotes Neuritogenesis and Neuroprotection by Distinct Signaling Pathways. J. Neurosci. 2005, 25, 11330–11339. [Google Scholar] [CrossRef] [Green Version]
- Ariza, J.; Hurtado, J.; Rogers, H.; Ikeda, R.; Dill, M.; Steward, C.; Creary, D.; Van De Water, J.; Martínez-Cerdeño, V. Maternal Autoimmune Antibodies Alter the Dendritic Arbor and Spine Numbers in The Infragranular Layers of The Cortex. PLoS ONE 2017, 12, E0183443. [Google Scholar] [CrossRef] [Green Version]
- Gillott, A.; Furniss, F.; Walter, A. Anxiety in High-Functioning Children with Autism. Autism 2001, 5, 277–286. [Google Scholar] [CrossRef]
- Crawley, J.N. Translational Animal Models of Autism and Neurodevelopmental Disorders. Dialogues Clin. Neurosci. 2012, 14, 293–305. [Google Scholar] [PubMed]
- Singer, H.S.; Morris, C.; Gause, C.; Pollard, M.; Zimmerman, A.W.; Pletnikov, M. Prenatal Exposure to Antibodies from Mothers of Children with Autism Produces Neurobehavioral Alterations, A Pregnant Dam Mouse Model. J. Neuroimmunol. 2009, 211, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, D.; Golub, M.S.; Koenig, C.M.; Qi, L.; Pessah, I.N.; Van De Water, J.; Berman, R.F. Maternal Autism-Associated Igg Antibodies Delay Development and Produce Anxiety in A Mouse Gestational Transfer Model. J. Neuroimmunol. 2012, 252, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.A.; Ashwood, P.; Braunschweig, D.; Cabanlit, M.; Van De Water, J.; Amaral, D.G. Stereotypies and Hyperactivity in Rhesus Monkeys Exposed to Igg from Mothers of Children with Autism. Brain Behav. Immun. 2008, 22, 806–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, J.; Jones, K.; Miller, E.; Ariza, J.; Noctor, S.; De Water, J.V.; Martinez-Cerdeno, V. Embryonic Intraventricular Exposure to Autism-Specific Maternal Autoantibodies Produces Alterations in Autistic-Like Stereotypical Behaviors in Offspring Mice. Behav. Brain Res. 2014, 266, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.L.; Pride, M.C.; Edmiston, E.; Yang, M.; Silverman, J.L.; Crawley, J.N.; Van de Water, J. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol. Psychiatry 2020, 25, 2994–3009. [Google Scholar] [CrossRef] [PubMed]
- Bagnall-Moreau, C.; Huerta, P.T.; Comoletti, D.; La-Bella, A.; Berlin, R.; Zhao, C.; Volpe, B.T.; Diamond, B.; Brimberg, L. In utero exposure to endogenous maternal polyclonal anti-Caspr2 antibody leads to behavioral abnormalities resembling autism spectrum disorder in male mice. Sci. Rep. 2020, 10, 14446. [Google Scholar] [CrossRef]
- Edmiston, E.; Jones, K.L.; Vu, T.; Ashwood, P.; Van de Water, J. Identification of the antigenic epitopes of maternal autoantibodies in autism spectrum disorders. Brain Behav. Immun. 2018, 69, 399–407. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Schwarz, J.M. Early-Life Programming of Later-Life Brain and Behavior, A Critical Role for The Immune System. Front. Behav. Neurosci. 2009, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Bilbo, S.D.; Schwarz, J.M. The Immune System and Developmental Programming of Brain and Behavior. Front. Neuroendocrinol. 2012, 33, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Libbey, J.E.; Sweeten, T.L.; Mcmahon, W.M.; Fujinami, R.S. Autistic Disorder and Viral Infections. J. Neurovirol. 2005, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Atladottir, H.O.; Thorsen, P.; Ostergaard, L.; Schendel, D.E.; Lemcke, S.; Abdallah, M.; Parner, E.T. Maternal Infection Requiring Hospitalization During Pregnancy and Autism Spectrum Disorders. J. Autism Dev. Disord. 2010, 40, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.C.; Rommelse, N.; Vink, L.; Schrieken, M.; Oosterling, I.J.; Van Der Gaag, R.J.; Buitelaar, J.K. Narrowly Versus Broadly Defined Autism Spectrum Disorders, Differences in Pre- and Perinatal Risk Factors. J. Autism Dev. Disord. 2013, 43, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Magnusson, C.; Gardner, R.M.; Blomström, Å.; Newschaffer, C.J.; Burstyn, I.; Karlsson, H.; Dalman, C. Maternal Hospitalization with Infection During Pregnancy and Risk of Autism Spectrum Disorders. Brain Behav. Immun. 2015, 44, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Atladóttir, H.Ó.; Henriksen, T.B.; Schendel, D.E.; Parner, E.T. Autism After Infection; Febrile Episodes; and Antibiotic Use During Pregnancy, An Exploratory Study. Pediatrics 2012, 130, E1447. [Google Scholar] [CrossRef] [Green Version]
- Zerbo, O.; Iosif, A.-M.; Walker, C.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Is Maternal Influenza or Fever During Pregnancy Associated with Autism or Developmental Delays? Results from The Charge (Childhood Autism Risks from Genetics and Environment) Study. J. Autism Dev. Disord. 2013, 43, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Zerbo, O.; Qian, Y.; Yoshida, C.; Grether, J.K.; Van De Water, J.; Croen, L.A. Maternal Infection During Pregnancy and Autism Spectrum Disorders. J. Autism Dev. Disord. 2015, 45, 4015–4025. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.Y.; Xu, L.L.; Shao, L.; Xia, R.M.; Yu, Z.H.; Ling, Z.X.; Yang, F.; Deng, M.; Ruan, B. Maternal Infection During Pregnancy and Risk of Autism Spectrum Disorders, A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2016, 58, 165–172. [Google Scholar] [CrossRef]
- Holingue, C.; Brucato, M.; Ladd-Acosta, C.; Hong, X.; Volk, H.; Mueller, N.T.; Wang, X.; Fallin, M.D. Interaction between Maternal Immune Activation and Antibiotic Use during Pregnancy and Child Risk of Autism Spectrum Disorder. Autism Res. 2020. [Google Scholar] [CrossRef]
- Ashwood, P.; Wills, S.; Van De Water, J. The Immune Response in Autism, A New Frontier for Autism Research. J. Leukoc. Biol. 2006, 80, 1–15. [Google Scholar] [CrossRef]
- Wong, H.; Hoeffer, C. Maternal Il-17a in Autism. Exp. Neurol. 2018, 299, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Fatemi, S.H.; Sidwell, R.W.; Patterson, P.H. Maternal Influenza Infection Causes Marked Behavioral and Pharmacological Changes in The Offspring. J. Neurosci. 2003, 23, 297. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Otrokocsi, L.; Beko, K.; Baranyi, M.; Kittel, A.; Fritz-Ruenes, P.A.; Sperlágh, B. P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice. J. Neurosci. 2019, 39, 2542–2561. [Google Scholar] [CrossRef] [PubMed]
- Malkova, N.V.; Yu, C.Z.; Hsiao, E.Y.; Moore, M.J.; Patterson, P.H. Maternal Immune Activation Yields Offspring Displaying Mouse Versions of The Three Core Symptoms of Autism. Brain Behav. Immun. 2012, 26, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Bauman, M.D.; Iosif, A.-M.; Smith, S.E.P.; Bregere, C.; Amaral, D.G.; Patterson, P.H. Activation of The Maternal Immune System During Pregnancy Alters Behavioral Development of Rhesus Monkey Offspring. Biol. Psychiatry 2014, 75, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Paraschivescu, C.; Barbosa, S.; Lorivel, T.; Glaichenhaus, N.; Davidovic, L. Cytokine changes associated with the maternal immune activation (MIA) model of autism: A penalized regression approach. PLoS ONE 2020, 15, e0231609. [Google Scholar] [CrossRef]
- Bergdolt, L.; Dunaevsky, A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog. Neurobiol. 2019, 175, 1–19. [Google Scholar]
- Jones, K.L.; Croen, L.A.; Yoshida, C.K.; Heuer, L.; Hansen, R.; Zerbo, O.; Delorenze, G.N.; Kharrazi, M.; Yolken, R.; Ashwood, P.; et al. Autism with Intellectual Disability Is Associated with Increased Levels of Maternal Cytokines and Chemokines During Gestation. Mol. Psychiatry 2017, 22, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.E.; Croen, L.A.; Braunschweig, D.; Yoshida, C.K.; Grether, J.; Hansen, R.; Kharrazi, M.; Ashwood, P.; Van De Water, J. Increased Midgestational Ifn-Gamma; Il-4 and Il-5 in Women Bearing A Child with Autism, A Case-Control Study. Mol. Autism 2011, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Denney, J.M.; Nelson, E.L.; Wadhwa, P.D.; Waters, T.P.; Mathew, L.; Chung, E.K.; Goldenberg, R.L.; Culhane, J.F. Longitudinal Modulation of Immune System Cytokine Profile During Pregnancy. Cytokine 2011, 53, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Irwin, J.L.; Yeates, A.J.; Mulhern, M.S.; McSorley, E.M.; Strain, J.J.; Watson, G.E.; Grzesik, K.; Thurston, S.W.; Love, T.M.; Smith, T.H.; et al. Maternal Gestational Immune Response and Autism Spectrum Disorder Phenotypes at 7 Years of Age in the Seychelles Child Development Study. Mol. Neurobiol. 2019, 56, 5000–5008. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.W.; Larsen, N.; Grove, J.; Norgaard-Pedersen, B.; Thorsen, P.; Mortensen, E.L.; Hougaard, D.M. Amniotic Fluid Inflammatory Cytokines, Potential Markers of Immunologic Dysfunction in Autism Spectrum Disorders. World J. Biol. Psychiatry 2013, 14, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.L.; McSorley, E.M.; Yeates, A.J.; Mulhern, M.S.; Strain, J.J.; Watson, G.E.; Grzesik, K.; Thurston, S.W.; Love, T.M.; Smith, T.H.; et al. Maternal immune markers during pregnancy and child neurodevelopmental outcomes at age 20 months in the Seychelles Child Development Study. J. Neuroimmunol. 2019, 335, 577023. [Google Scholar] [CrossRef] [PubMed]
- Chamera, K.; Kotarska, K.; Szuster-Głuszczak, M.; Trojan, E.; Skórkowska, A.; Pomierny, B.; Krzyżanowska, W.; Bryniarska, N.; Basta-Kaim, A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: A link to schizophrenia-like behaviours. J. Neuroinflamm. 2020, 17, 247. [Google Scholar] [CrossRef]
- Ding, S.; Hu, Y.; Luo, B.; Cai, Y.; Hao, K.; Yang, Y.; Zhang, Y.; Wang, X.; Ding, M.; Zhang, H.; et al. Age-related changes in neuroinflammation and prepulse inhibition in offspring of rats treated with Poly I:C in early gestation. Behav. Brain Funct. 2019, 15, 3. [Google Scholar] [CrossRef]
- Ponzio, N.M.; Servatius, R.; Beck, K.; Marzouk, A.; Kreider, T.I.M. Cytokine Levels During Pregnancy Influence Immunological Profiles and Neurobehavioral Patterns of The Offspring. Ann. N. Y. Acad. Sci. 2007, 1107, 118–128. [Google Scholar] [CrossRef]
- Minakova, E.; Warner, B.B. Maternal Immune Activation; Central Nervous System Development and Behavioral Phenotypes. Birth Defects Res. 2018, 110, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Patterson, P.H. Maternal Infection and Immune Involvement in Autism. Trends Mol. Med. 2011, 17, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial Activation and Neuroinflammation in The Brain of Patients with Autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef]
- Wei, H.; Zou, H.; Sheikh, A.M.; Malik, M.; Dobkin, C.; Brown, W.T.; Li, X. Il-6 Is Increased in The Cerebellum of Autistic Brain and Alters Neural Cell Adhesion, Migration and Synaptic Formation. J. Neuroinflamm. 2011, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal Immune Activation Alters Fetal Brain Development Through Interleukin-6. J. Neurosci. 2007, 27, 10695–10702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, J.; Samuelsson, A.-M.; Jansson, T.; Holmäng, A.; Holmäng, A. Interleukin-6 in The Maternal Circulation Reaches the Rat Fetus in Mid-Gestation. Pediatric Res. 2006, 60, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, E.Y.; Patterson, P.H. Activation of The Maternal Immune System Induces Endocrine Changes in The Placenta Via Il-6. Brain Behav. Immun. 2011, 25, 604–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossey, P.A.; Pillai, C.C.; Miell, J.P. Altered Placental Development and Intrauterine Growth Restriction in Igf Binding Protein-1 Transgenic Mice. J. Clin. Investig. 2002, 110, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Laviola, L.; Natalicchio, A.; Perrini, S.; Giorgino, F. Abnormalities of Igf-I Signaling in The Pathogenesis of Diseases of The Bone; Brain; and Fetoplacental Unit in Humans. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E991–E999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.-L.; Hsiao, E.Y.; Yan, Z.; Mazmanian, S.K.; Patterson, P.H. The Placental Interleukin-6 Signaling Controls Fetal Brain Development and Behavior. Brain Behav. Immun. 2017, 62, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Parker-Athill, E.C.; Tan, J. Maternal Immune Activation and Autism Spectrum Disorder, Interleukin-6 Signaling as A Key Mechanistic Pathway. Neuro-Signals 2010, 18, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Chadman, K.K.; Mccloskey, D.P.; Sheikh, A.M.; Malik, M.; Brown, W.T.; Li, X. Brain Il-6 Elevation Causes Neuronal Circuitry Imbalances and Mediates Autism-Like Behaviors. Biochim. Biophys. Acta 2012, 1822, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Kumari, E.; Velloso, F.J.; Nasuhidehnavi, A.; Somasundaram, A.; Savanur, V.H.; Buono, C.D.; Levison, S.W. Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Rep. 2020, 14, 861–875. [Google Scholar] [CrossRef]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal Developmental Pathways for The Generation of Pathogenic Effector Th17 and Regulatory T Cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef]
- Hsiao, E.Y.; Mcbride, S.W.; Chow, J.; Mazmanian, S.K.; Patterson, P.H. Modeling an Autism Risk Factor in Mice Leads to Permanent Immune Dysregulation. Proc. Natl. Acad. Sci. USA 2012, 109, 12776–12781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The Maternal Interleukin-17a Pathway in Mice Promotes Autism-Like Phenotypes in Offspring. Science (N. Y.) 2016, 351, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Matsuzaki, H.; Iwata, K.; Kameno, Y.; Shimmura, C.; Kawai, S.; Yoshihara, Y.; Wakuda, T.; Takebayashi, K.; Takagai, S.; et al. Plasma Cytokine Profiles in Subjects with High-Functioning Autism Spectrum Disorders. PLoS ONE 2011, 6, E20470. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.Y.; Mostafa, G.A. Elevated Serum Levels of Interleukin-17a in Children with Autism. J. Neuroinflamm. 2012, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, A.; Ahmad, S.F.; Attia, S.M.; AL-Ayadhi, L.Y.; Bakheet, S.A.; Al-Harbi, N.O. Oxidative and inflammatory mediators are upregulated in neutrophils of autistic children: Role of IL-17A receptor signalling. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 90, 204–211. [Google Scholar] [CrossRef]
- Casanova, M.F.; El-Baz, A.S.; Kamat, S.S.; Dombroski, B.A.; Khalifa, F.; Elnakib, A.; Soliman, A.; Allison-Mcnutt, A.; Switala, A.E. Focal Cortical Dysplasias in Autism Spectrum Disorders. Acta Neuropathol. Commun. 2013, 1, 67. [Google Scholar] [CrossRef] [Green Version]
- Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. Patches of Disorganization in The Neocortex of Children with Autism. N. Engl. J. Med. 2014, 370, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 2011, 25, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Enstrom, A.M.; Onore, C.E.; Van de Water, J.A.; Ashwood, P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav. Immun. 2010, 24, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol. Teratol. 2013, 36, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Lacabanne, C. Inflammation and Immune-Mediated Neurobehavioral Alterations: A Critical Role for Microglia. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, McGill University, Montréal, QC, Canada, 2018. Available online: https://tel.archives-ouvertes.fr/tel-02064312 (accessed on 19 November 2020).
- Girard, S.; Tremblay, L.; Lepage, M.; Sébire, G. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J. Immunol. 2010, 184, 3997–4005. [Google Scholar] [CrossRef] [PubMed]
- Leitner, K.; Al Shammary, M.; McLane, M.; Johnston, M.V.; Elovitz, M.A.; Brud, I. IL-1 receptor blockade prevents fetal cortical brain injury but not preterm birth in a mouse model of inflammation-induced preterm birth and perinatal brain injury. Am. J. Reprod. Immunol. 2014, 71, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Vermillion, M.S.; Jia, B.; Xie, H.; Xie, L.; McLane, M.W.; Sheffield, J.S.; Pekosz, A.; Brown, A.; Klein, S.L.; et al. IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCI Insight 2019, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.K.; Rinaldi, S.F.; Norman, J.E.; Stock, S.J. Preterm birth: Inflammation, fetal injury and treatment strategies. J. Reprod. Immunol. 2017, 119, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Crampton, S. The Impact of Maternal Inflammation and Maternal Stress in the Regulation of Neurodevelopment and Physiological Function. Ph.D. Thesis, University College Cork, Cork, Ireland, 2014. Available online: https://cora.ucc.ie/handle/10468/3126 (accessed on 19 November 2020).
- Crampton, S.J.; Collins, L.M.; Toulouse, A.; Nolan, Y.M.; O’Keeffe, G.W. Exposure of foetal neural progenitor cells to IL-1β impairs their proliferation and alters their differentiation—A role for maternal inflammation? J. Neurochem. 2012, 120, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Shen, F.; Zhou, Q.; Huang, P.; Lin, L.; Chen, M.; Chen, X.; Jiang, S.; He, S.; Zeng, H.; et al. Interleukin-1β disturbs the proliferation and differentiation of neural precursor cells in the hippocampus via activation of Notch signaling in postnatal rats exposed to lipopolysaccharide. ACS Chem. Neurosci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Turbé, H.; Waeckel, L.; Dechelotte, B. Overview of prospects for inflammation pathways in autism spectrum disorders. Encephale 2020, 46, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.; Yim, Y.S.; Ha, S.; Atarashi, K.; Tan, T.G.; Longman, R.S.; Honda, K.; Littman, D.R.; Choi, G.B.; et al. Maternal Gut Bacteria Promote Neurodevelopmental Abnormalities in Mouse Offspring. Nature 2017, 549, 528. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.; Atarashi, K.; Manel, N.; Brodie, E.L.; Shima, T.; Karaoz, U.; Wei, D.; Goldfarb, K.C.; Santee, C.A.; Lynch, S.V.; et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 2009, 139, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chen, H.; Shu, X.; Yin, Y.; Li, J.; Qin, J.; Chen, L.; Peng, K.; Xu, F.; Gu, W.; et al. Presence of Segmented Filamentous Bacteria in Human Children and Its Potential Role in The Modulation of Human Gut Immunity. Front. Microbiol. 2018, 9, 1403. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Ando, M.; Kamada, N.; Nagano, Y.; Narushima, S.; Suda, W.; Imaoka, A.; Setoyama, H.; Nagamori, T.; et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell 2015, 163, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.; Van De Water, J. The Immune System’s Role in The Biology of Autism. Curr. Opin. Neurol. 2010, 23, 111–117. [Google Scholar] [CrossRef] [Green Version]
- UK Biobank. Protocol for a Large-Scale Prospective Epidemiological Resource; UK Biobank Coordinating Centre: Stockport, UK, 2007; Available online: https://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf (accessed on 2 May 2020).
- Romano-Keeler, J.; Weitkamp, J.-H. Maternal Influences on Fetal Microbial Colonization and Immune Development. Pediatric Res. 2014, 77, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Findings from Population-Based Studies and Systematic Reviews/Meta-Analyses | References |
---|---|
Increased frequency of autoimmune disorders in families with autism. 46% had two or more family members with autoimmune diseases. | [42] |
Increased autoimmunity in families with pervasive developmental disorder (ASD sub-type) compared to healthy controls | [43] |
Positive association between increased risk of ASD in new-born and three maternal autoimmune diseases, rheumatoid arthritis, type 1 diabetes, and coeliac disease | [44] |
Autoimmune diseases in both parents were associated with increased likelihood of ASD diagnosis in the offspring | [45] |
autoimmune diseases and brain-reactive antibodies more prevalent in mothers of children with ASD | [46] |
Positive association between increased risk of ASD in new-born and family history of autoimmune diseases | [47] |
Positive association between increased risk of ASD in the new-born and maternal autoimmune diseases or maternal thyroid disease developed during pregnancy | [48] |
Sample Tissue | Molecular Weight of Protein Autoantibody Target | Population Sample (N° of Mothers) | References |
---|---|---|---|
Human Foetal brain | Reactivity to a 37 kDa and 73 kDa protein antigens | ASD: 61 Controls (TD): 62 | [34] |
Human Foetal brain | Reactivity to a 39 kDa and 73 kDa (only in early onset autism) protein antigens | ASD: 84 Controls (TD): 160 | [61] |
Human Foetal and Adult brain | Reactivity to a 36kDa and 39kDa protein antigens | ASD: 100 Controls (TD): 100 | [62] |
Animal Species | Behavioural Outcomes of Antibody Exposure | Description of Autoantibody Administration | References |
---|---|---|---|
Mouse | Altered exploration Altered motor coordination | MCAD serum or serum from mothers of unaffected children (control) was injected intraperitoneally into pregnant mice daily from E10 to E17 | [57] |
Mouse | Hyperactivity Increased anxiety-like behaviours Alterations in sociability and reduced social interactions | Intraperitoneal injection of IgG antibodies from MCAD or from mothers of unaffected children (control) to pregnant mice daily from E13 to E18 | [72] |
Mouse | Impaired motor and sensory development Increased anxiety | IgG obtained from MCAD or mothers of unaffected children (control) were injected through tail vein to pregnant mice on gestational day 12 | [73] |
Rhesus Monkey | Hyperactivity Whole-body stereotypies of ASD Alterations in sociability and increase in non-social activities Reduced contact with peers | Intravenous injection of IgG from MCAD or mothers of unaffected children (control) to pregnant monkeys on gestational days 27, 41 and 55 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravaccia, D.; Ghafourian, T. Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines 2020, 8, 557. https://doi.org/10.3390/biomedicines8120557
Ravaccia D, Ghafourian T. Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines. 2020; 8(12):557. https://doi.org/10.3390/biomedicines8120557
Chicago/Turabian StyleRavaccia, Davide, and Taravat Ghafourian. 2020. "Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder" Biomedicines 8, no. 12: 557. https://doi.org/10.3390/biomedicines8120557
APA StyleRavaccia, D., & Ghafourian, T. (2020). Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines, 8(12), 557. https://doi.org/10.3390/biomedicines8120557