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Abstract: Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders
characterised by impairments in communication, social interaction, and the presence of restrictive
and repetitive behaviours. Over the past decade, most of the research in ASD has focused on
the contribution of genetics, with the identification of a variety of different genes and mutations.
However, the vast heterogeneity in clinical presentations associated with this disorder suggests that
environmental factors may be involved, acting as a “second hit” in already genetically susceptible
individuals. To this regard, emerging evidence points towards a role for maternal immune system
dysfunctions. This literature review considered evidence from epidemiological studies and aimed to
discuss the pathological relevance of the maternal immune system in ASD by looking at the proposed
mechanisms by which it alters the prenatal environment. In particular, this review focuses on the
effects of maternal immune activation (MIA) by looking at foetal brain-reactive antibodies, cytokines
and the microbiome. Despite the arguments presented here that strongly implicate MIA in the
pathophysiology of ASD, further research is needed to fully understand the precise mechanisms by
which they alter brain structure and behaviour. Overall, this review has not only shown the importance
of the maternal immune system as a risk factor for ASD, but more importantly, has highlighted new
promising pathways to target for the discovery of novel therapeutic interventions for the treatment of
such a life-changing disorder.

Keywords: ASD; autism; immune system; brain development; cytokines; antibodies

1. Introduction

Autism spectrum disorders (ASD) are defined as a group of neurodevelopmental disorders
characterised by three core features: impairments in communication, deficits in social interaction,
and the presence of restrictive and repetitive patterns of behaviour [1]. The term ASD encompasses a
spectrum of diagnoses of varying severity, ranging from autistic disorder to Asperger’s syndrome;
a higher functioning form of autism with increased intellectual abilities [1]. These disorders commonly
arise during early childhood, before the age of three, but may not fully manifest until later in life [1].
The global prevalence of ASD has been steadily increasing over the past decade, with an estimated
62 million cases in 2016 [2]. The limited evidence for remission in ASDs compared to other mental health
disorders make it a significant burden on an individual’s life, affecting health outcomes and increasing
disability [3]. Although there have been significant advances in characterising the neuroanatomical
basis of ASD [4,5], current treatment is limited to partial symptomatic relief [6]. This highlights the need
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for a better understanding of its aetiology in order to guide development of new prevention options
and possible therapeutic agents. However, the large heterogeneity in phenotype among individuals on
the autistic spectrum, with significant variability in clinical presentation, makes this difficult and is one
of the greatest challenges in ASD research [5].

Over the past decade, the contribution of genetics in ASD pathophysiology has been extensively
established [7], with hundreds of diverse genetic polymorphisms linked to the disorder [8,9].
Studies have shown that ASD has a strong heritability component, with concordance rates varying
between 80-90% in monozygotic twins [10,11]. However, although there is certainly a genetic
component, the phenotypic heterogeneity in ASD, as well as the fact that these common functional
variants are also found in individuals without a diagnosis, strongly suggest that these mutations alone
might not be sufficient to cause the full spectrum of symptoms and only have an effect in increasing
the risk [7,12-14]. Genetically susceptible individuals therefore require a further environmental trigger
or a “second hit” in order to develop ASD [15,16]. Considerable research has been done to identify
these factors and the mechanisms by which they promote ASD vulnerability [17,18].

Increasing evidence suggests that most of these environmental factors seem to converge
onto a common pathway, which leads to the activation of the maternal immune system during
pregnancy [13,17,19]. This association between the maternal immune system and ASD was first
proposed following the 1960s Rubella outbreak, where the incidence of autism among children
born to infected mothers increased substantially [20,21]. Since then, epidemiological and animal
studies have provided additional support for this hypothesis, although the exact sequence of events
by which maternal immune activation (MIA) increases the risk of ASD still remains elusive [17],
hence impeding progress towards any medical intervention. This review follows on the evidence
from epidemiological studies and aims to discuss the relevance of the maternal immune system in the
pathophysiology of ASD by providing an overview of the current proposed mechanisms by which it
alters the prenatal environment. It will mainly focus on pathways implicating maternal autoantibodies
and cytokines, as well as a newly identified role for maternal gut microbiota, and how these affect
foetal neurodevelopment.

2. The Maternal Immune System in Foetal Development

The physiological role of the maternal immune system during pregnancy has been debated
in the literature for many years [22]. Initially, it was believed that during pregnancy, the maternal
immune system was suppressed as a way of ‘tolerating’ the developing foetus [23]. This suggested
that pregnancy was a state of immunological weakness and increased susceptibility to disease [23,24].
However, it has now been recognised that this is not the case, and that the maternal immune system
is highly active and dynamic, interacting with foetal immune cells to create a prenatal environment
that supports pregnancy [23]. Of critical importance to the development of this environment is the
maternal-foetal interface [22]. As shown in Figure 1, this junction is formed by chorionic villi, which can
be further classified as either anchoring or floating, and the decidua (the maternal portion of the
placenta), which mainly consists of spiral arteries [25]. This process is mediated by extravillous
trophoblasts (EVTs), which invade the uterine wall and form a bridge between maternal and foetal
circulation [25]. This not only supports the transplacental exchange of nutrients and oxygen, but,
more importantly, allows the maternal immune system to firstly ‘tolerate’ the developing embryo and
secondly, have an effect on foetal development and the programming of the immune system [22,25].
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Figure 1. The Maternal-Foetal Interface. A graphical representation of the maternal-foetal interface
in the placenta. The human placenta is formed by a foetal component, mainly containing chorionic
villi and a maternal component (the decidua), consists of spiral arteries. The chorionic villi have a
basal membrane that is anchored to inner cytotrophoblast epithelium (CBT), which in turn fuse to form
the outer syncytiotrophoblast layer (STB). The anchoring villi invade the uterine wall via extravillous
trophoblasts (EVT). M@/D = macrophages/dendritic cells. DC = dendritic cells. Taken with permission
from [25].

2.1. Mechanisms Promoting Foetal Tolerance

The maternal immune system’s role in foetal tolerance was first proposed by Billingham et al.,
when they hypothesised that the foetus is able to survive throughout gestation via a series of
immunological interactions between mother and foetus [26,27]. Since then, the decidua has been
shown to be composed of a unique set of maternal immune cells that accumulate locally during
implantation to facilitate this process [22,23,28]. The immune cells include uterine natural killer
cells (uNK), macrophages, dendritic cells and T cells [23]. Although there is still some debate as
to the mechanisms by which tolerance occurs, it likely involves the regulation of certain T cell
subtypes [29,30]. In particular, extensive evidence points towards a role for T helper (Th) cells and
regulatory T (Treg) cells [29,31,32]. Th cells have been suggested to be important in tolerance as they
shift the placental cytokine profile from a pro-inflammatory Th1 profile to a Th2 profile, which leads
to increased production of “pregnancy-protective’ cytokines [29,32]. Treg cells, however, recognise
paternal antigens on foetal molecules and supress their elimination [29,32]. Furthermore, they also
supress pro-inflammatory Th1 and Th17 activity on foetal cells [27]. The pathological relevance of T
cell mediated cytokine responses and Treg cell function in the context of ASD will be discussed later.
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2.2. Programming the Foetal Immune System

The maternal immune system not only plays a crucial role in immuno-tolerance, but also influences
programming of the foetal immune system [27]. In fact, throughout pregnancy the ‘immunologically
naive’ foetus is supplied with immunoglobulins (Ig) by the mother [33]. This adaptive mechanism,
called “passive immunity”, provides the new-born baby with short-term immunity postnatally,
protecting it from external pathogens while its own immune system is being fully developed [34,35].
The most widely recognised maternal Ig to cross to placenta is Immunoglobulin G (IgG) [36]. It is
possible to detect levels of maternal IgG in foetal circulation as early as the second trimester of
pregnancy with levels almost doubling by week 30 of gestation [37]. Although this concept forms the
basis of our understanding of maternal immunisation during pregnancy, the mechanisms by which
this placental transfer of IgG occurs have not yet been fully elucidated [38]. Due to the fact that Ig
are large molecules, their placental transfer is mediated by neonatal Fc receptors (FcRn), a major
histocompatibility complex-class I related (MHC-I) receptor [39]. FcRn receptors bind to the constant
domain of the Fc region of the IgG and actively transports them into the foetal endothelium [38—40].
The next section will highlight the relevance of this transfer by FcRn in the aetiology of ASD.

3. Maternal Autoantibodies in ASD

As detailed above, the maternal immune system ‘programs’ the foetus by supplying IgG antibodies
during gestation in a tightly regulated process [33]. However, alterations in this transplacental exchange
of antibodies could alter the prenatal environment of the developing foetus, changing its susceptibility
to neurodevelopmental disorders such as ASD [17]. This idea was first proposed by Money et al.
who reported the case of a child with autism and a strong family history of autoimmune disease [41].
They hypothesised that this particular case of autism could be due to autoimmune impairments of the
mother affecting development of the foetal central nervous system (CNS), following the formation
and transfer of autoantibodies by the mother with an autoimmune disease [41]. Since then, numerous
studies have documented a significant relationship between autoimmune disorders and increased risk
of ASD, examples of which summarised in Table 1, supporting this hypothesis.

Table 1. Observational studies reporting an association between autoimmune diseases and ASD.

Findings from Population-Based Studies and Systematic Reviews/Meta-Analyses References

Increased frequency of autoimmune disorders in families with autism. 46% had two or

. . . . 42

more family members with autoimmune diseases. [42]

Increased autoimmunity in families with pervasive developmental disorder (ASD [43]

sub-type) compared to healthy controls
Positive association between increased risk of ASD in new-born and three maternal [44]
autoimmune diseases, rheumatoid arthritis, type 1 diabetes, and coeliac disease

Autoimmune diseases in both parents were associated with increased likelihood of [45]
ASD diagnosis in the offspring

autoimmune diseases and brain-reactive antibodies more prevalent in mothers of [46]

children with ASD
Positive association between increased risk of ASD in new-born and family history of [47]
autoimmune diseases
Positive association between increased risk of ASD in the new-born and maternal [48]

autoimmune diseases or maternal thyroid disease developed during pregnancy

However, it is important to note that there are important limitations to conclusions made by such
population-based studies. Studies listed in Table 1 have varying methodologies and sample sizes
which limit direct comparison between them. Within Table 1, studies conducted by Comi et al. [42] and
Sweeten et al. [43] relied on patients self-reporting a family history of autoimmune disease, increasing
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the probability of recall bias. These methodological discrepancies may be some of the reasons for
contrasting results obtained in other investigations. For example, Croen et al. concluded from their
case-control study that maternal autoimmune disease during pregnancy (physician diagnosed) was
unlikely to contribute to the risk of autism [49]. It must be noted that despite this overall conclusion,
they did report a significant association between one specific autoimmune disease, psoriasis, and ASD.
Furthermore, some associations have been reported between a general family history of autoimmune
disease, as opposed to only the maternal autoimmune history, and an increased risk of ASD [44,47].
This suggests a heritable component for the autoimmune association, in addition to the effect of
autoimmune disease due to alterations in the maternal prenatal environment [17]. The associations
reported in the literature should therefore be interpreted with caution when trying to identify
mechanisms. On one hand, ASD risk could result from the foetus being exposed to autoantibodies of
mothers with an autoimmune disorder, as discussed in the next section [45]. While, on the other hand,
this positive association between ASD and autoimmunity might just be due to other heritable factors
that are shared by both conditions [17,45].

3.1. Mechanisms by Which Maternal Autoantibodies Affect the Prenatal Environment

To show that the positive association between autoimmune disorders and ASD is not just due
to factors shared by both conditions, recent studies have aimed to identify possible mechanisms by
which the foetus is exposed to maternal autoantibodies. Although the transfer of some IgG subclasses
is more efficient than others, maternal IgG’s are generally transported into the foetal environment
independent of whether they are pathological or protective [33]. It is, therefore, theoretically possible
that mothers with autoimmune disorders, in addition to immunoprotective antibodies, can also transfer
IgG autoantibodies that recognize foetal proteins, as shown in Figure 2 [38,40,50]. This is thought to be
related to the mechanism of action of FcRn mentioned above, which interacts with the Fc portion of the
IgG in a non-antigen specific manner [51]. After crossing the placenta, some of these autoantibodies
can interfere with foetal neurodevelopment by expressing reactivity to particular foetal brain proteins,
which increases the risk of ASD, as discussed in detail in the next section [35,52].
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Figure 2. A simplified graphical representation of the placental transfer of IgG antibodies during

g

gestation. The top half of the diagram shows physiological placental transfer of IgG antibodies,
mediated by endosomal trafficking after binding to the FcRn. Blue arrows indicate the direction IgG
molecules follow through various processes. The bottom half of the diagram shows the proposed
mechanism by which IgG autoantibodies reactive to foetal proteins cross the placenta due to the
non-specific binding of FcRn to the Fc portion of the antibody as proposed by [38,40,50,51].
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3.2. Mothers of Children with ASD Have Circulating Foetal Brain-Reactive Antibodies

Circulating cerebellar specific IgG autoantibodies have been identified in plasma of children with
ASD [53], and the levels of certain IgG types, e.g., the 45 and 62 kDa antibodies, have been associated
with specific symptoms and characteristics of ASD [54,55]. This prompted theories around the
presence and causal effect of maternal-foetal brain-reactive antibodies on the risk of ASD development.
The theoretical antibody transfer model was firstly examined by looking at whether or not these
potential anti-brain autoantibodies were present in the serum of mothers with autoimmune diseases [17].
Brimberg et al. concluded that mothers of children with ASD (MCAD), who have autoimmune diseases
such as rheumatoid arthritis or systemic lupus erythematosus (SLE), were four times more likely to
have circulating peripheral antibodies reactive to brain tissue of foetal and adult mice, compared to
other mothers of child-bearing age [46]. Similarly, it was also shown that that anti-nuclear antibodies,
a marker of latent subclinical autoimmunity [56], were also more frequent in MCAD who test positive
for these brain-reactive antibodies [46]. This reinforces the idea that brain-reactive autoantibodies
might be associated with autoimmunity [50]. However, the control subjects in this particular study
were women of child-bearing age, and not mothers of typically developing children, which limits the
validity of the results [50].

Interestingly, these foetal brain-reactive antibodies have also been observed in the sera of MCADs
in the absence of any clinical evidence of autoimmunity [57-59]. Importantly, Zimmerman et al.’s
study was able to highlight that these autism-associated antibodies were more reactive to protein
targets derived from prenatal rat brains compared to post-natal or adult brain samples [58]. However,
these studies tested reactivity on rodent brain tissue samples, which differ in protein structure from
those of humans [58]. In addition, the serum tested was collected from a small number of mothers and
controls [57,58].

3.3. Foetal Brain-Reactive Antibodies Target Specific Antigens in the Developing Brain

To understand how these anti-brain antibodies lead to neurodevelopmental changes in ASD,
target antigens in the human brain were identified [59,60]. Table 2 summarises the results from these
early studies, which cumulatively conclude that the serum of MCADs seems to harbour autoantibodies
reactive to 37/39 kDa proteins and a 73kDa protein [35,50].

Table 2. Observational studies looking at protein antigen targets for autoantibodies from mothers of
children with ASD and mothers of typically developing children (TD).

Molecular Weight of Protein Population Sample (N°

Sample Tissue Autoantibody Target of Mothers) References

. Reactivity to a 37 kDa and ASD: 61

Human Foetal brain 73 kDa protein antigens Controls (TD): 62 [34]
Reactivity to a 39 kDa and ASD: 84

Human Foetal brain 73 k]?a (only in early onset Controls (TD): 160 [61]

autism) protein antigens
Human Foetal and Reactivity to a 36kDa and 39kDa ASD: 100 [62]
Adult brain protein antigens Controls (TD): 100

Subsequent studies were able to establish what proteins corresponded to these 37/39kDa and
72kDa bands, representing a critical step in maternal autoantibody related autism research [50,63,64].
Braunschweig et al.’s seminal study [63] showed that the most common proteins to exhibit reactivity
exclusively to these maternal autoantibodies were lactate dehydrogenase A and B (LDH-A, LDH-B),
involved in neuronal and astrocytic metabolism and long-term memory [65], collapsing response
mediator proteins 1 and 2 (CRMP1 and CRMP2), responsible for correct cell migration [66]
and stress-induced phosphoprotein 1 (STIP1), important in neuronal survival and dendritic
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arborization [63,67,68]. Importantly, all the other identified antigens were also expressed in high
quantities in the foetal brain and had key roles in neurodevelopment [50,63].

A more recent investigation has identified elevated levels of autoantibodies in the serum of mothers
of ASD children against a panel of 7 recombinant human neuronal proteins, namely neurofilament
triplet proteins (NFP), microtubule-associated proteins (tau), microtubule-associated protein-2 (MAP-2),
myelin basic protein (MBP), myelin-associated glycoprotein (MAG), x-synuclein (SNCA) and astrocytes
proteins such as glial fibrillary acidic protein (GFAP) [69]. Children with ASD had elevated IgG levels
against these 7 proteins as well as additional two proteins, tubulin and S100B protein [69]. Control
children and their mothers showed low and insignificant levels of autoantibodies to these proteins [69].

It must be noted here that two of the studies listed in Table 2 used plasma samples extracted after
the child’s diagnosis of ASD [34,62]. As the circulating IgG profile of an individual changes over time,
with exposure to different pathogens, the results from these studies might not accurately reflect the IgG
autoantibody profile that was present during the pregnancy [50]. Croen et al.’s addressed this concern
by using mid-gestational serum specimens acquired during routine prenatal screening at 15-19 weeks
of gestation [61]. Although this improves the accuracy of the results, it still only depicts the IgG profile
at one particular point during gestation. Further studies examining longitudinal IgG autoantibodies
throughout pregnancy are required to determine if the presence of these foetal reactive antibodies
occurs throughout or at particular critical periods of gestation.

3.4. Foetal Brain-Reactive Antibodies Affect Foetal Behaviour

Further support of this autoantibody transfer hypothesis as a mechanism for increasing ASD
susceptibility, comes from experimental animal models involving direct administration of anti-brain
IgG antibodies from MCAD to pregnant dams [30,50]. The offspring’s behaviour was then assessed
using well recognised behavioural paradigms that aim to evaluate some of the core clinical features
of ASD, such as overactivity, anxiety and sociability [50,70,71]. Table 3 provides a list of some of
these studies.

Table 3. Animal studies looking at behavioural correlates of ASD in offspring of pregnant dams injected
with anti-brain antibodies from MCAD.

Behavioural Outcomes of
Antibody Exposure

Description of Autoantibody

.. . References
Administration

Animal Species

MCAD serum or serum from

Altered exploration mothers of unaffected children

Mouse Altered motor coordination . (COI.ItI'OI) was injected 571
intraperitoneally into pregnant
mice daily from E10 to E17
Hyperactivity Intraperitoneal injection of IgG
Increased anxiety-like antibodies from MCAD or
Mouse behaviours from mothers of unaffected [72]
Alterations in sociability and children (control) to pregnant
reduced social interactions mice daily from E13 to E18
IgG obtained from MCAD or
Impaired motor and sensory mothers of unaffected children
Mouse development (control) were injected through [73]
Increased anxiety tail vein to pregnant mice on
gestational day 12
Hyperactivity Intravenous injection of IgG
Whole-body stereotypies of ASD from MCAD or mothers of
Rhesus Monkey Alterations in sociability and unaffected children (control) to [74]

increase in non-social activities
Reduced contact with peers

pregnant monkeys on
gestational days 27, 41 and 55
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The results from these studies, summarised in Table 3, provide conclusive evidence that the
transplacental passage of foetal brain-reactive antibodies can directly lead to ASD-like behavioural
abnormalities in the offspring, such as hyperactivity and deficits in social interaction [50]. Although
very informative, these animal models have multiple limitations. Firstly, the results were obtained
under experimental conditions where IgG anti-brain antibodies were only administered to pregnant
dams at specific periods during gestation. The timing and length of exposure may affect the extent
and type of behavioural phenotype that occurs in the offspring which will need further investigations.
Furthermore, there are significant differences in FcRn receptor functioning between mice and humans,
which could affect autoantibody trafficking across the placenta and not accurately reflect what
happens in humans [75]. In recent investigations, antigen-driven mouse models with ASD-specific
autoantibodies have been developed that achieve a constant long-term exposure to the relevant
autoantibodies throughout gestation, which mimics the real-life clinical scenario [76,77]. In one study,
the mouse models developed through immunisation with a mixture of antigenic proteins from LDH-A,
LDH-B, STIP1 and CRMP1 (as the proposed targets of the autoantibodies [78] showed alterations in
development and social interactions in the offspring [76]. Moreover, off-springs of the mice expressing
anti-Caspr2 antibody (achieved through immunisation with extracellular portion of Caspr2) also
show repetitive behaviours and impairments in social preference tests, as well as abnormal cortical
development and alterations in excitatory and inhibitory neurons in the hippocampus [77].

4. Maternal Cytokines in ASD

Alongside the transfer of anti-brain autoantibodies across the placenta, the maternal immune
system has also been suggested to affect the prenatal environment through inflammatory pathways.
As mentioned above, a tolerogenic state is achieved during pregnancy that is regulated by
maternal immune cells in the placenta shifting the cytokine profile to increase the production of
‘pregnancy-protective’ cytokines [29,32]. However, external environmental factors, such as maternal
viral or bacterial infections, can alter this state of equilibrium and trigger acute immune activation and
transient up-regulation of pro-inflammatory cytokines, which can have detrimental effects on foetal
neurodevelopment [30,79,80].

The relationship between maternal infections and ASD was initially proposed after Chess et al.
documented a dramatic increase in the incidence of autism following the 1964 Rubella outbreak [20].
Since then, numerous other epidemiological studies have looked for an association between ASD
and maternal infections, particularly during pregnancy, with varying contradicting results [81].
Some reported a positive association [82-84] while others showed no association [85-87]. The differences
in sample sizes and population type, as well as in the methods used for gathering data on maternal
infections, might explain the inconsistency in these results. However, a meta-analysis by Jiang et al.,
systematically examining 15 studies and 40,000 cases of ASD, concluded that maternal infections
during pregnancy, particularly those requiring hospitalisation, do indeed increase the risk of ASD
in new-borns [88]. A recent prospective birth cohort study with 116 ASD cases and 860 typically
developing (TD) children looked at the effect of antibiotic use on the relationship between immune
activation and the ASD risk [89]. The analysis showed an interaction between the effect of flu and
antibiotic use during pregnancy on the risk of ASD in the child. In women with antibiotic use during
pregnancy, flu in trimester two was not associated with ASD, while in those without antibiotic use, flu in
second trimester was significantly associated with increased risk of ASD [89]. The pathophysiological
mechanisms underlying this positive association remains elusive but is likely to be two-fold [88].
On one hand, it might involve direct transfer of the infectious organism into the placenta, while on the
other, activation of the maternal immune system at the maternal-foetal interface may be responsible
for the associated ASD risks [88]. There is an abundance of evidence confirming that it is the immune
activation of the mother, and not the source of infection that is associated with the increased risk of
ASD; these will be discussed in detail in sections below.
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4.1. Maternal Immune Activation (MIA) Mouse Model for ASD

Some of the strongest evidence in support of the role of maternal infections in the aetiology of
ASD comes from the maternal immune activation (MIA) of mouse model, which assesses how maternal
infection and/or consequent immune activation leads to aberrant neurodevelopmental and behavioural
phenotypes in the new-born [90]. The model essentially involves injecting pregnant animals with
infectious organisms, such as human influenza virus (HIV), or a high dose of a viral double stranded
RNA mimic, polysinosinic-polycytidylic acid, also known as poly(I:C). These are commonly injected
on embryonic day 12, as it reflects the first trimester of pregnancy in humans, where maternal viral
infections have been repeatedly associated with an increased incidence of ASD [91]. Using this
model, Shi et al. showed that offspring of dams infected intranasally with HIV during gestation had
reduced exploratory behaviours, decreased sociability and increased anxiety, all prominent features of
autism [92]. These behaviours were also replicated in mice injected with the viral mimic poly(:C) [92],
with a key role identified for purinergic ion channel P2X7 receptors in modulating this effect [93].
It was concluded that the maternal immune response, rather than the infection itself, is responsible
for causing the observed phenotype [92]. In further support of this hypothesis, a similar study
observed that injecting poly(I:C) to pregnant mice at three different points during gestation, leads to
offspring displaying the three core symptoms of autism: fewer vocalisation responses, reduced time
spent in environments with other mice and higher rates of marble burying and self-grooming [94].
These findings were also replicated in rhesus monkeys, which are able to perform more human-like
behaviours [95]. A recent study used multivariate statistical analysis and identified positive association
of MIA with certain ASD-type behaviours and serum cytokine, CXCL10 and IL-5, levels while negative
associations with IL-15 and TNF-« levels were observed [96].

In general, MIA models have been instrumental in the characterisation of developmental effects
such as anatomical changes in the brain, neuronal function and neurotransmitter variations, and immune
alterations [97]. A comprehensive review of these alterations along with the pharmacological
interventions tested on MIA offspring can be found in Bergdolt and Dunaevsky [97].

4.2. Maternal Immune Activation Alters Maternal Cytokine Profiles

The MIA mouse model has been of crucial importance to our understanding of how maternal
infections increase risk of ASD, driving future research to focus more on the immune response rather
than the pathogen. [21,30]. On this basis, two studies looked at the immune profile of MCAD by looking
at mid-gestational cytokine and chemokine levels [98,99]. Overall, MCAD had significantly increased
levels of pro-inflammatory cytokines interferon gamma (INF-y), interleukin-6 (IL-6) and interleukin-1
(IL-1), which may be indicative of an activation of the immune system and a shift from the usual
anti-inflammatory cytokine pattern observed across pregnancy [98-100]. However, these cytokine
profiles only reflect one particular time point during gestation and as they were determined from
peripheral maternal blood samples, are not fully representative of the profile at the maternal-foetal
interface [98,99,101]. To this regard, Abdallah et al.’s showed contradicting cytokine levels in amniotic
fluid samples of MCAD, with increased anti-inflammatory interleukin-4 (IL-4) and interluekin-10
(IL-10) [102]. More recently, an investigation using a large sample size of 1453 mother-child pairs and
structural equation modelling showed association of several maternal inflammatory markers in the
late second or early third trimester with child neurodevelopmental outcomes at 20 months of age.
Out of the inflammatory markers tested, beneficial associations were observed for pro-inflammatory
markers TARC and IL-1§3, and pro-lymphangiogenic VEGF-D, and adverse associations were seen
for pro-inflammatory IL-2, anti-inflammatory IL-10, and anti-angiogenic sFlt-1 [103]. Despite these
disagreements, the general impression from the literature is that activation of the maternal immune
system, regardless of the cause, can indeed alter the prenatal environment by skewing the levels
of certain cytokines, increasing foetal susceptibility to ASD. Although the focus in this paper is the
maternal environment of children with ASD, it is worthwhile to mention the modified cytokine profiles
in the progeny of the MIA. For example, Chamera et al. reported abnormalities in levels of Cd40, iNos,
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II-6, Tgt-B, 11-10, and IBA1, IL-1f3, TNF-«, IL-6, TGF-f3 and IL-4 early in the life of male offspring of
Poly I:C-generated MIA [104]. In another investigation, expression of three cytokines, IL-1f3, IL-6 and
TNF-«, were elevated in the plasma of pregnant rats administrated with Poly I:C, while the effect in
the offspring depended on the age and the brain location [105]. In this work, MIA adolescent offspring
had significantly higher concentrations of IL-1{3 and IL-6 than the controls in the prefrontal cortex and
hippocampus, while the young adult offspring had significantly elevated levels of TNF-« and IL-6 in
the prefrontal cortex despite no significant differences in the hippocampus [105].

4.3. Mechanisms by Which Cytokines Affect the Prenatal Environment

Although a variety of different maternal cytokines have been implicated in ASD [101-103,105,106],
for the purpose of this literature review, only IL-1f, IL-6 and IL-17 will be discussed, as the pathological
mechanisms by which they exert their effects on the prenatal environment are the most well understood.

4.3.1. Interleukin-6

Based on findings from the cytokine studies mentioned above, various mechanisms to explain
how MIA leads to long-term behavioural abnormalities in ASD have been proposed [107]. In particular,
the dysregulated production of IL-6 has been consistently implicated as a downstream effect of MIA [108].
For example, it has been demonstrated that autistic children have elevated levels of IL-6 in the frontal
cortex, cerebrospinal fluid (CSF) [109] and cerebellum [110]. Furthermore, Smith et al. demonstrated
that a single injection of IL-6 in pregnant mice during gestation causes reduced exploratory behaviours
and impaired social interactions in the offspring [111]. These behavioural abnormalities were not seen
following a single injection of other pro-inflammatory cytokines, such as tumour necrosis factor alpha
(TNF-o), IL-1 or INF-x, and were rescued by administering anti-IL-6 antibodies [111].

As shown in Figure 3, there are numerous pathways by which IL-6 can access the prenatal
environment. Dahlgren et al. provided convincing evidence for the direct transfer of IL-6 across the
placenta by injecting IL-6 in pregnant dams during mid or late gestation [112]. They observed an
increase in IL-6 in both the amniotic fluid and foetus following the injection, with markedly higher
levels in the mid-gestation group compared to the late-gestation one [112]. However, it must be noted
that the foetus is also capable of producing IL-6 and therefore, the observed increase in cytokine
levels might not be maternally derived [112]. To confirm that maternal IL-6 is indeed able to cross the
placenta, Hsiao and Patterson injected poly(I:C) in pregnant hemizygotic females, with one copy of
the IL-6 gene (IL-6 +/-), previously matched with IL-6 knockout males (IL-6 -/-) [113]. This creates a
system whereby half of the offspring are unable to produce IL-6, which suggests that elevated levels of
placental IL-6 in these mice must come from the maternal circulation [113].

Maternal IL-6 production might also occur as a result of activation of decidual immune cells,
as detailed in Figure 3. In fact, NK cells, macrophages and granulocytes in the decidua of poly(I:C)
injected pregnant mice, have increased expression of CD69 surface glycoprotein receptors, a marker
of immune cell activation, compared to saline controls [113]. This maternally derived IL-6 can then
activate JAK/STAT signalling in the foetal compartment of the placenta, most likely through their direct
effect on spongiotrophoblast cells [113]. These cells expressed IL-6 receptors (IL-6Rx) and resulted
positive to phosphorylated STAT3 (pSTAT3) staining, a marker of JAK/STAT activation [113].

Importantly, IL-6 can have significant downstream effects on foetal development, which provide
an explanation for the previously reported associations between MIA and foetal ASD-like behavioural
abnormalities [111,113]. As summarised in Figure 3, IL-6 mediated JAK/STAT signalling can lead to
the dysregulation of normal placental physiology [113]. In particular, it has been shown that injection
of poly(I:C) in pregnant mice leads to decreased placental expression of growth hormone (GH) and
insulin-growth factor 1 (IGFI) [112]. Both these hormones are critical for promoting normal embryonic
development, while altered levels have been repeatedly associated with abnormal foetal growth,
increasing the risk of neurodevelopmental disorders such as ASD [114,115].
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Maternal Maternal Immune
Infections Activation (MIA)
Placenta (Decidua) 1 Activation of decidual natural
killer cells, macrophages and
IL-6 from granulocytes
maternal /
circulation
IL-6 from decidual cells
Placenta 1
(Spongiotrophoblasts)
JAK/STAT3
activation

|

{ Placental hormones (GH

and IGFI)
Foetal \ /
Circulation
Downstream effects on

foetal development

Figure 3. Proposed effects of IL-6 on the prenatal environment. A simplified graphical representation of
the downstream effects of IL-6 production as a consequence of MIA by maternal infections, with arrows
indicating the sequence of events in various body compartments, placenta decidua shown in light
orange at the top, placenta spongiotrophoblasts shown in light green in the middle, and foetal circulation
shown in pink at the bottom. MIA causes an increase in IL-6 in the peripheral maternal circulation and
placenta decidua. It can either directly cross the placenta and enter the foetal circulation (arrows in the
left) or cause the increased activation of decidual immune cells (arrows in the right) which consequently
produce IL-6 in the maternal compartment of the placenta. IL-6 produced from decidual cells acts on
IL-6 receptors (IL-6Rw) in the spongiotrophoblast layer and causes downstream activation of JAK/STAT3
signalling. This down-regulates placental GH and IGFI production. JAK/STAT3 stands for Janus
tyrosine kinase/signalling transducer and activation of transcription, GH is Growth Hormone, and IGFI
is Insulin-like growth factor 1 [113,116].

Furthermore, IL-6 can also directly cross the placenta, as described above, and target the foetal
brain [112]. During normal neurodevelopment IL-6 is present at low concentrations in the foetal
brain, promoting the differentiation of neural stem cells into neuroglial cells and, to a lesser extent,
also neurons [117]. However, these neurotropic functions are closely linked to their physiological
concentrations and overexpression of IL-6 in the developing brain leads to excessive inflammation
and abnormal cortical development [107]. Specifically, increased IL-6 promotes the accumulation of
prematurely differentiated neuronal and glial cells, with increased dendritic spine lengths [117,118].
This reflects the abnormal cortical structure seen in ASD patients, where there is an increase in the
numbers of immature neurons and glial cells in certain areas of the brain [107,116]. Moreover, elevated
levels of IL-6 have been shown to increase the proliferation of platelet-derived growth factor (PDGF)-
and fibroblast growth factor 2 (FGF-2)-responsive multipotential progenitors (PFMP) in developing
mice brain [119]. The PFMPs express IL-6Rx and GP130 receptors required for downstream IL-6
signalling, and it was noted that IL-6 activates pSTAT3 in these cells [119].
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4.3.2. Interleukin-17

In addition to the molecular pathways mentioned above, IL-6 is also an important regulator of
the balance between pro-inflammatory Th17 cells and Treg cells at the maternal-foetal interface [117].
At baseline, foetal tolerance is achieved via increase in Treg function over Th17 cells [107].
However, if transforming growth factor 3 (TGF() is present, excessive production of IL-6 promotes
the differentiation of naive T cells into Th17 cells and suppresses Treg function [117,120,121].
This differentiation into Th17 cells is mediated by a key transcription factor; retinoic acid receptor-related
orphan receptor yt (RORyt), which also promotes the transcription of the pro-inflammatory cytokine
IL-17a [91]. This sequential cytokine activity, whereby IL-6 causes up-regulation of IL-17a, was
demonstrated in IL-6 knockout mice, as they were unable to increase levels of IL-17a in the placenta [122].

This up-regulation of IL-17a in the prenatal environment, similarly to IL-6, can also contribute to
aberrant foetal neurodevelopment and has consistently been implicated in ASD [122]. Multiple studies
have shown that IL-17a is elevated in the serum of autistic individuals and is correlated with more severe
behavioural symptoms [123,124]. This has been proposed to be mediated by IL-17 receptors (IL-17RA),
which have been consistently reported to be expressed during cortical development, particularly in
glia and neurons [91,122]. In clinical settings, it has been shown that IL-17A expression and IL-17R are
also increased in neutrophils of ASD patients, leading to up-regulation of phospho-NFkB, IL-6 and
NOX2/ROS, which suggests a key role for IL-17A in modulation of inflammation in ASD patients [125].
In addition, expression of IL-17RA in the brain dramatically increases during MIA, which is a risk
factor for ASD, as shown by Choi et al.’s study demonstrating increased IL-17RA expression in the
cortex of offspring of MIA mice [122].

In further support of this role for IL-17a in neurodevelopmental stage of ASD, Choi et al.
showed that embryonic mice intraventricularly injected with IL-17a during development (E14.5),
had cortical cytoarchitectural abnormalities, with disorganised layering of neurons [122]. This cortical
dysplasia is a common feature in individuals with ASD [126,127] and was also observed in offspring of
poly(I:C) mice [122]. However, compared to MIA offspring, direct intraventricular injection of IL-17a,
which bypasses the placental environment, also reduced cortical thickness [122]. These discrepancies
in extent of brain damage might reflect an important caveat of these studies: cytokines generated in
response to MIA in the placenta need to travel across additional barriers to reach the brain, therefore
affecting the strength of their cortical inflammatory response, not accurately depicting what happens
physiologically [122].

Finally, Choi et al. also tested the role of IL-17a in ASD-like behavioural abnormalities [122].
Pre-treating MIA mice with IL-17a-blocking antibodies prevents deficits in communication and social
interaction, as well as increased stereotypical behaviours such as marble burying, observed in the MIA
mouse model of ASD outlined above [122].

4.3.3. Interleukin-1p (IL-13)

Elevated plasma levels of IL-13 waere observed in children with ASD [123,128] along with
increased levels of IL-1 antagonist, IL-1rec [123]. In addition, compared with controls, monocytes from
children with ASD produce higher levels of IL-1§3 following LPS exposure [129]. These suggest a
possible role for this cytokine in aetiology of ASD [130].

IL-1B is known to stimulate IL-6 production and it represents the main effector of microglial
activation following infection or injury. An increase in expression of IL-1p and other related cytokines
(IL-6, TNF-« and IL-10) was observed in maternal plasma, placenta and foetal brain hours after the
prenatal LPS treatment [131], while the LPS group also presented a decreased percentage of mature
microglia in the brain of embryos at GD18.5 and decreased total microglia population at post-natal day
9 [131]. Furthermore, the same study reported, for the adult offspring, a higher density and altered
microglial morphology in specific higher-order brain structures implicated in complex behaviours,
as well as altered social preference and memory and increased repetitive actions [131].
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In general, MIA cytokine research in relation to ASD have mostly focused on the causative
roles of IL-6 and IL-17 in the neurodevelopmental stage leading to ASD offspring. Despite this,
there seems to be a significant impact attributed to IL-13 in mediating severe placental damage and a
plethora of neurodevelopmental anomalies in offspring [132], if not specifically focused on ASD-type
behaviours. For example, pregnant rats exposed to systemic microbial product (LPS) exhibited
placental inflammation and higher rates of foetal mortality, with the offspring showing alterations in
forebrain white matter and motor behaviours, all of which were alleviated by the coadministration of
IL-1 receptor antagonist with the LPS [132]. In a different investigation [133], IL-1 receptor antagonist
inhibited foetal cortical brain injury, but not preterm birth in mice exposed to intrauterine inflammation.
An additional evidence for IL-1§3 role in neurodevelopmental damage comes from pregnant mice
infected with Zika virus. Here, the use of IL-1 receptor antagonist in pregnant mice following the viral
infection alleviated neurobehavioral deficits in the offspring, and decreased foetal microglial activation
in a dose-dependent manner [134].

Clinically, elevated cytokines IL-6 and IL-1§3 in the amniotic fluid and placental inflammation
have been proposed as predictors of brain injury in premature infants [135]. To identify mechanisms
of IL-1$ effect on neurodevelopment, several investigations have focused on the expression pattern
of IL-1 receptors and the effects of IL-13 treatment on the developing brain using neural precursor
cells [136-138]. IL-1R1 has been shown to be expressed in the ventral mesencephalon of the developing
brain and on nestin-positive neural precursor cells [136]. IL-1p treatment of these cells induces
differentiation and thereby reduces the numbers of proliferating neural precursor cells and this effect
can be inhibited by the IL-1R1 receptor antagonist. In terms of cell differentiation, II-13 promoted
gliogenesis and inhibited neurogenesis [136,137].

In summary, these data from in vitro cellular differentiation studies, animal MIA models and
biochemical presentations in ASD children show that exposure to IL-1f3 has a major role in ASD
presentation by affecting the brain development.

5. A Role for the Maternal Microbiome in ASD?

As discussed, there is strong evidence for how IL-6, in response to MIA, leads to the activation of
IL-17a, which in turn crosses the placenta and has downstream effects on the foetal neurodevelopment
in ASD [91]. However, the pleiotropic effects of these cytokines make it difficult to pinpoint their
exact function and, whether or not other pre-natal or maternal factors are involved is still poorly
understood [91].

In relations to this, disruption of intestinal microbiota has been suggested as a possible pathogenic
mechanism of ASD [139]. A novel role for the maternal microbiota in the activation of IL-17a has
been recently suggested [140]. Studies have shown that pregnant mice colonised with either human
commensal bacteria or segmented filamentous bacteria (SFB), were able to induce IL-17a production
by Th17 cells [140,141]. Although this enhances the expression of genes associated with antimicrobial
defences and inflammation, thus enhancing mucosal immunity, it also increased the likelihood of
offspring exhibiting ASD-like abnormalities [140,141]. However, SFB has been shown to be a rare
member of gut microbiota and therefore not always present throughout pregnancy [142]. Although
Atarashi et al. replicated these findings in mice and rats transfected with human faecal samples,
containing over 20 different bacterial strains, further insight is needed using samples reflecting
commensal pathogens of MCAD [143]. The fact that the intestinal microbiome tends to be unique to an
individual limits the applicability of these results to the wider population, suggesting that the maternal
microbiome might only be important in a subset of MCAD [143].

6. Conclusions and Future Directions

The genetic contribution of polymorphisms in ASD has been extensively established, with strong
heritability observed in various studies [8,10,14]. However, the vast phenotypic heterogeneity among
individuals on the autistic spectrum has driven researchers to look for potential environmental factors,



Biomedicines 2020, 8, 557 14 of 21

acting as a “second hit” in already genetically susceptible individuals [13]. One of these possible
triggers is MIA during pregnancy, which influences the prenatal environment via an array of possible
mechanisms [144]. This literature review has evaluated the evidence regarding three aspects of MIA in
ASD: foetal brain-reactive antibodies, maternal cytokines and the maternal gut microbiome.

MCAD have been consistently reported to harbour foetal brain-reactive antibodies in their
peripheral circulation, regardless of whether they have a concurrent autoimmune disorder [17].
The target antigens for these antibodies have also been identified and have key roles in
neurodevelopment [50]. However, direct evidence demonstrating the downstream effects following
antigen binding is lacking and overall, their contribution to ASD pathophysiology remains uncertain [50].
This is because most of the evidence has been derived from animal models which have several limitations;
above all, the significant differences in FcRn functioning between mice and humans [50].

The evidence for the mechanisms of positive association between maternal infections and ASD is
conflicting. One possible mechanism could be the alterations observed in particular maternal cytokines
in the prenatal environment, most notably IL-13, IL-6 and IL-17 [17]. These pro-inflammatory cytokines
have been consistently shown to be elevated in the placenta following MIA, leading to downstream
abnormalities in cortical brain structure as well as behaviour [111,113]. However, further studies are
needed and the development of animal models that longitudinally assess their effects throughout
pregnancy will be of crucial importance. Furthermore, large databases of prospective observational
databases, such as the UK Biobank resource [145], along with machine learning methods can yield
additional information to help the current understanding of the mechanisms.

Finally, although in its infancy, a role for the maternal microbiome in ASD has been proposed,
based on the fact that the maternal microbiota impacts the initial colonisation of the immature foetal gut
during birth [146]. Although it has been demonstrated that it might activate Th17 cells and up-regulate
IL-17 production, further research using samples collected from MCAD is necessary [143].

Although the overall role of the maternal immune system in ASD is yet to be fully elucidated,
potential mechanisms for its effects on the prenatal environment have now been proposed. Based on
this, current research into possible therapeutic targets is now underway. However, despite its negative
effects on the foetus, physiological elevation of maternal cytokines following MIA is necessary to
respond to infections; and although in vivo and ex vivo therapeutic options have been proposed
to inhibit foetal brain-reactive autoantibodies, manipulation of the placenta during pregnancy is
challenging as downstream side-effects on foetal development cannot always be predicted [33].
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