Structural Proteins at Neuromuscular Junction Are Downgraded While NRG1 and Agrin Gene Expression Increases After Muscle Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Muscle Injury (MI) Protocol
2.3. Light Microscopy
2.4. Immunostaining—First Step
2.5. Presynaptic Receptors (Bassoon) and Calcium Channels (P/Q)
2.6. Postsynaptic Receptors (AChR)
2.7. Morphometry
2.8. Real-Time PCR
3. Results
3.1. Light Microscopy
3.2. Presynaptic Region (Bassoon)
3.3. Calcium Channel (P/Q)
3.4. Postsynaptic Receptors (AChR)
3.5. PCR in Real Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AChR | Acetylcholine Receptors |
BSA | Bovine Serum Albumin |
NGS | Normal Goat Serum |
NMJ | Neuromuscular Junction |
PBS | Phosphate-Buffered Saline |
References
- Darabid, H.; Perez-Gonzalez, A.P.; Robitaille, R. Neuromuscular synaptogenesis: Coordinating partners with multiple functions. Nat. Rev. Neurosci. 2014, 15, 703–718. [Google Scholar] [CrossRef]
- Li, L.; Xiong, W.C.; Mei, L. Neuromuscular Junction Formation, Aging, and Disorders. Annu. Rev. Physiol. 2018, 80, 159–188. [Google Scholar] [CrossRef]
- Alvarez-Suarez, P.; Gawor, M.; Prószyński, T.J. Perisynaptic schwann cells—The multitasking cells at the developing neuromuscular junctions. Semin. Cell Dev. Biol. 2020, 104, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Comley, L.H.; Thomson, D.; Parkinson, N.; Talbot, K.; Gillingwater, T.H. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 2008, 17, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Lu, Y.; Zhang, B.; Figueiredo, D.; Bean, J.; Jung, J.; Wu, H.; Barik, A.; Yin, D.-M.; Xiong, W.-C.; et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J. Clin. Investig. 2013, 123, 5190–5202. [Google Scholar] [CrossRef]
- Tu, W.Y.; Xu, W.; Zhang, K.; Shen, C. Whole-mount staining of neuromuscular junctions in adult mouse diaphragms with a sandwich-like apparatus. J. Neurosci. Methods. 2021, 350, 109016. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Hurst, T.E.; Ramser, A.E.; Sherman, E.G. Presynaptic to postsynaptic relationships of the neuromuscular junction are held constant across age and muscle fiber type. Dev. Neurobiol. 2013, 73, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Sherman, E.G.; Roby, M.A.; Glass, E.K.; Harris, M.B. Effect of resistance training on neuromuscular junctions of young and aged muscles featuring different recruitment patterns. J. Neurosci. Res. 2015, 93, 504–513. [Google Scholar] [CrossRef]
- Gonzalez-Freire, M.; Semba, R.D.; Ubaida-Mohien, C.; Fabbri, E.; Scalzo, P.; Højlund, K.; Dufresne, C.; Lyashkov, A.; Ferrucci, L. The Human Skeletal Muscle Proteome Project: A reappraisal of the current literature. J. Cachexia Sarcopenia Muscle 2017, 8, 5–18. [Google Scholar] [CrossRef]
- Deschenes, M.R. Adaptations of the neuromuscular junction to exercise training. Curr. Opin. Physiol. 2019, 10, 10–16. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Trebelhorn, A.M.; High, M.C.; Tufts, H.L.; Oh, J. Sensitivity of subcellular components of neuromuscular junctions to decreased neuromuscular activity. Synapse 2021, 75, e22220. [Google Scholar] [CrossRef]
- Zelada, D.; Bermedo-García, F.; Collao, N.; Henríquez, J.P. Motor function recovery: Deciphering a regenerative niche at the neuromuscular synapse. Biol. Rev. Camb. Philos. Soc. 2021, 96, 752–766. [Google Scholar] [CrossRef]
- Fuertes-Alvarez, S.; Izeta, A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis. 2021, 12, 494–514. [Google Scholar] [CrossRef]
- Järvinen, T.A.H.; Järvinen, T.L.N.; Kääriäinen, M.; Äärimaa, V.; Vaittinen, S.; Kalimo, H.; Järvinen, M. Muscle injuries: Optimising recovery. Best Pract. Res. Clin. Rheumatol. 2007, 21, 317–331. [Google Scholar] [CrossRef]
- de Souza, J.; Gottfried, C. Muscle injury: Review of experimental models. J. Electromyogr. Kinesiol. 2013, 23, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Bornemann, A.; Schmalbruch, H. Desmin and vimentin in regenerating muscles. Muscle Nerve 1992, 15, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Stilhano, R.S.; Samoto, V.Y.; Silva, L.M.; Pereira, G.J.; Erustes, A.G.; Smaili, S.S.; Han, S.W.; Quintas, L.E.M. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS ONE 2017, 12, e0186719. [Google Scholar] [CrossRef] [PubMed]
- Grogan, B.F.; Hsu, J.R.; Skeletal Trauma Research Consortium. Volumetric muscle loss. J. Am. Acad. Orthop. Surg. 2011, 19 (Suppl. S1), S35–S37. [Google Scholar] [CrossRef]
- Smith, C.; Kruger, M.J.; Smith, R.M.; Myburgh, K.H. The inflammatory response to skeletal muscle injury: Illuminating complexities. Sports Med. 2008, 38, 947–969. [Google Scholar] [CrossRef]
- Shin, E.H.; Caterson, E.J.; Jackson, W.M.; Nesti, L.J. Quality of healing: Defining, quantifying, and enhancing skeletal muscle healing. Wound Repair Regen. 2014, 22 (Suppl. 1), 18–24. [Google Scholar] [CrossRef]
- Brooks, J.H.; Fuller, C.W.; Kemp, S.P.; Reddin, D.B. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am. J. Sports Med. 2006, 34, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Grefte, S.; Kuijpers-Jagtman, A.M.; Torensma, R.; Von den Hoff, J.W. Model for muscle regeneration around fibrotic lesions in recurrent strain injuries. Med. Sci. Sports Exerc. 2010, 42, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Muñoz, P.; Fernández-Martín, A.; Torrella, R.; Serres, X.; De la Varga, M.; Viscor, G.; Järvinen, T.A.H.; Martínez-Ibáñez, V.; Peiró, J.L.; Rodas, G.; et al. A New Surgical Model of Skeletal Muscle Injuries in Rats Reproduces Human Sports Lesions. Int. J. Sports Med. 2016, 37, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Bhutda, S.; Surve, M.V.; Anil, A.; Kamath, K.; Singh, N.; Modi, D.; Banerjee, A. Histochemical Staining of Collagen and Identification of Its Subtypes by Picrosirius Red Dye in Mouse Reproductive Tissues. Bio. Protoc. 2017, 7, e2592. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 2014, 655–658. [Google Scholar] [CrossRef]
- Rocha, L.C.; Jacob, C.d.S.; Barbosa, G.K.; Neto, J.P.; Neto, W.K.; Gama, E.F.; Ciena, A.P. Remodeling of the skeletal muscle and postsynaptic component after short-term joint immobilization and aquatic training. Histochem. Cell Biol. 2020, 154, 621–628. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Tufts, H.L.; Oh, J.; Li, S.; Noronha, A.L.; Adan, M.A. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol. Aging. 2020, 95, 1–8. [Google Scholar] [CrossRef]
- Pimentel Neto, J.; Rocha, L.C.; Dos Santos Jacob, C.; Klein Barbosa, G.; Ciena, A.P. Postsynaptic cleft density changes with combined exercise protocols in an experimental model of muscular hypertrophy. Eur. J. Histochem. 2021, 65 (Suppl. 1), 3274. [Google Scholar] [CrossRef]
- Jones, R.A.; Reich, C.D.; Dissanayake, K.N.; Kristmundsdottir, F.; Findlater, G.S.; Ribchester, R.R.; Simmen, M.W.; Gillingwater, T.H. NMJ-morph reveals principal components of synaptic morphology influencing structure-function relationships at the neuromuscular junction. Open Biol. 2016, 6, 160240, Correction in Open Biol. 2017, 7, 160335. https://doi.org/10.1098/rsob.160335. [Google Scholar] [CrossRef]
- Wacker, M.J.; Godard, M.P. Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J. Biomol. Tech. 2005, 16, 266–271. [Google Scholar]
- Deschenes, M.R.; Mifsud, M.K.; Patek, L.G.; Flannery, R.E. Cellular and Subcellular Characteristics of Neuromuscular Junctions in Muscles with Disparate Duty Cycles and Myofiber Profiles. Cells 2023, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Bloch-Gallego, E. Mechanisms controlling neuromuscular junction stability. Cell Mol Life Sci. 2015, 72, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Kressin, K.A.; Garratt, R.N.; Leathrum, C.M.; Shaffrey, E.C. Effects of exercise training on neuromuscular junction morphology and pre- to post-synaptic coupling in young and aged rats. Neuroscience 2016, 316, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Adan, M.A.; Kapral, M.C.; Kressin, K.A.; Leathrum, C.M.; Seo, A.; Li, S.; Schaffrey, E.C. Neuromuscular adaptability of male and female rats to muscle unloading. J. Neurosci. Res. 2018, 96, 284–296. [Google Scholar] [CrossRef]
- Nishimune, H.; Badawi, Y.; Mori, S.; Shigemoto, K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci. Rep. 2016, 6, 27935. [Google Scholar] [CrossRef]
- Chen, J.; Mizushige, T.; Nishimune, H. Active zone density is conserved during synaptic growth but impaired in aged mice. J. Comp. Neurol. 2012, 520, 434–452. [Google Scholar] [CrossRef]
- Milde, S.; Adalbert, R.; Elaman, M.H.; Coleman, M.P. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol. Aging. 2015, 36, 971–981. [Google Scholar] [CrossRef]
- Day, N.C.; Wood, S.J.; Ince, P.G.; Volsen, S.G.; Smith, W.; Slater, C.R.; Shaw, P.J. Differential localization of voltage-dependent calcium channel alpha1 subunits at the human and rat neuromuscular junction. J. Neurosci. 1997, 17, 6226–6235. [Google Scholar] [CrossRef]
- Nimmrich, V.; Gross, G. P/Q-type calcium channel modulators. Br. J. Pharmacol. 2012, 167, 741–759. [Google Scholar] [CrossRef]
- Nishimune, H.; Numata, T.; Chen, J.; Aoki, Y.; Wang, Y.; Starr, M.P.; Mori, Y.; Stanford, J.A.; Fox, M.A. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise. PLoS ONE 2012, 7, e38029. [Google Scholar] [CrossRef]
- Chen, J.; Billings, S.E.; Nishimune, H. Calcium channels link the muscle-derived synapse organizer laminin β2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J. Neurosci. 2011, 31, 512–525. [Google Scholar] [CrossRef]
- Yin, X.; Yu, T.; Chen, B.; Xu, J.; Chen, W.; Qi, Y.; Zhang, P.; Li, Y.; Kou, Y.; Ma, Y.; et al. Spatial Distribution of Motor Endplates and its Adaptive Change in Skeletal Muscle. Theranostics 2019, 9, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Pratt, S.J.P.; Shah, S.B.; Ward, C.W.; Inacio, M.P.; Stains, J.P.; Lovering, R.M. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J. Physiol. 2013, 591, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Pratt, S.J.P.; Shah, S.B.; Ward, C.W.; Kerr, J.P.; Stains, J.P.; Lovering, R.M. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol. Life Sci. 2015, 72, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.S.; Lightowlers, R.N.; Young, C.; Chrzanowska-Lightowlers, Z.M.; Lomo, T.; Slater, C.R. Sodium channel mRNAs at the neuromuscular junction: Distinct patterns of accumulation and effects of muscle activity. J. Neurosci. 2001, 21, 8456–8463. [Google Scholar] [CrossRef]
- Pasino, E.; Buffelli, M.; Arancio, O.; Busetto, G.; Salviati, A.; Cangiano, A. Effects of long-term conduction block on membrane properties of reinnervated and normally innervated rat skeletal muscle. J. Physiol. 1996, 497 Pt 2, 457–472. [Google Scholar] [CrossRef]
- Moreira-Pais, A.; Ferreira, R.; Oliveira, P.A.; Duarte, J.A. A neuromuscular perspective of sarcopenia pathogenesis: Deciphering the signaling pathways involved. Geroscience 2022, 44, 1199–1213. [Google Scholar] [CrossRef]
- Rocha, L.C.; Gomes, I.; Pimentel Neto, J.; Jacob, D.S.; Tomiate, A.N.; Camargo, P.O.; Da Silva, J.R.R.; Ciena, A.P. The Impact of Vertical Jump Exercise in the Postsynaptic Cleft in Wistar Rats. Muscle Ligaments Tendons 2024, 14, 396–401. [Google Scholar] [CrossRef]
- Jacob, C.D.S.; Barbosa, G.K.; Rodrigues, M.P.; Pimentel Neto, J.; Rocha, L.C.; Ciena, A.P. Stretching prior to resistance training promotes adaptations on the postsynaptic region in different myofiber types. Eur. J. Histochem. 2022, 66, 3356. [Google Scholar] [CrossRef]
- Rocha, L.C.; Barbosa, G.K.; Neto, J.P.; Jacob, C.d.S.; Knudsen, A.B.; Watanabe, I.-S.; Ciena, A.P. Aquatic Training after Joint Immobilization in Rats Promotes Adaptations in Myotendinous Junctions. Int. J. Mol. Sci. 2021, 22, 6983. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimentel Neto, J.; Rocha-Braga, L.C.; Fior, M.B.; Camargo, P.O.; Ciena, A.P. Structural Proteins at Neuromuscular Junction Are Downgraded While NRG1 and Agrin Gene Expression Increases After Muscle Injury. Biomedicines 2025, 13, 2277. https://doi.org/10.3390/biomedicines13092277
Pimentel Neto J, Rocha-Braga LC, Fior MB, Camargo PO, Ciena AP. Structural Proteins at Neuromuscular Junction Are Downgraded While NRG1 and Agrin Gene Expression Increases After Muscle Injury. Biomedicines. 2025; 13(9):2277. https://doi.org/10.3390/biomedicines13092277
Chicago/Turabian StylePimentel Neto, Jurandyr, Lara Caetano Rocha-Braga, Matheus Bertanha Fior, Paula Oliveira Camargo, and Adriano Polican Ciena. 2025. "Structural Proteins at Neuromuscular Junction Are Downgraded While NRG1 and Agrin Gene Expression Increases After Muscle Injury" Biomedicines 13, no. 9: 2277. https://doi.org/10.3390/biomedicines13092277
APA StylePimentel Neto, J., Rocha-Braga, L. C., Fior, M. B., Camargo, P. O., & Ciena, A. P. (2025). Structural Proteins at Neuromuscular Junction Are Downgraded While NRG1 and Agrin Gene Expression Increases After Muscle Injury. Biomedicines, 13(9), 2277. https://doi.org/10.3390/biomedicines13092277