Pharmaco-Epigenetics and Epigenetic Drugs in Type 2 Diabetes: Can Epigenetics Predict Drug Efficiency?
Abstract
1. Introduction
2. Epigenetic Variation in T2DM, Drug Treatment, and Drug Response
2.1. Epigenetic Variation in T2DM
2.1.1. DNA Methylation
2.1.2. Histone Modifications
Type of Modification | Histone Proteins | Amino Acid Residues | Associated Biological Effect | Writers | Erasers | References |
---|---|---|---|---|---|---|
Ac | H2A | K5, k9, k13, k15, k36, k74, k95, k118, k127, k129 | Activation of a gene | p300/KAT3B, Tip60/KAT5, MYST2/KAT7 | HDAC5, SIRTs (SirT1, SirT2, SirT6) | [79,81] |
H2B | K5, k11, k12, k15, k16, k20 | Activation of a gene | CBP/KAT3, Ap300/KAT3B | - | [82,83] | |
H3 | K4, K14, K18, K23, K36 | Activation of a gene | - | - | [79] | |
K9, K27 | Activation of a gene | MOF, p300, PCAF, TIP60 | HDAC | [79] | ||
H4 | K5, K8, K16 | Activation of a gene | p300/KAT3B, Tip60/KAT5, MYST2/KAT7, ELP3 | - | [79] | |
H3 | K4 | Activation of a gene | ASH1L, MLL1-4, SET7/9, SETD2A-B, SMYD | JARID2, KDM1A-B, KDM2B, KDM5A-D, NO66 | [79,84] | |
K9 | Repression of a gene | GLP, G9a, SETDB1-2, SUV39H1-2 | JHDM1D, KDM1A, KDM3A-B, KDM4A-E, KDM7, PHF8 | [79] | ||
Me | K27 | Repression of a gene | EZH 1-2, PRC2 | UTX, UTY, JMJD3, KDM7, PHF8 | [79] | |
K36 | Activation of a gene | ASH1L, NSD1-3, SMYD, SET2 | KDM2A-B, KDM4A-E, NO66 | [85] | ||
K79 | Activation of a gene | DOT1L | PHF8 | [79] | ||
H4 | K2O | Repression of a gene | SET8, SUV4-20H1 | PHF8, PHF2 | [79,84] | |
R3 | Activation of a gene | PRMT1, PRMT3, PRMT5 | JHDM1D/KDM7A, PHF8 | [79] | ||
P | H2A | S1 | Mitosis | MSK1, PKC | - | [79] |
S16 | eGF signaling | rSK2 | - | [86] | ||
T120 | Mitosis, gene activation | BUB1, NHK1, VprBP | - | [86] | ||
H2B | S32 | eGF signaling | rSK2 | - | [86] | |
S14 | Apoptosis | MST1 | - | [79] | ||
S36 | Transcription | AMPK | - | [86] | ||
H3 | S14 | Apoptosis | MST1 | - | [79] | |
S10 | Mitosis, DNA repair | MSK1&2, AuroraA | PP1 | [87] | ||
T6 | Activation | PKCβ | - | [88] | ||
H4 | T11 | Mitosis, DNA repair | DLK/ZIP, PRK1 | - | [88] | |
S1 | Mitosis, gene activation | CKII, ScCK1 | - | [88] | ||
Ub | H2A | K119 | Repression of a gene | BMI/RING1A | - | [89] |
H2B | K120 | Activation of a gene | RNF20-RNF40 | - | [90] | |
H3 | K23 | Maintenance of DNA methylation | UHRF1 | - | [79] | |
Ser | H3 | Q5 | Activation of a gene | TGM2 | - | [79] |
La | H3 | K18 | Activation of a gene | p300 | - | [91] |
H4 | K12 | Activation of a gene | p300 | - | [91] | |
Cr | H3 | K9 | DNA repair | p300, GCN5, MOF | HDAC1 | [79] |
K18 | Activation of a gene | p300, GCN5, MOF | - | [79] | ||
K27 | Gene activation | GCN5 | - | [79] |
2.2. Non-Epigenetic Drug Responsiveness Is Affected by Epigenetic Variation
2.3. Key Epigenetic Biomarkers Predict Diagnosis and Prognosis
2.4. Epigenetic Strategies for Diabetes
3. Combining Existing Pharmaco-Epigenetic Data to Explore Pharmaco-Epigenetic Correlations
Drug Name/Type | Conditions | Status | NCT Number | Phase | References |
---|---|---|---|---|---|
STAC Resveratrol | T2DM | Completed | NCT01354977 | Phase 2 | [24] |
T2DM | Completed | NCT02549924 | Phase 2 | [24] | |
Gestational Diabetes | Recruiting | NCT01997762 | Phase 4 | [161] | |
T2DM | Completed | NCT01677611 | Phase 1 | [161] | |
T2DM | Active, | NCT03762096 | Phase 2 | [162] | |
T2DM | Recruiting | NCT01302639 | N/A | [161] | |
Obesity, insulin sensitivity, T2DM | Completed | NCT01412645 | N/A | [135] | |
HATi Curcumin | T2DM; Dyslipidemias; | Recruiting | NCT05753436 | Phase 2 | [162] |
Hypertension | |||||
T1DM | Completed | NCT01646047 | N/A | [163] | |
Pre-diabetes; T2DM | Unknown | NCT01052025 | Phase 4 | [162] | |
T2D, obesity | Unknown | NCT03542240 | N/A | [24] | |
HDACi | |||||
ValproicAcid | Diabetes | Completed | NCT00287352 | Phase 1 | [134] |
ValproicAcid | Obesity | Unknown | NCT00298857 | Phase 4 | [24] |
Sodium phenylbutyrate | Obese with insulin resistance | Completed | NCT00771901 | N/A | [161] |
DNMTi | T2DM | Completed | NCT00000620 | Phase 3 | [134] |
Hydralazine | T2DM Hypertension | Recruiting | NCT02046395 | Phase 4 | [161] |
4. Combining Existing Pharmaco-Epigenetic Data to Explore the DNA Methylation Profile of CYP Genes
5. Challenges in Pharmaco-Epigenetics
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive Oxygen Species |
DM | Diabetes Mellitus |
FDA | Food and Drug Administration |
T2DM | Type 2 Diabetes Mellitus |
T1DM | Type 1 Diabetes Mellitus |
HMTs | Histone Methyltransferases |
HDMs | Histone Demethylases |
TET | Ten-Eleven Translocation |
SAM | S-Adenosyl-L-methionine |
5meC | 5-Methylcytosine |
5hmC | 5-Hydroxymethylcytosine |
5fC | 5-Formylcytosine |
5caC | 5-Carboxylcytosine |
DNMT | DNA Methyltransferase |
Ac | Acetylation |
Me | Methylation |
P | Phosphorylation |
NAFLD | Non-Alcoholic Fatty Liver Disease |
Ub | Ubiquitination |
Ser | Serotonylation |
Cr | Crotonylation |
IR | Insulin Resistance |
HFD | High-Fat Diet |
VPA | Valproic Acid |
STAC | Sirtuin-Activating Compounds |
References
- Jiang, H.; Xia, C.; Lin, J.; Garalleh, H.A.; Alalawi, A.; Pugazhendhi, A. Carbon Nanomaterials: A Growing Tool for the Diagnosis and Treatment of Diabetes Mellitus. Environ. Res. 2023, 221, 115250. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Sifunda, S.; Mbewu, A.D.; Mabaso, M.; Manyaapelo, T.; Sewpaul, R.; Morgan, J.W.; Harriman, N.W.; Williams, D.R.; Reddy, S.P. Prevalence and Psychosocial Correlates of Diabetes Mellitus in South Africa: Results from the South African National Health and Nutrition Examination Survey (SANHANES-1). Int. J. Environ. Res. Public Health 2023, 20, 5798. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Gopalan, H.; Jayawardena, R.; Hills, A.P.; Soares, M.; Reza-Albarrán, A.A.; Ramaiya, K.L. Diabetes in Developing Countries. J. Diabetes 2019, 11, 522–539. [Google Scholar] [CrossRef]
- Tan, S.Y.; Mei Wong, J.L.; Sim, Y.J.; Wong, S.S.; Mohamed Elhassan, S.A.; Tan, S.H.; Ling Lim, G.P.; Rong Tay, N.W.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 Diabetes Mellitus: A Review on Current Treatment Approach and Gene Therapy as Potential Intervention. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 364–372. [Google Scholar] [CrossRef]
- Gharravi, A.M.; Jafar, A.; Ebrahimi, M.; Mahmodi, A.; Pourhashemi, E.; Haseli, N.; Talaie, N.; Hajiasgarli, P. Current Status of Stem Cell Therapy, Scaffolds for the Treatment of Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 1133–1139. [Google Scholar] [CrossRef]
- Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology 2021, 2, 36–50. [Google Scholar] [CrossRef]
- Edwards, C.M.; Cusi, K. Prediabetes: A worldwide epidemic. Endocrinol. Metab. Clin. 2016, 45, 751–764. [Google Scholar] [CrossRef]
- Seiglie, J.A.; Marcus, M.E.; Ebert, C.; Prodromidis, N.; Geldsetzer, P.; Theilmann, M.; Agoudavi, K.; Andall-Brereton, G.; Aryal, K.K.; Bicaba, B.W.; et al. Diabetes Prevalence and Its Relationship with Education, Wealth, and BMI in 29 Low- and Middle-Income Countries. Diabetes Care 2020, 43, 767–775. [Google Scholar] [CrossRef]
- Sosibo, A.M.; Mzimela, N.C.; Ngubane, P.S.; Khathi, A. Prevalence and Correlates of Pre-Diabetes in Adults of Mixed Ethnicities in the South African Population: A Systematic Review and Meta-Analysis Protocol. BMJ Open 2021, 11, e048266. [Google Scholar] [CrossRef] [PubMed]
- Muzy, J.; Campos, M.R.; Emmerick, I.; da Silva, R.S.; Schramm, J.M.d.A. Prevalência de Diabetes Mellitus E Suas Complicações E Caracterização Das Lacunas Na Atenção à Saúde a Partir Da Triangulação de Pesquisas. Cad. Saúde Pública 2021, 37, e00076120. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Gastaldelli, A.; Yki-Järvinen, H.; Scherer, P.E. Why Does Obesity Cause Diabetes? Cell Metab. 2022, 34, 11–20. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yin, R.X. Recent Progress in Epigenetics of Obesity. Diabetol. Metab. Syndr. 2022, 14, 171. [Google Scholar] [CrossRef]
- Ibrahim, H.I.M. Epigenetic Regulation of Obesity-Associated Type 2 Diabetes. Medicina 2022, 58, 1366. [Google Scholar] [CrossRef]
- Desiderio, A.; Spinelli, R.; Ciccarelli, M.; Nigro, C.; Miele, C.; Beguinot, F.; Raciti, G.A. Epigenetics: Spotlight on Type 2 Diabetes and Obesity. J. Endocrinol. Investig. 2016, 39, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Wahl, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.-C.; Ried, J.S.; Zhang, W.; Yang, Y.; et al. Epigenome-Wide Association Study of Body Mass Index, and the Adverse Outcomes of Adiposity. Nature 2017, 541, 81–86. [Google Scholar] [CrossRef]
- Benton, M.C.; Johnstone, A.; Eccles, D.; Harmon, B.; Hayes, M.T.; Lea, R.A.; Griffiths, L.; Hoffman, E.P.; Stubbs, R.S.; Macartney-Coxson, D. An Analysis of DNA Methylation in Human Adipose Tissue Reveals Differential Modification of Obesity Genes before and after Gastric Bypass and Weight Loss. Genome Biol. 2015, 16, 8. [Google Scholar] [CrossRef]
- Katrinli, S.; Maihofer, A.X.; Wani, A.H.; Pfeiffer, J.R.; Ketema, E.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Kessler, R.C.; et al. Epigenome-Wide Meta-Analysis of PTSD Symptom Severity in Three Military Cohorts Implicates DNA Methylation Changes in Genes Involved in Immune System and Oxidative Stress. Mol. Psychiatry 2022, 27, 1720–1728. [Google Scholar] [CrossRef]
- Bryant, K. Targeting Epigenetic Enzymes for Drug Discovery and Development. Genet. Eng. Biotechnol. News 2019, 39, 50–52. [Google Scholar] [CrossRef]
- Feehley, T.; O’Donnell, C.W.; Mendlein, J.; Karande, M.; McCauley, T. Drugging the Epigenome in the Age of Precision Medicine. Clin. Epigenetics 2023, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, Y.; Li, S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int. J. Nanomed. 2024, 19, 10623–10637. [Google Scholar] [CrossRef]
- Einav Nili, G.Y.; Saito, Y.; Egger, G.; Jones, P.A. Cancer Epigenetics: Modifications, Screening, and Therapy. Annu. Rev. Med. 2008, 59, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Farsetti, A.; Illi, B.; Gaetano, C. How Epigenetics Impacts on Human Diseases. Eur. J. Intern. Med. 2023, 114, 15–22. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, Z.J.; Li, C.C.; Lin, X.; Shan, S.K.; Guo, B.; Zheng, M.H.; Li, F.; Yuan, L.Q.; Li, Z. Epigenetic Regulation in Metabolic Diseases: Mechanisms and Advances in Clinical Study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Lee, Y.-T.; Zhou, Y.; Huang, Y. Targeting Epigenetic Regulatory Machinery to Overcome Cancer Therapy Resistance. Semin. Cancer Biol. 2021, 83, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Bacos, K.; Rönn, T. Epigenetics of Type 2 Diabetes Mellitus and Weight Change—A Tool for Precision Medicine? Nat. Rev. Endocrinol. 2022, 18, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Donkin, I.; Barrès, R. Sperm Epigenetics and Influence of Environmental Factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bredy, T.W.; Sun, Y.E.; Kobor, M.S. How the Epigenome Contributes to the Development of Psychiatric Disorders. Dev. Psychobiol. 2010, 52, 331–342. [Google Scholar] [CrossRef]
- Li, Y. Modern Epigenetics Methods in Biological Research. Methods 2020, 187, 104–113. [Google Scholar] [CrossRef]
- Moosavi, A.; Motevalizadeh Ardekani, A. Role of Epigenetics in Biology and Human Diseases. Iran. Biomed. J. 2016, 20, 246–258. [Google Scholar] [CrossRef]
- Dendup, T.; Feng, X.; Clingan, S.; Astell-Burt, T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 78. [Google Scholar] [CrossRef]
- Martínez, J.A.; Milagro, F.I.; Claycombe, K.J.; Schalinske, K.L. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes. Adv. Nutr. 2014, 5, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Rohde, K.; Keller, M.; la Cour Poulsen, L.; Blüher, M.; Kovacs, P.; Böttcher, Y. Genetics and Epigenetics in Obesity. Metabolism 2019, 92, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Rönn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Rajagopal, P.; Devarajan, N.; Veeraraghavan, V.P.; Palanisamy, C.P.; Cui, B.; Patil, S.; Jayaraman, S. A Comprehensive Review on High -Fat Diet-Induced Diabetes Mellitus: An Epigenetic View. J. Nutr. Biochem. 2022, 107, 109037. [Google Scholar] [CrossRef]
- Li, Y. Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Front. Genet. 2018, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kutateladze, T.G. Diet and the Epigenome. Nat. Commun. 2018, 9, 3375. [Google Scholar] [CrossRef]
- Parrillo, L.; Costa, V.; Raciti, G.A.; Longo, M.; Spinelli, R.; Esposito, R.; Nigro, C.; Vastolo, V.; Desiderio, A.; Zatterale, F.; et al. Hoxa5 Undergoes Dynamic DNA Methylation and Transcriptional Repression in the Adipose Tissue of Mice Exposed to High-Fat Diet. Int. J. Obes. 2016, 40, 929–937. [Google Scholar] [CrossRef]
- Lamka, G.F.; Harder, A.M.; Sundaram, M.; Schwartz, T.S.; Christie, M.R.; DeWoody, J.A.; Willoughby, J.R. Epigenetics in Ecology, Evolution, and Conservation. Front. Ecol. Evol. 2022, 10, 871791. [Google Scholar] [CrossRef]
- Diels, S.; Vanden Berghe, W.; Van Hul, W. Insights into the Multifactorial Causation of Obesity by Integrated Genetic and Epigenetic Analysis. Obes. Rev. 2020, 21, e13019. [Google Scholar] [CrossRef]
- Nilsson, E.; Matte, A.; Perfilyev, A.; de Mello, V.D.; Käkelä, P.; Pihlajamäki, J.; Ling, C. Epigenetic Alterations in Human Liver from Subjects with Type 2 Diabetes in Parallel with Reduced Folate Levels. J. Clin. Endocrinol. Metab. 2015, 100, E1491–E1501. [Google Scholar] [CrossRef]
- Basu, T.; Sehar, U.; Selman, A.; Reddy, A.P.; Reddy, P.H. Support provided by caregivers for community-dwelling obesity individuals: Focus on elderly and Hispanics. Healthcare 2023, 11, 1442. [Google Scholar] [CrossRef]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M.; Donkin, I.; Sjögren, R.; Mudry, J.M.; Vetterli, L.; et al. High-Fat Diet Reprograms the Epigenome of Rat Spermatozoa and Transgenerationally Affects Metabolism of the Offspring. Mol. Metab. 2016, 5, 184–197. [Google Scholar] [CrossRef]
- van Dijk, S.J.; Tellam, R.L.; Morrison, J.L.; Muhlhausler, B.S.; Molloy, P.L. Recent Developments on the Role of Epigenetics in Obesity and Metabolic Disease. Clin. Epigenetics 2015, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Parrillo, L.; Spinelli, R.; Nicolò, A.; Longo, M.; Mirra, P.; Raciti, G.A.; Miele, C.; Beguinot, F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int. J. Mol. Sci. 2019, 20, 2983. [Google Scholar] [CrossRef]
- Mattei, A.L.; Bailly, N.; Meissner, A. DNA Methylation: A Historical Perspective. Trends Genet. 2022, 38, 676–707. [Google Scholar] [CrossRef]
- Bansal, A.; Pinney, S.E. DNA Methylation and Its Role in the Pathogenesis of Diabetes. Pediatr. Diabetes 2017, 18, 167–177. [Google Scholar] [CrossRef]
- Sadakierska-Chudy, A.; Kostrzewa, R.M.; Filip, M. A Comprehensive View of the Epigenetic Landscape Part I: DNA Methylation, Passive and Active DNA Demethylation Pathways and Histone Variants. Neurotox. Res. 2014, 27, 84–97. [Google Scholar] [CrossRef]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for de Novo Methylation and Mammalian Development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Unoki, M. Recent Insights into the Mechanisms of de Novo and Maintenance of DNA Methylation in Mammals. In DNA Methylation Mechanism; Intechopen: London, UK, 2020. [Google Scholar]
- Sharif, J.; Muto, M.; Takebayashi, S.; Suetake, I.; Iwamatsu, A.; Endo, T.A.; Shinga, J.; Mizutani-Koseki, Y.; Toyoda, T.; Okamura, K.; et al. The SRA Protein Np95 Mediates Epigenetic Inheritance by Recruiting Dnmt1 to Methylated DNA. Nature 2007, 450, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Bostick, M.; Kim, J.K.; Esteve, P.O.; Clark, A.; Pradhan, S.; Jacobsen, S.E. UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. Science 2007, 317, 1760–1764. [Google Scholar] [CrossRef]
- Heikkinen, A.; Bollepalli, S.; Ollikainen, M. The Potential of DNA Methylation as a Biomarker for Obesity and Smoking. J. Intern. Med. 2022, 292, 390–408. [Google Scholar] [CrossRef]
- Ferreira, H.J.; Esteller, M. CpG Islands in Cancer: Heads, Tails, and Sides. In CpG Islands: Methods and Protocols; Springer: New York, NY, USA, 2018; Volume 1766, pp. 49–80. [Google Scholar] [CrossRef]
- Chen, Z.; Riggs, A.D. DNA Methylation and Demethylation in Mammals. J. Biol. Chem. 2011, 286, 18347–18353. [Google Scholar] [CrossRef]
- Sun, S.; Zane, A.; Fulton, C.; Philipoom, J. Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer. BMC Cancer 2021, 21, 268. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [PubMed]
- Pastor, W.A.; Aravind, L.; Rao, A. TETonic Shift: Biological Roles of TET Proteins in DNA Demethylation and Transcription. Nat. Rev. Mol. Cell Biol. 2013, 14, 341–356. [Google Scholar] [CrossRef]
- De Riso, G.; Fiorillo, D.F.G.; Fierro, A.; Cuomo, M.; Chiariotti, L.; Miele, G.; Cocozza, S. Modeling DNA Methylation Profiles through a Dynamic Equilibrium between Methylation and Demethylation. Biomolecules 2020, 10, 1271. [Google Scholar] [CrossRef]
- Deng, J.Y.; Wu, X.Q.; He, W.J.; Liao, X.; Tang, M.; Nie, X.Q. Targeting DNA Methylation and Demethylation in Diabetic Foot Ulcers. J. Adv. Res. 2023, 54, 119–131. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The Diverse Roles of DNA Methylation in Mammalian Development and Disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Dayeh, T.A.; Olsson, A.H.; Volkov, P.; Almgren, P.; Rönn, T.; Ling, C. Identification of CpG-SNPs Associated with Type 2 Diabetes and Differential DNA Methylation in Human Pancreatic Islets. Diabetologia 2013, 56, 1036–1046. [Google Scholar] [CrossRef]
- Taneera, J.; Lang, S.; Sharma, A.; Fadista, J.; Zhou, Y.; Ahlqvist, E.; Jonsson, A.; Lyssenko, V.; Vikman, P.; Hansson, O.; et al. A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metab. 2012, 16, 122–134. [Google Scholar] [CrossRef]
- Hall, E.; Dayeh, T.; Kirkpatrick, C.L.; Wollheim, C.B.; Dekker Nitert, M.; Ling, C. DNA Methylation of the Glucagon-like Peptide 1 Receptor (GLP1R) in Human Pancreatic Islets. BMC Med. Genet. 2013, 14, 76. [Google Scholar] [CrossRef]
- Bhasin, M.; Reinherz, E.L.; Reche, P.A. Recognition and Classification of Histones Using Support Vector Machine. J. Comput. Biol. 2006, 13, 102–112. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, G. Diversification of the Histone Fold Motif in Plants: Evolution of New Functional Roles. Def. Life Sci. J. 2016, 1, 63. [Google Scholar] [CrossRef][Green Version]
- Höllmüller, E.; Geigges, S.; Niedermeier, M.L.; Kammer, K.-M.; Kienle, S.M.; Rösner, D.; Scheffner, M.; Marx, A.; Stengel, F. Site-Specific Ubiquitylation Acts as a Regulator of Linker Histone H1. Nat. Commun. 2021, 12, 3497. [Google Scholar] [CrossRef]
- Mir, A.R.; Habib, S.; Uddin, M. Recent Advances in Histone Glycation: Emerging Role in Diabetes and Cancer. Glycobiology 2021, 31, 1072–1079. [Google Scholar] [CrossRef]
- Wang, L.; Bai, Y.; Cao, Z.; Guo, Z.; Lian, Y.; Liu, P.; Zeng, Y.; Lyu, W.; Chen, Q. Histone Deacetylases and Inhibitors in Diabetes Mellitus and Its Complications. Biomed. Pharmacother. 2024, 177, 117010. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Strahl, B.D.; Allis, C.D. The Language of Covalent Histone Modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Chen, R. Pathological Implication of Protein Post-Translational Modifications in Cancer. Mol. Asp. Med. 2022, 86, 101097. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, L.; He, Y.; Zhou, T.; Cheng, X.; Huang, W.; Xu, Y. Novel Histone Post-Translational Modifications in Diabetes and Complications of Diabetes: The Underlying Mechanisms and Implications. Biomed. Pharmacother. 2022, 156, 113984. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Chandel, S.; Dey, D.; Ghosh, A.; Roy, S.; Ravichandiran, V.; Ghosh, D. Epigenetic Modification and Therapeutic Targets of Diabetes Mellitus. Biosci. Rep. 2020, 40, BSR20202160. [Google Scholar] [CrossRef]
- Deussing, J.M.; Jakovcevski, M. Histone Modifications in Major Depressive Disorder and Related Rodent Models. Adv. Exp. Med. Biol. 2017, 978, 169–183. [Google Scholar] [CrossRef]
- Čugalj Kern, B.; Trebušak Podkrajšek, K.; Kovač, J.; Šket, R.; Jenko Bizjan, B.; Tesovnik, T.; Debeljak, M.; Battelino, T.; Bratina, N. The Role of Epigenetic Modifications in Late Complications in Type 1 Diabetes. Genes 2022, 13, 705. [Google Scholar] [CrossRef]
- Lee, H.T.; Oh, S.; Ro, D.H.; Yoo, H.; Kwon, Y.W. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis. J. Lipid Atheroscler. 2020, 9, 419–434. [Google Scholar] [CrossRef]
- Annunziato, A. DNA packaging: Nucleosomes and chromatin. Nat. Educ. 2008, 1, 26. [Google Scholar]
- Park, J.; Lee, K.; Kim, K.; Yi, S.J. The Role of Histone Modifications: From Neurodevelopment to Neurodiseases. Signal Transduct. Target. Ther. 2022, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Elmallah, M.I.Y.; Micheau, O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers 2019, 11, 850. [Google Scholar] [CrossRef]
- Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem. Rev. 2018, 118, 1216–1252. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M.; Ma, X.; Huang, W.; Xu, Y. Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. Biomed. Res. Int. 2021, 2021, 6635225. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, X.; Li, H. Beyond Histone Acetylation—Writing and Erasing Histone Acylations. Curr. Opin. Struct. Biol. 2018, 53, 169–177. [Google Scholar] [CrossRef]
- Hyun, K.; Jeon, J.; Park, K.; Kim, J. Writing, Erasing and Reading Histone Lysine Methylations. Exp. Mol. Med. 2017, 49, e324. [Google Scholar] [CrossRef]
- Mattiroli, F.; Penengo, L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet. 2021, 37, 566–581. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, D.; Avvakumov, N.; Côté, J. Histone Phosphorylation. Epigenetics 2012, 7, 1098–1108. [Google Scholar] [CrossRef]
- Prigent, C. Phosphorylation of Serine 10 in Histone H3, What For? J. Cell Sci. 2003, 116, 3677–3685. [Google Scholar] [CrossRef] [PubMed]
- Kawaf, R.R.; Ramadan, W.S.; El-Awady, R. Deciphering the Interplay of Histone Post-Translational Modifications in Cancer: Co-Targeting Histone Modulators for Precision Therapy. Life Sci. 2024, 346, 122639. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, C.; Pei, Y.; Wang, Y.-Z.; Kong, J.; Lu, K.; Ma, L.; Dou, S.-X.; Wang, P.-Y.; Li, G.; et al. Histone H2A Ubiquitination Reinforces Mechanical Stability and Asymmetry at the Single-Nucleosome Level. J. Am. Chem. Soc. 2020, 142, 3340–3345. [Google Scholar] [CrossRef]
- Moyal, L.; Lerenthal, Y.; Gana-Weisz, M.; Mass, G.; So, S.; Wang, S.-Y.; Eppink, B.; Chung, Y.; Shalev, G.; Shema, E.; et al. Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Mol. Cell. 2011, 41, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; et al. Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification. Cell 2011, 146, 1016–1028. [Google Scholar] [CrossRef]
- Barnes, C.E.; English, D.M.; Cowley, S.M.; Gilbert, N.; Allan, J. Acetylation & Co: An Expanding Repertoire of Histone Acylations Regulates Chromatin and Transcription. Essays Biochem. 2019, 63, 97–107. [Google Scholar] [CrossRef]
- Cavalieri, V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes 2021, 12, 1596. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, S. The Influence of Epigenetics and Inflammation on Cardiometabolic Risks. Semin. Cell Dev. Biol. 2023, 154, 175–184. [Google Scholar] [CrossRef]
- Ellenbroek, B.; Youn, J. Chapter 5. Environment Challenges and the Brain. In Gene Environ. Interact. Psychiatry; Farra, N., Padilla, K., Eds.; Academic Press: London, UK, 2016; pp. 107–139. [Google Scholar]
- Albini, S.; Zakharova, V.; Ait-Si-Ali, S. Chapter 3—Histone Modifications. In Epigenetics and Regeneration; Palacios, D., Ed.; Academic Press: London, UK, 2019; pp. 47–72. [Google Scholar]
- Huang, D.; Camacho, C.V.; Setlem, R.; Ryu, K.W.; Parameswaran, B.; Gupta, R.K.; Kraus, W.L. Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis. Mol. Cell 2020, 79, 934–949.e14. [Google Scholar] [CrossRef]
- Alghamdi, T.A.; Batchu, S.N.; Hadden, M.J.; Yerra, V.G.; Liu, Y.; Bowskill, B.B.; Advani, S.L.; Geldenhuys, L.; Siddiqi, F.S.; Majumder, S.; et al. Histone H3 Serine 10 Phosphorylation Facilitates Endothelial Activation in Diabetic Kidney Disease. Diabetes 2018, 67, 2668–2681. [Google Scholar] [CrossRef]
- Greer, E.L.; Shi, Y. Histone Methylation: A Dynamic Mark in Health, Disease and Inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef]
- Klose, R.J.; Zhang, Y. Regulation of Histone Methylation by Demethylimination and Demethylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.S.; Kim, H.; Kim, K.I.; Baek, S.H. Epigenetic Regulation of Autophagy by Histone-Modifying Enzymes under Nutrient Stress. Cell Death Differ. 2023, 30, 1430–1436. [Google Scholar] [CrossRef]
- Yang, Y.; Luan, Y.; Feng, Q.; Chen, X.; Qin, B.; Ren, K.-D.; Luan, Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front. Pharmacol. 2022, 12, 807413. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Lee, S.Y.; Miller, K.M. Preserving Genome Integrity and Function: The DNA Damage Response and Histone Modifications. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 208–241. [Google Scholar] [CrossRef]
- Davis, C.A.; Hitz, B.C.; Sloan, C.A.; Chan, E.T.; Davidson, J.M.; Gabdank, I.; Hilton, J.A.; Jain, K.; Baymuradov, U.K.; Narayanan, A.K.; et al. The Encyclopedia of DNA Elements (ENCODE): Data Portal Update. Nucleic Acids Res. 2017, 46, D794–D801. [Google Scholar] [CrossRef]
- Coco, C.; Sgarra, L.; Potenza, M.A.; Nacci, C.; Pasculli, B.; Barbano, R.; Parrella, P.; Montagnani, M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int. J. Mol. Sci. 2019, 20, 2949. [Google Scholar] [CrossRef]
- Tu, P.; Li, X.; Ma, B.; Duan, H.; Zhang, Y.; Wu, R.; Ni, Z.; Jiang, P.; Wang, H.; Li, M.; et al. Liver Histone H3 Methylation and Acetylation May Associate with Type 2 Diabetes Development. J. Physiol. Biochem. 2015, 71, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, M.; Song, C.; Xu, Q.; Huo, R.; Shen, L.; Xing, Q.; Cui, D.; Li, W.; Zhao, J.; et al. Combined Study of Genetic and Epigenetic Biomarker Risperidone Treatment Efficacy in Chinese Han Schizophrenia Patients. Transl. Psychiatry 2017, 7, e1170. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Sadler, M.C.; Altman, R.B. Promises and Challenges in Pharmacoepigenetics. Camb. Prism. Precis. Med. 2023, 1, e18. [Google Scholar] [CrossRef] [PubMed]
- Teodoridis, J.; Strathdee, G.; Brown, R. Epigenetic Silencing Mediated by CpG Island Methylation: Potential as a Therapeutic Target and as a Biomarker. Drug Resist. Updat. 2004, 7, 267–278. [Google Scholar] [CrossRef]
- Jacquemont, S.; Curie, A.; des Portes, V.; Torrioli, M.G.; Berry-Kravis, E.; Hagerman, R.J.; Ramos, F.J.; Cornish, K.; He, Y.; Paulding, C.; et al. Epigenetic Modification of the FMR1 Gene in Fragile X Syndrome Is Associated with Differential Response to the MGluR5 Antagonist AFQ056. Sci. Transl. Med. 2011, 3, 64ra1. [Google Scholar] [CrossRef]
- Cascorbi, I.; Schwab, M. Epigenetics in Drug Response. Clin. Pharmacol. Ther. 2016, 99, 468–470. [Google Scholar] [CrossRef]
- Nakajima, M. Effects of Histone Deacetylation and DNA Methylation on the Constitutive and TCDD-Inducible Expressions of the Human CYP1 Family in MCF-7 and HeLa Cells. Toxicol. Lett. 2003, 144, 247–256. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Hart, S.N.; Klaassen, C.D.; Zhong, X.-B. Dynamic Patterns of Histone Methylation Are Associated with Ontogenic Expression of the Cyp3a Genes during Mouse Liver Maturation. Mol. Pharmacol. 2009, 75, 1171–1179. [Google Scholar] [CrossRef]
- Duarte, J.D. Epigenetics Primer: Why the Clinician Should Care about Epigenetics. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 1362–1368. [Google Scholar] [CrossRef]
- Singal, R.; Wang, S.Z.; Sargent, T.; Zhu, S.Z.; Ginder, G.D. Methylation of Promoter Proximal-Transcribed Sequences of an Embryonic Globin Gene Inhibits Transcription in Primary Erythroid Cells and Promotes Formation of a Cell Type-Specific Methyl Cytosine Binding Complex. J. Biol. Chem. 2002, 277, 1897–1905. [Google Scholar] [CrossRef]
- Zhang, W.; Dolan, M.E.; Huang, R.S. Integrating Epigenomics into Pharmacogenomic Studies. Pharmacogenom. Pers. Med. 2008, 1, 7–14. [Google Scholar] [CrossRef]
- García-Calzón, S.; Perfilyev, A.; Martinell, M.; Ustinova, M.; Kalamajski, S.; Franks, P.W.; Bacos, K.; Elbere, I.; Pihlajamäki, J.; Volkov, P.; et al. Epigenetic Markers Associated with Metformin Response and Intolerance in Drug-Naïve Patients with Type 2 Diabetes. Sci. Transl. Med. 2020, 12, eaaz1803. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.C.; Chang, H.Y.; Church, G.; Dombkowski, A.; Ecker, J.R.; Gil, E.; Giresi, P.G.; Greely, H.; Greenleaf, W.J.; Hacohen, N.; et al. Challenges and Recommendations for Epigenomics in Precision Health. Nat. Biotechnol. 2017, 35, 1128–1132. [Google Scholar] [CrossRef]
- Raciti, G.A.; Nigro, C.; Longo, M.; Parrillo, L.; Miele, C.; Formisano, P.; Béguinot, F. Personalized Medicine and Type 2 Diabetes: Lesson from Epigenetics. Epigenomics 2014, 6, 229–238. [Google Scholar] [CrossRef]
- Elliott, H.R.; Sharp, G.C.; Relton, C.L.; Lawlor, D.A. Epigenetics and Gestational Diabetes: A Review of Epigenetic Epidemiology Studies and Their Use to Explore Epigenetic Mediation and Improve Prediction. Diabetologia 2019, 62, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Raciti, G.A.; Desiderio, A.; Longo, M.; Leone, A.; Zatterale, F.; Prevenzano, I.; Miele, C.; Napoli, R.; Beguinot, F. DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? Int. J. Mol. Sci. 2021, 22, 11652. [Google Scholar] [CrossRef]
- Gillberg, L.; Ling, C. The Potential Use of DNA Methylation Biomarkers to Identify Risk and Progression of Type 2 Diabetes. Front. Endocrinol. 2015, 6, 43. [Google Scholar] [CrossRef]
- Dayeh, T.; Volkov, P.; Salö, S.; Hall, E.; Nilsson, E.; Olsson, A.H.; Kirkpatrick, C.L.; Wollheim, C.B.; Eliasson, L.; Rönn, T.; et al. Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion. PLoS Genet. 2014, 10, e1004160. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.T.; Dayeh, T.A.; Volkov, P.A.; Kirkpatrick, C.L.; Malmgren, S.; Jing, X.; Renström, E.; Wollheim, C.B.; Nitert, M.D.; Ling, C. Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic Islets from Patients with Type 2 Diabetes. Mol. Endocrinol. 2012, 26, 1203–1212. [Google Scholar] [CrossRef]
- Shanthikumar, S.; Neeland, M.R.; Maksimovic, J.; Ranganathan, S.C.; Saffery, R. DNA Methylation Biomarkers of Future Health Outcomes in Children. Mol. Cell. Pediatr. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- María Martín-Núñez, G.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 Diabetes Mellitus in Relation to Global LINE-1 DNA Methylation in Peripheral Blood: A Cohort Study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef]
- Padilla-Martinez, F.; Wojciechowska, G.; Szczerbinski, L.; Kretowski, A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int. J. Mol. Sci. 2021, 23, 295. [Google Scholar] [CrossRef] [PubMed]
- Toperoff, G.; Aran, D.; Kark, J.D.; Rosenberg, M.; Dubnikov, T.; Nissan, B.; Wainstein, J.; Friedlander, Y.; Levy-Lahad, E.; Glaser, B.; et al. Genome-Wide Survey Reveals Predisposing Diabetes Type 2-Related DNA Methylation Variations in Human Peripheral Blood. Hum. Mol. Genet. 2011, 21, 371–383. [Google Scholar] [CrossRef]
- Nilsson, E.; Jansson, P.A.; Perfilyev, A.; Volkov, P.; Pedersen, M.; Svensson, M.K.; Poulsen, P.; Ribel-Madsen, R.; Pedersen, N.L.; Almgren, P.; et al. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue from Subjects with Type 2 Diabetes. Diabetes 2014, 63, 2962–2976. [Google Scholar] [CrossRef]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Peiró-Chova, L.; Peña-Chilet, M.; López-Guerrero, J.A.; García-Giménez, J.L.; Alonso-Yuste, E.; Burgues, O.; Lluch, A.; Ferrer-Lozano, J.; Ribas, G. High Stability of MicroRNAs in Tissue Samples of Compromised Quality. Virchows Arch. 2013, 463, 765–774. [Google Scholar] [CrossRef]
- Foroutan, B. Personalized Medicine: A Review with Regard to Biomarkers. J. Bioequiv. Availab. 2015, 7, 244–256. [Google Scholar] [CrossRef]
- García-Giménez, J.L.; Seco-Cervera, M.; Tollefsbol, T.O.; Romá-Mateo, C.; Peiró-Chova, L.; Lapunzina, P.; Pallardó, F.V. Epigenetic Biomarkers: Current Strategies and Future Challenges for Their Use in the Clinical Laboratory. Crit. Rev. Clin. Lab. Sci. 2017, 54, 529–550. [Google Scholar] [CrossRef]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2023, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, A.O.; Meruvu, S.; Bowman, J.D.; Choudhury, M. Are Epigenetic Drugs for Diabetes and Obesity at Our Door Step? Drug Discov. Today 2016, 21, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Altucci, L.; Rots, M.G. Epigenetic Drugs: From Chemistry via Biology to Medicine and Back. Clin. Epigenetics 2016, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Giacca, A.; Lewis, G.F. Sodium Phenylbutyrate, a Drug with Known Capacity to Reduce Endoplasmic Reticulum Stress, Partially Alleviates Lipid-Induced Insulin Resistance and β-Cell Dysfunction in Humans. Diabetes 2011, 60, 918–924. [Google Scholar] [CrossRef]
- Lewis, E.C.; Blaabjerg, L.; Størling, J.; Ronn, S.G.; Mascagni, P.; Dinarello, C.A.; Mandrup-Poulsen, T. The Oral Histone Deacetylase Inhibitor ITF2357 Reduces Cytokines and Protects Islet β Cells in Vivo and in Vitro. Mol. Med. 2011, 17, 369–377. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Feng, Q.; Nie, C.; Li, T. Clinical Perspectives and Concerns of Metformin as an Anti-Aging Drug. Aging Med. 2020, 3, 266–275. [Google Scholar] [CrossRef]
- Prandi, F.R.; Lecis, D.; Illuminato, F.; Milite, M.; Celotto, R.; Lerakis, S.; Romeo, F.; Barillà, F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int. J. Mol. Sci. 2022, 23, 4589. [Google Scholar] [CrossRef]
- Scisciola, L.; Rizzo, M.R.; Cataldo, V.; Fontanella, R.A.; Balestrieri, M.L.; D’Onofrio, N.; Marfella, R.; Paolisso, G.; Barbieri, M. Incretin Drugs Effect on Epigenetic Machinery: New Potential Therapeutic Implications in Preventing Vascular Diabetic Complications. FASEB J. 2020, 34, 16489–16503. [Google Scholar] [CrossRef]
- Drucker, D.J.; Habener, J.F.; Holst, J.J. Discovery, Characterization, and Clinical Development of the Glucagon-like Peptides. J. Clin. Investig. 2017, 127, 4217–4227. [Google Scholar] [CrossRef]
- Prentza, V.; Pavlidis, G.; Ikonomidis, I.; Pililis, S.; Lampsas, S.; Kountouri, A.; Pliouta, L.; Korakas, E.; Thymis, J.; Palaiodimou, L.; et al. Antidiabetic Treatment and Prevention of Ischemic Stroke: A Systematic Review. J. Clin. Med. 2024, 13, 5786. [Google Scholar] [CrossRef]
- Wojtara, M.; Syeda, Y.; Mozgała, N.; Mazumder, A. Examining Off-Label Prescribing of Ozempic for Weight-Loss. Qeios, 2023; Preprint. [Google Scholar] [CrossRef]
- Odimegwu, C.; Uwaezuoke, S.; Chikani, U.; Mbanefo, N.; Adiele, K.; Nwolisa, C.; Eneh, C.; Ndiokwelu, C.; Okpala, S.; Ogbuka, F.; et al. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab. Syndr. Obes. 2024, 17, 3557–3576. [Google Scholar] [CrossRef]
- Baer-Dubowska, W.; Majchrzak-Celińska, A.; Cichocki, M. Pharmocoepigenetics: A New Approach to Predicting Individual Drug Responses and Targeting New Drugs. Pharmacol. Rep. 2011, 63, 293–304. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Barragan, I.; Ingelman-Sundberg, M. Pharmacoepigenetics and Toxicoepigenetics: Novel Mechanistic Insights and Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 161–185. [Google Scholar] [CrossRef]
- Gomez, A.; Ingelman-Sundberg, M. Pharmacoepigenetics: Its Role in Interindividual Differences in Drug Response. Clin. Pharmacol. Ther. 2009, 85, 426–430. [Google Scholar] [CrossRef]
- Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; et al. The Effect of Novel Promoter Variants in MATE1 and MATE2 on the Pharmacokinetics and Pharmacodynamics of Metformin. Clin. Pharmacol. Ther. 2013, 93, 186–194. [Google Scholar] [CrossRef]
- Chang, T.-T.; Chiang, C.-H.; Chen, C.; Lin, S.-C.; Lee, H.-J.; Chen, J.-W. Antioxidation and Nrf2-Mediated Heme Oxygenase-1 Activation Contribute to Renal Protective Effects of Hydralazine in Diabetic Nephropathy. Biomed. Pharmacother. 2022, 151, 113139. [Google Scholar] [CrossRef]
- Larkin, B.P.; Nguyen, L.T.; Hou, M.; Glastras, S.J.; Chen, H.; Faiz, A.; Chen, J.; Wang, R.; Pollock, C.A.; Saad, S. Low-Dose Hydralazine Reduces Albuminuria and Glomerulosclerosis in a Mouse Model of Obesity-Related Chronic Kidney Disease. Diabetes Obes. Metab. 2022, 24, 1939–1949. [Google Scholar] [CrossRef]
- Bernard, H.; Teijeiro, A.; Chaves-Pérez, A.; Perna, C.; Satish, B.; Novials, A.; Wang, J.P.; Djouder, N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. Cell Rep. Med. 2020, 1, 100125. [Google Scholar] [CrossRef]
- Skov, S.; Rieneck, K.; Bovin, L.F.; Skak, K.; Tomra, S.; Michelsen, B.K.; Ødum, N. Histone Deacetylase Inhibitors: A New Class of Immunosuppressors Targeting a Novel Signal Pathway Essential for CD154 Expression. Blood 2003, 101, 1430–1438. [Google Scholar] [CrossRef]
- Khan, S.; Jena, G. Valproic Acid Improves Glucose Homeostasis by Increasing Beta-Cell Proliferation, Function, and Reducing Its Apoptosis through HDAC Inhibition in Juvenile Diabetic Rat. J. Biochem. Mol. Toxicol. 2016, 30, 438–446. [Google Scholar] [CrossRef]
- Lin, J.-R.; Huang, S.-H.; Wu, C.-H.; Chen, Y.-W.; Hong, Z.-J.; Cheng, C.-P.; Sytwu, H.-K.; Lin, G.-J. Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes. Pharmaceuticals 2021, 14, 475. [Google Scholar] [CrossRef]
- Tikoo, K.; Meena, R.L.; Kabra, D.G.; Gaikwad, A.B. Change in Post-Translational Modifications of Histone H3, Heat-Shock Protein-27 and MAP Kinase P38 Expression by Curcumin in Streptozotocin-Induced Type I Diabetic Nephropathy. Br. J. Pharmacol. 2008, 153, 1225–1231. [Google Scholar] [CrossRef]
- Song, S.H.; Han, S.W.; Bang, Y.J. Epigenetic-Based Therapies in Cancer. Drugs 2011, 71, 2391–2403. [Google Scholar] [CrossRef]
- Griazeva, E.D.; Fedoseeva, D.M.; Radion, E.I.; Ershov, P.V.; Meshkov, I.O.; Semyanihina, A.V.; Makarova, A.S.; Makarov, V.V.; Yudin, V.S.; Keskinov, A.A.; et al. Current Approaches to Epigenetic Therapy. Epigenomes 2023, 7, 23. [Google Scholar] [CrossRef]
- Noonan, W.; Dismuke, A.D.; Turker, M.S. Epigenetic Patents: A Stressful Environment for an Emerging Science. Biotechnol. Law Rep. 2013, 32, 302–312. [Google Scholar] [CrossRef]
- Biosystems, C.; Smith, K.D.; Yazvenko, N.; Smit, M. Recent Patents in Epigenetic Targeting. Nat. Biotechnol. 2016, 34, 387. [Google Scholar] [CrossRef]
- Sommese, L.; Zullo, A.; Mancini, F.P.; Fabbricini, R.; Soricelli, A.; Napoli, C. Clinical Relevance of Epigenetics in the Onset and Management of Type 2 Diabetes Mellitus. Epigenetics 2017, 12, 401–415. [Google Scholar] [CrossRef]
- Gladwell, L.R.; Ahiarah, C.; Rasheed, S.; Rahman, S.M.; Choudhury, M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life 2023, 14, 23. [Google Scholar] [CrossRef]
- Chous, A.P.; Richer, S.P.; Gerson, J.D.; Kowluru, R.A. The Diabetes Visual Function Supplement Study (DiVFuSS). Br. J. Ophthalmol. 2015, 100, 227–234. [Google Scholar] [CrossRef]
- Cai, C.; Meng, C.; He, S.; Gu, C.; Lhamo, T.; Draga, D.; Luo, D.; Qiu, Q. DNA Methylation in Diabetic Retinopathy: Pathogenetic Role and Potential Therapeutic Targets. Cell Biosci. 2022, 12, 186. [Google Scholar] [CrossRef]
- Peedicayil, J. Pharmacoepigenetics and Pharmacoepigenomics. Pharmacogenomics 2008, 9, 1785–1786. [Google Scholar] [CrossRef]
- Cacabelos, R.; Naidoo, V.; Corzo, L.; Cacabelos, N.; Carril, J.C. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int. J. Mol. Sci. 2021, 22, 13302. [Google Scholar] [CrossRef]
- Jin, J.; Zhong, X. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab. Dispos. 2023, 51, 672–684. [Google Scholar] [CrossRef]
- Habano, W.; Gamo, T.; Terashima, J.; Sugai, T.; Otsuka, K.; Wakabayashi, G.; Ozawa, S. Involvement of Promoter Methylation in the Regulation of Pregnane X Receptor in Colon Cancer Cells. BMC Cancer 2011, 11, 81. [Google Scholar] [CrossRef]
- Habano, W.; Kawamura, K.; Iizuka, N.; Terashima, J.; Sugai, T.; Ozawa, S. Analysis of DNA Methylation Landscape Reveals the Roles of DNA Methylation in the Regulation of Drug Metabolizing Enzymes. Clin. Epigenetics 2015, 7, 105. [Google Scholar] [CrossRef]
- Ivanov, M.; Kals, M.; Kacevska, M.; Barragan, I.; Kasuga, K.; Rane, A.; Metspalu, A.; Milani, L.; Ingelman-Sundberg, M. Ontogeny, Distribution and Potential Roles of 5-Hydroxymethylcytosine in Human Liver Function. Genome Biol. 2013, 14, R83. [Google Scholar] [CrossRef]
- Tokizane, T.; Shiina, H.; Igawa, M.; Enokida, H.; Urakami, S.; Kawakami, T.; Ogishima, T.; Okino, S.T.; Li, L.-C.; Tanaka, Y.; et al. Cytochrome P450 1B1 Is Overexpressed and Regulated by Hypomethylation in Prostate Cancer. Clin. Cancer Res. 2005, 11, 5793–5801. [Google Scholar] [CrossRef]
- Rountree, M.R.; Bachman, K.E.; Baylin, S.B. DNMT1 Binds HDAC2 and a New Co-Repressor, DMAP1, to Form a Complex at Replication Foci. Nat. Genet. 2000, 25, 269–277. [Google Scholar] [CrossRef]
- Okino, S.T.; Pookot, D.; Li, L.C.; Zhao, H.; Urakami, S.; Shiina, H.; Igawa, M.; Dahiya, R. Epigenetic Inactivation of the Dioxin-Responsive Cytochrome P4501A1 Gene in Human Prostate Cancer. Cancer Res. 2006, 66, 7420–7428. [Google Scholar] [CrossRef]
- Anttila, S.; Hakkola, J.; Tuominen, P.; Elovaara, E.; Husgafvel-Pursiainen, K.; Karjalainen, A.; Hirvonen, A.; Nurminen, T. Methylation of Cytochrome P4501A1 Promoter in the Lung Is Associated with Tobacco Smoking. Cancer Res. 2003, 63, 8623–8628. [Google Scholar]
- Kushwaha, S.; Singh, N. Review: Association between Dna Methylation of Cyp Gene Family in Vitamin D Signalling Pathway and Type 2 Diabetes. Int. J. Recent Sci. Res. 2018, 9, 24246–24252. [Google Scholar] [CrossRef]
- Goodman, S.; Chappell, G.; Guyton, K.Z.; Pogribny, I.P.; Rusyn, I. Epigenetic Alterations Induced by Genotoxic Occupational and Environmental Human Chemical Carcinogens: An Update of a Systematic Literature Review. Mutat. Res. Rev. Mutat. Res. 2022, 789, 108408. [Google Scholar] [CrossRef]
- Tarjan, D.R.; Flavahan, W.A.; Bernstein, B.E. Epigenome Editing Strategies for the Functional Annotation of CTCF Insulators. Nat. Commun. 2019, 10, 4258. [Google Scholar] [CrossRef]
- Daly, A.K.; Cascorbi, I. Opportunities and Limitations: The Value of Pharmacogenetics in Clinical Practice. Br. J. Clin. Pharmacol. 2014, 77, 583–586. [Google Scholar] [CrossRef]
- Gjaltema, R.A.F.; Rots, M.G. Advances of Epigenetic Editing. Curr. Opin. Chem. Biol. 2020, 57, 75–81. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Sato, F.; Greenwald, B.D.; Suntharalingam, M.; Krasna, M.J.; Edelman, M.J.; Doyle, A.; Berki, A.T.; Abraham, J.M.; Mori, Y.; et al. Promoter Methylation and Response to Chemotherapy and Radiation in Esophageal Cancer. Clin. Gastroenterol. Hepatol. 2006, 4, 701–708. [Google Scholar] [CrossRef]
- Ling, C. Pharmacoepigenetics in Type 2 Diabetes: Is It Clinically Relevant? Diabetologia 2022, 65, 1849–1853. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkhize, S.S.; Chuturgoon, A.A.; Ghazi, T.; Machaba, K.E. Pharmaco-Epigenetics and Epigenetic Drugs in Type 2 Diabetes: Can Epigenetics Predict Drug Efficiency? Biomedicines 2025, 13, 2278. https://doi.org/10.3390/biomedicines13092278
Mkhize SS, Chuturgoon AA, Ghazi T, Machaba KE. Pharmaco-Epigenetics and Epigenetic Drugs in Type 2 Diabetes: Can Epigenetics Predict Drug Efficiency? Biomedicines. 2025; 13(9):2278. https://doi.org/10.3390/biomedicines13092278
Chicago/Turabian StyleMkhize, Senzosenkosi Surprise, Anil Amichund Chuturgoon, Terisha Ghazi, and Kgothatso Eugene Machaba. 2025. "Pharmaco-Epigenetics and Epigenetic Drugs in Type 2 Diabetes: Can Epigenetics Predict Drug Efficiency?" Biomedicines 13, no. 9: 2278. https://doi.org/10.3390/biomedicines13092278
APA StyleMkhize, S. S., Chuturgoon, A. A., Ghazi, T., & Machaba, K. E. (2025). Pharmaco-Epigenetics and Epigenetic Drugs in Type 2 Diabetes: Can Epigenetics Predict Drug Efficiency? Biomedicines, 13(9), 2278. https://doi.org/10.3390/biomedicines13092278