Prognostic Factors Associated with Biochemical Relapse After Radiotherapy in Localized Prostate Cancer: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Risk Stratification
2.3. Technical Parameters of Radiotherapy Planning and Treatment
2.4. ADT (Androgen Deprivation Therapy)
2.5. PSA Monitoring and Definitions
2.6. Biopsy Sampling and Core Analysis
2.7. Statistical Analysis
3. Results
3.1. Predictive Factors of Biochemical Recurrence
3.2. Recurrence Patterns
3.3. Time of Recurrence
4. Discussion
4.1. Prostate-Specific Antigen (PSA)
4.2. Perineural Invasion (PNI)
4.3. Positive Core Number–Percentage
4.4. Gleason Score (GS)—ISUP Grade
4.5. Chronology of Recurrence
4.6. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADT | Androgen Deprivation Therapy |
BCR | Biochemical Recurrence |
CI | Confidence Interval |
EBRT | External-Beam Radiotherapy |
GS | Gleason Score |
Gy | Gray |
IQR | Interquartile Range |
ISUP | International Society of Urological Pathology (ISUP) |
LHRH | Luteinizing Hormone-Releasing Hormone |
MRI | Magnetic Resonance Imaging |
OR | Odds Ratio |
PC | Prostate Cancer |
PNI | Perineural Invasion |
PSA | Prostate-Specific Antigen |
PSMA-PET | Prostate-Specific Membrane Antigen Positron-Emission Tomography |
RT | Radiotherapy |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, R.; Lin, D.W.; Montgomery, R.B. Prostate Cancer: A Review. JAMA 2025, 333, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.A.; von Landenberg, N.; Cole, A.P.; Gild, P.; Choueiri, T.K.; Lipsitz, S.R.; Trinh, Q.D.; Kibel, A.S. Contemporary national trends in prostate cancer risk profile at diagnosis. Prostate Cancer Prostatic Dis. 2020, 23, 81–87. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer; Version 2.2025; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025. [Google Scholar]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU–EANM–ESTRO–ESUR–ISUP–SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.G.; Cowling, T.E.; Sujenthiran, A.; Nossiter, J.; Berry, B.; Cathcart, P.; Aggarwal, A.; Payne, H.; van der Meulen, J.; Clarke, N.W.; et al. Risk stratification for prostate cancer management: Value of the Cambridge Prognostic Group classification for assessing treatment allocation. BMC Med. 2020, 18, 114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dinis Fernandes, C.; Dinh, C.V.; Walraven, I.; Heijmink, S.W.; Smolic, M.; van Griethuysen, J.J.M.; Simões, R.; Losnegård, A.; van der Poel, H.G.; Pos, F.J.; et al. Biochemical recurrence prediction after radiotherapy for prostate cancer with T2w magnetic resonance imaging radiomic features. Phys. Imaging Radiat. Oncol. 2018, 7, 9–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamran, S.C.; Efstathiou, J.A. Current State of Personalized Genitourinary Cancer Radiotherapy in the Era of Precision Medicine. Front. Oncol. 2021, 11, 675311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.J.; Wu, B.; Zha, Z.L.; Qu, W.; Zhao, H.; Yuan, J.; Feng, Y.J. Perineural invasion as an independent predictor of biochemical recurrence in prostate cancer following radical prostatectomy or radiotherapy: A systematic review and meta-analysis. BMC Urol. 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.M.; Rac, G.; Felice, M.; Ellis, J.L.; Handa, N.; Li, E.V.; McCormick, M.; Bsatee, A.; Piyevsky, B.; Ross, A.E.; et al. Prostate magnetic resonance imaging to predict grade concordance, extra prostatic extension, and biochemical recurrence after radical prostatectomy. Urol. Oncol. 2025, 43, 445.e11–445.e19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herr, D.J.; Elliott, D.A.; Duchesne, G.; Stensland, K.D.; Caram, M.E.V.; Chapman, C.; Burns, J.A.; Hollenbeck, B.K.; Sparks, J.B.; Shin, C.; et al. Outcomes after definitive radiation therapy for localized prostate cancer in a national health care delivery system. Cancer 2023, 129, 3326–3333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kishan, A.U.; Sun, Y.; Hartman, H.; Pisansky, T.M.; Bolla, M.; Neven, A.; Steigler, A.; Denham, J.W.; Feng, F.Y.; Zapatero, A.; et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: An individual patient data meta-analysis. Lancet Oncol. 2022, 23, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Staffurth, J.N.; Haviland, J.S.; Wilkins, A.; Syndikus, I.; Khoo, V.; Bloomfield, D.; Parker, C.; Logue, J.; Scrase, C.; Birtle, A.; et al. Impact of Hypofractionated Radiotherapy on Patient-reported Outcomes in Prostate Cancer: Results up to 5 yr in the CHHiP trial (CRUK/06/016). Eur. Urol. Oncol. 2021, 4, 980–992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shore, N.D.; Moul, J.W.; Pienta, K.J.; Czernin, J.; King, M.T.; Freedland, S.J. Biochemical recurrence in patients with prostate cancer after primary definitive therapy: Treatment based on risk stratification. Prostate Cancer Prostatic Dis. 2024, 27, 192–201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Altena, E.J.E.; Jansen, B.H.E.; Korbee, M.L.; Knol, R.J.J.; Luining, W.I.; Nieuwenhuijzen, J.A.; Oprea-Lager, D.E.; van der Pas, S.L.; van der Voort van Zyp, J.R.N.; van der Zant, F.M.; et al. Prostate-specific membrane antigen positron emission tomography before reaching the Phoenix criteria for biochemical recurrence of prostate cancer after radiotherapy: Earlier detection of recurrences. Eur. Urol. Oncol. 2025, 8, 417–424. [Google Scholar] [CrossRef]
- Zhou, J.; Gou, Z.; Wu, R.; Yuan, Y.; Yu, G.; Zhao, Y. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A systematic review and meta-analysis. Skelet. Radiol. 2019, 48, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez Soto, Á.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.D.; Martin, A.J.; Stockler, M.R.; Begbie, S.; Chi, K.N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W.E.; Horvath, L.G.; et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Chappidi, M.; Feng, Z.; Humphreys, E.B.; Han, M.; Pavlovich, C.P.; Epstein, J.I.; Partin, A.W.; Trock, B.J. Prediction of pathological stage based on clinical stage, serum prostate-specific antigen, and biopsy Gleason score: Partin Tables in the contemporary era. BJU Int. 2017, 119, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.; Carlsson, S.V.; Watts, K. Randomized trials of PSA screening. Urol. Oncol. 2025, 43, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Hugosson, J.; Roobol, M.J.; Månsson, M.; Tammela, T.L.J.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Carlsson, S.V.; Talala, K.M.; et al. A 16-yr follow-up of the European Randomized Study of Screening for Prostate Cancer. Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod. Pathol. 2018, 31, S71–S79. [Google Scholar] [CrossRef] [PubMed]
- Lumbreras, B.; Parker, L.A.; Caballero-Romeu, J.P.; Gómez-Pérez, L.; Puig-García, M.; López-Garrigós, M.; García, N.; Hernández-Aguado, I. Variables Associated with False-Positive PSA Results: A Cohort Study with Real-World Data. Cancers 2022, 15, 261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuchsjäger, M.H.; Pucar, D.; Zelefsky, M.J.; Zhang, Z.; Mo, Q.; Ben-Porat, L.S.; Shukla-Dave, A.; Wang, L.; Reuter, V.E.; Hricak, H. Predicting post-external beam radiation therapy PSA relapse of prostate cancer using pretreatment MRI. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 743–750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jobling, P.; Pundavela, J.; Oliveira, S.M.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve–cancer cell cross-talk: A novel promoter of tumor progression. Cancer Res. 2015, 75, 1777–1781. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Förster, S.; Muders, M. The role of perineural invasion in prostate cancer and its prognostic significance. Cancers 2022, 14, 4065. [Google Scholar] [CrossRef]
- Teramoto, Y.; Numbere, N.; Wang, Y.; Miyamoto, H. Clinical Significance of Perineural Invasion by Prostate Cancer Detected on Needle Core Biopsy. Am. J. Clin. Pathol. 2023, 159, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Vance, S.M.; Stenmark, M.H.; Blas, K.; Halverson, S.; Hamstra, D.A.; Feng, F.Y. Percentage of cancer volume in biopsy cores is prognostic for prostate cancer death and overall survival in patients treated with dose-escalated external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, M.; Tanaka, T.; Narita, T.; Noro, D.; Iwamura, H.; Tobisawa, Y.; Yoneyama, T.; Kodama, H.; Hashimoto, Y.; Koie, T.; et al. Impact of the proportion of biopsy positive core in predicting biochemical recurrence in patients with pathological pT2 and negative resection margin status after radical prostatectomy. Pathol. Oncol. Res. 2020, 26, 2115–2121. [Google Scholar] [CrossRef]
- Slater, J.M.; Bush, D.A.; Grove, R.; Slater, J.D. The prognostic value of percentage of positive biopsy cores, percentage of cancer volume, and maximum involvement of biopsy cores in prostate cancer patients receiving proton and photon beam therapy. Technol. Cancer Res. Treat. 2014, 13, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, D.; Guarneri, A.; Bartoncini, S.; Munoz, F.; Tamponi, M.; Russo, F.; Stamatakos, G.; Guiot, C.; Regge, D.; Ricardi, U. An external validation of the Candiolo nomogram in a cohort of prostate cancer patients treated by external-beam radiotherapy. Radiat. Oncol. 2021, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Gleason, D.F.; Mellinger, G.T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 1974, 111, 58–64. [Google Scholar] [CrossRef]
- Cao, G.; Li, Y.; Wang, J.; Wu, X.; Zhang, Z.; Zhanghuang, C.; Han, K. Gleason score, surgical and distant metastasis are associated with cancer-specific survival and overall survival in middle-aged high-risk prostate cancer: A population-based study. Front. Public Health 2022, 10, 1028905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, L.; Lajkosz, K.; Sanchez-Salas, R.; Kuk, C.; Xu, W.; Tiwari, R.V.; Dias Dos Santos, C.P.; Qian, H.; Wang, J.; Dong, B.; et al. Proportion of Gleason Score ≥8 Prostate Cancer on Biopsy and Tumor Aggressiveness in Matched Cohorts of East Asian and Non-East Asian Men. J. Natl. Compr. Canc. Netw. 2024, 22, e247061. [Google Scholar] [CrossRef] [PubMed]
Characteristic | BCR (n = 52) | No BCR (n = 392) | p-Value |
---|---|---|---|
Age, median (range) | 72 (54–83) | 70 (51–85) | 0.355 |
PSA at diagnosis, | 0.045 | ||
median/mean (ng/mL) | 10.8/30.3 | 9.3/12.9 | |
Exclusive Radiotherapy | 11 (13.3%) | 110 (86.7%) | 0.189 |
Androgen Deprivation Therapy | 41 (12.6%) | 282 (77.4%) | 0.36 |
Fractionated | 0.119 | ||
Normofractionated | 11 (16.5%) | 56 (83.5%) | |
Hypofractionated | 41 (10.9%) | 336 (89.1%) | |
Perineural Invasion | 0.036 | ||
Yes | 18 (17.4%) | 85 (82.6%) | |
No | 8 (6.4%) | 116 (93.6%) | |
Not reported a | 26 (11.9%) | 191 (88.1%) | |
Right Lobe | |||
Mean positive biopsy cores b | 2.98 | 2.33 | 0.014 |
Positive biopsy core percentage (%) b | 57% | 41% | 0.046 |
Left Lobe | |||
Mean positive biopsy cores c | 3.13 | 2.36 | 0.007 |
Positive biopsy core percentage (%) c | 57% | 41% | 0.048 |
Both Lobes | |||
Mean positive biopsy cores d | 6.11 | 4.71 | 0.01 |
Positive biopsy core percentage (%) d | 57% | 41% | 0.005 |
Characteristic | BCR, n (% of Total) = 52 | No BCR, n (% of Total) = 392 | Total, n (% of Total) = 444 | BCR Rate Within Group | p-Value |
---|---|---|---|---|---|
Risk Group a | 0.035 | ||||
Low | 4 (0.9%) | 39 (8.8%) | 43 (9.7%) | 9.3% | |
Intermediate | 16 (3.6%) | 186 (41.9%) | 202 (45.5%) | 7.9% | |
High | 32 (7.2%) | 167 (37.6%) | 199 (44.8%) | 16.1% | |
ISUP Grade Groups | 0.011 | ||||
Grade 1 | 6 (1.4%) | 70 (15.8%) | 76 (17.1%) | 7.9% | |
Grade 2–3 | 24 (5.4%) | 231 (52.0%) | 255 (57.4%) | 9.4% | |
Grade ≥ 4 | 22 (5.0%) | 91 (20.5%) | 113 (25.5%) | 19.5% | |
MRI Clinical T Stage Not done b | 30 (6.7%) | 201 (45.3%) | 231 (52.0%) | 12.9% | 0.380 |
cT2 | 10 (2.3%) | 94 (21.2%) | 104 (23.4%) | 9.6% | |
cT3a | 5 (1.1%) | 66 (14.9%) | 71 (16.0%) | 7.0% | |
cT3b | 7 (1.6%) | 31 (7.0%) | 38 (8.6%) | 18.4% | |
Radiotherapy Technique | 0.242 | ||||
3D-CRT | 19 (4.3%) | 95 (21.4%) | 114 (25.7%) | 16.7% | |
IMRT | 5 (1.1%) | 30 (6.8%) | 35 (7.9%) | 14.3% | |
VMAT | 28 (6.3%) | 267 (60.1%) | 295 (66.4%) | 9.5% |
Variable | p Univariable | Odds Ratio (OR) | 95% CI | p Multivariable |
---|---|---|---|---|
PSA | 0.045 | 1.01 | 1.00–1.02 | 0.05 |
Positive right-side cores a (count/proportion) | 0.014/0.046 | 3.04 | 1.25–7.32 | 0.014 |
Positive left-side cores (count/proportion) | 0.007/0.048 | 2.69 | 1.15–6.32 | 0.022 |
Total positive cores (count/proportion) | 0.01/0.005 | 8.25 | 2.36–28.94 | 0.009 |
ISUP grade distribution (ISUP ≥ 4) b | 0.011 | 2.25 | 1.05–4.84 | 0.036 |
Perineural invasion | 0.036 | 2.58 | 1.02–6.81 | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feltes Benitez, N.; Couñago, F.; Paredes Rubio, S.; Galdeano-Rubio, M.; Jovell-Fernandez, E. Prognostic Factors Associated with Biochemical Relapse After Radiotherapy in Localized Prostate Cancer: A Retrospective Cohort Study. Biomedicines 2025, 13, 2185. https://doi.org/10.3390/biomedicines13092185
Feltes Benitez N, Couñago F, Paredes Rubio S, Galdeano-Rubio M, Jovell-Fernandez E. Prognostic Factors Associated with Biochemical Relapse After Radiotherapy in Localized Prostate Cancer: A Retrospective Cohort Study. Biomedicines. 2025; 13(9):2185. https://doi.org/10.3390/biomedicines13092185
Chicago/Turabian StyleFeltes Benitez, Nicolas, Felipe Couñago, Saturio Paredes Rubio, Manuel Galdeano-Rubio, and Esther Jovell-Fernandez. 2025. "Prognostic Factors Associated with Biochemical Relapse After Radiotherapy in Localized Prostate Cancer: A Retrospective Cohort Study" Biomedicines 13, no. 9: 2185. https://doi.org/10.3390/biomedicines13092185
APA StyleFeltes Benitez, N., Couñago, F., Paredes Rubio, S., Galdeano-Rubio, M., & Jovell-Fernandez, E. (2025). Prognostic Factors Associated with Biochemical Relapse After Radiotherapy in Localized Prostate Cancer: A Retrospective Cohort Study. Biomedicines, 13(9), 2185. https://doi.org/10.3390/biomedicines13092185