Association Between the Renin–Angiotensin System and Ibrutinib-Related Cardiovascular Adverse Events: A Translational Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol and Population
2.2. Measurement of Levels of Plasma Protein Biomarkers by ELISA
2.3. Measurement of Expression of Serum microRNAs (miRNAs) by RT-qPCR
2.4. Follow-Up
2.4.1. Blood Pressure Monitoring
2.4.2. ECG Monitoring
2.4.3. Echocardiography
2.5. Primary Objective and Analysis
2.6. Secondary Objectives and Analyses
2.7. Statistical Analyses
3. Results
3.1. The Study Population
3.2. Primary Objective
3.3. Secondary Objectives
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL Guidelines for Diagnosis, Indications for Treatment, Response Assessment, and Supportive Management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, ehac244. [Google Scholar] [CrossRef]
- Caldeira, D.; Alves, D.; Costa, J.; Ferreira, J.J.; Pinto, F.J. Ibrutinib Increases the Risk of Hypertension and Atrial Fibrillation: Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0211228. [Google Scholar] [CrossRef] [PubMed]
- Archibald, W.J.; Rabe, K.G.; Kabat, B.F.; Herrmann, J.; Ding, W.; Kay, N.E.; Kenderian, S.S.; Muchtar, E.; Leis, J.F.; Wang, Y.; et al. Atrial Fibrillation in Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Ibrutinib: Risk Prediction, Management, and Clinical Outcomes. Ann. Hematol. 2021, 100, 143–155. [Google Scholar] [CrossRef]
- Baptiste, F.; Cautela, J.; Ancedy, Y.; Resseguier, N.; Aurran, T.; Farnault, L.; Escudier, M.; Ammar, C.; Gaubert, M.; Dolladille, C.; et al. High Incidence of Atrial Fibrillation in Patients Treated with Ibrutinib. Open Heart 2019, 6, e001049. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Shen, N.-N.; Zhang, C.; Li, Z.; Kong, L.-C.; Wang, X.-H.; Gu, Z.-C.; Wang, J.-L. MicroRNA Expression Signatures of Atrial Fibrillation: The Critical Systematic Review and Bioinformatics Analysis. Exp. Biol. Med. 2020, 245, 42–53. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.D.; Tanriverdi, K.; Lin, H.; Esa, N.; Kinno, M.; Mandapati, D.; Tam, S.; Okike, O.N.; Ellinor, P.T.; Keaney, J.F.; et al. Plasma microRNAs Are Associated with Atrial Fibrillation and Change after Catheter Ablation (the miRhythm Study). Heart Rhythm 2015, 12, 3–10. [Google Scholar] [CrossRef]
- Ramasamy, S.; Velmurugan, G.; Rekha, B.; Anusha, S.; Shanmugha Rajan, K.; Shanmugarajan, S.; Ramprasath, T.; Gopal, P.; Tomar, D.; Karthik, K.V.; et al. Egr-1 Mediated Cardiac miR-99 Family Expression Diverges Physiological Hypertrophy from Pathological Hypertrophy. Exp. Cell Res. 2018, 365, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, F.; Kraft, M.; Kallenberger, S.; Büscher, A.; Paasche, A.; Blochberger, P.L.; Seeger, T.; Jávorszky, N.; Warnecke, G.; Arif, R.; et al. MicroRNAs Regulate TASK-1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation. J. Am. Heart Assoc. 2022, 11, e023472. [Google Scholar] [CrossRef]
- Kura, B.; Szeiffova Bacova, B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int. J. Mol. Sci. 2020, 21, 358. [Google Scholar] [CrossRef]
- Huang, H.; Chen, H.; Liang, X.; Chen, X.; Chen, X.; Chen, C. Upregulated miR-328-3p and Its High Risk in Atrial Fibrillation: A Systematic Review and Meta-Analysis with Meta-Regression. Medicine 2022, 101, e28980. [Google Scholar] [CrossRef]
- Vigneron, N.; Meryet-Figuière, M.; Guttin, A.; Issartel, J.-P.; Lambert, B.; Briand, M.; Louis, M.-H.; Vernon, M.; Lebailly, P.; Lecluse, Y.; et al. Towards a New Standardized Method for Circulating miRNAs Profiling in Clinical Studies: Interest of the Exogenous Normalization to Improve miRNA Signature Accuracy. Mol. Oncol. 2016, 10, 981–992. [Google Scholar] [CrossRef]
- Vigneron, N.; Vernon, M.; Meryet-Figuière, M.; Lambert, B.; Briand, M.; Louis, M.-H.; Krieger, S.; Joly, F.; Lheureux, S.; Blanc-Fournier, C.; et al. Predictive Relevance of Circulating miR-622 in Patients with Newly Diagnosed and Recurrent High-Grade Serous Ovarian Carcinoma. Clin. Chem. 2020, 66, 352–362. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of Left Atrial, Right Ventricular, and Right Atrial Deformation Imaging Using Two-Dimensional Speckle Tracking Echocardiography: A Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Obokata, M.; Egbe, A.; Yang, J.H.; Pislaru, S.; Lin, G.; Carter, R.; Borlaug, B.A. Left Atrial Strain and Compliance in the Diagnostic Evaluation of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2019, 21, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, ehae176. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension: Developed by the Task Force on the Management of Elevated Blood Pressure and Hypertension of the European Society of Cardiology (ESC) and Endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) With the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Developed by the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Dickerson, T.; Wiczer, T.; Waller, A.; Philippon, J.; Porter, K.; Haddad, D.; Guha, A.; Rogers, K.A.; Bhat, S.; Byrd, J.C.; et al. Hypertension and Incident Cardiovascular Events Following Ibrutinib Initiation. Blood 2019, 134, 1919–1928. [Google Scholar] [CrossRef]
- Singh, A.; El Hangouche, N.; McGee, K.; Gong, F.-F.; Lentz, R.; Feinglass, J.; Akhter, N. Utilizing Left Atrial Strain to Identify Patients at Risk for Atrial Fibrillation on Ibrutinib. Echocardiography 2021, 38, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Moslehi, J.; O’Brien, S.; Ghia, P.; Hillmen, P.; Cymbalista, F.; Shanafelt, T.D.; Fraser, G.; Rule, S.; Kipps, T.J.; et al. Characterization of Atrial Fibrillation Adverse Events Reported in Ibrutinib Randomized Controlled Registration Trials. Haematologica 2017, 102, 1796–1805. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice with Representatives of the European Society of Cardiology and 12 Medical Societies With the Special Contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Buffolo, F.; Tetti, M.; Mulatero, P.; Monticone, S. Aldosterone as a Mediator of Cardiovascular Damage. Hypertension 2022, 79, 1899–1911. [Google Scholar] [CrossRef]
- Palmer, L.G.; Schnermann, J. Integrated Control of Na Transport along the Nephron. Clin. J. Am. Soc. Nephrol. 2015, 10, 676–687. [Google Scholar] [CrossRef]
- Milliez, P.; Girerd, X.; Plouin, P.-F.; Blacher, J.; Safar, M.E.; Mourad, J.-J. Evidence for an Increased Rate of Cardiovascular Events in Patients with Primary Aldosteronism. J. Am. Coll. Cardiol. 2005, 45, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Saloux, E.; Chequel, M.; Allouche, S.; Ollitrault, P.; Plane, A.-F.; Legallois, D.; Fischer, M.-O.; Saplacan, V.; Buklas, D.; et al. Preoperative Plasma Aldosterone and the Risk of Atrial Fibrillation after Coronary Artery Bypass Surgery: A Prospective Cohort Study. J. Hypertens. 2016, 34, 2449–2457. [Google Scholar] [CrossRef]
- Kim, S.K.; Pak, H.-N.; Park, J.H.; Ko, K.J.; Lee, J.S.; Choi, J.I.; Choi, D.H.; Kim, Y.-H. Clinical and Serological Predictors for the Recurrence of Atrial Fibrillation after Electrical Cardioversion. Europace 2009, 11, 1632–1638. [Google Scholar] [CrossRef]
- Swedberg, K.; Eneroth, P.; Kjekshus, J.; Wilhelmsen, L. Hormones Regulating Cardiovascular Function in Patients with Severe Congestive Heart Failure and Their Relation to Mortality. CONSENSUS Trial Study Group. Circulation 1990, 82, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Reil, J.-C.; Hohl, M.; Selejan, S.; Lipp, P.; Drautz, F.; Kazakow, A.; Münz, B.M.; Müller, P.; Steendijk, P.; Reil, G.-H.; et al. Aldosterone Promotes Atrial Fibrillation. Eur. Heart J. 2012, 33, 2098–2108. [Google Scholar] [CrossRef]
- Alexandre, J.; Dolladille, C.; Douesnel, L.; Font, J.; Dabrowski, R.; Shavit, L.; Legallois, D.; Funck-Brentano, C.; Champ-Rigot, L.; Ollitrault, P.; et al. Effects of Mineralocorticoid Receptor Antagonists on Atrial Fibrillation Occurrence: A Systematic Review, Meta-Analysis, and Meta-Regression to Identify Modifying Factors. J. Am. Heart Assoc. 2019, 8, e013267. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Vaduganathan, M.; Claggett, B.; Jhund, P.S.; Desai, A.S.; Henderson, A.D.; Lam, C.S.P.; Pitt, B.; Senni, M.; et al. Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2024, 391, 1475–1485. [Google Scholar] [CrossRef]
- Oraii, A.; Healey, J.S.; Kowalik, K.; Pandey, A.K.; Benz, A.P.; Wong, J.A.; Conen, D.; McIntyre, W.F. Mineralocorticoid Receptor Antagonists and Atrial Fibrillation: A Meta-Analysis of Clinical Trials. Eur. Heart J. 2024, 45, 756–774. [Google Scholar] [CrossRef]
- Pawlonka, J.; Buchalska, B.; Buczma, K.; Borzuta, H.; Kamińska, K.; Cudnoch-Jędrzejewska, A. Targeting the Renin–Angiotensin–Aldosterone System (RAAS) for Cardiovascular Protection and Enhanced Oncological Outcomes: Review. Curr. Treat. Options Oncol. 2024, 25, 1406–1427. [Google Scholar] [CrossRef]
- Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.-E. Anticancer Drug-Induced Cardiac Rhythm Disorders: Current Knowledge and Basic Underlying Mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Salem, J.-E.; Clauss, S.; Hanley, A.; Bapat, A.; Hulsmans, M.; Iwamoto, Y.; Wojtkiewicz, G.; Cetinbas, M.; Schloss, M.J.; et al. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020, 142, 2443–2455. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.; Chum, A.P.; Patel, M.; Carter, R.; Nawaz, H.; Yildiz, V.; Ruz, P.; Wiczer, T.; Rogers, K.A.; Awan, F.T.; et al. Cardiovascular Magnetic Resonance Imaging in Patients With Ibrutinib-Associated Cardiotoxicity. JAMA Oncol. 2023, 9, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Kang, J.-O.; Lim, J.E.; Hwang, S.-Y.; Oh, B. Csk Regulates Blood Pressure by Controlling the Synthetic Pathways of Aldosterone. Circ. J. 2017, 82, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Wu, X.-H.; He, G.; Salomon, S.; Schiffrin, E.L. Increased Angiotensin II-Mediated Src Signaling via Epidermal Growth Factor Receptor Transactivation Is Associated with Decreased C-Terminal Src Kinase Activity in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Hypertension 2002, 39, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xu, W.; Fang, N.; Li, L.; Yang, N.; Zhao, X.; Hao, H.; Zhang, Y.; Liang, Q.; Wang, Z.; et al. Ibrutinib-Induced Pulmonary Angiotensin-Converting Enzyme Activation Promotes Atrial Fibrillation in Rats. iScience 2024, 27, 108926. [Google Scholar] [CrossRef]
- Braun, S.; Lösel, R.; Wehling, M.; Boldyreff, B. Aldosterone Rapidly Activates Src Kinase in M-1 Cells Involving the Mineralocorticoid Receptor and HSP84. FEBS Lett. 2004, 570, 69–72. [Google Scholar] [CrossRef]
- Callera, G.E.; Yogi, A.; Briones, A.M.; Montezano, A.C.I.; He, Y.; Tostes, R.C.A.; Schiffrin, E.L.; Touyz, R.M. Vascular Proinflammatory Responses by Aldosterone Are Mediated via C-Src Trafficking to Cholesterol-Rich Microdomains: Role of PDGFR. Cardiovasc. Res. 2011, 91, 720–731. [Google Scholar] [CrossRef]
- Latronico, M.V.G.; Condorelli, G. MicroRNAs and Cardiac Pathology. Nat. Rev. Cardiol. 2009, 6, 418–429. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Moukette, B.; Sepúlveda, M.N.; Hayasaka, T.; Aonuma, T.; Haskell, A.K.; Mah, J.; Liangpunsakul, S.; Tang, Y.; Conway, S.J.; et al. SPRR1A Is a Key Downstream Effector of MiR-150 during Both Maladaptive Cardiac Remodeling in Mice and Human Cardiac Fibroblast Activation. Cell Death Dis. 2023, 14, 446. [Google Scholar] [CrossRef]
Characteristics | Total (n = 25) | No CVAE Group (n = 18) | CVAEs Group (n = 7) | p-Value |
---|---|---|---|---|
Demographic parameters | ||||
Homme | 16 (64%) | 10 (55.6%) | 6 (85.7%) | 0.355 |
Age | 72 (63–77) | 73 (63.2–76.8) | 69 (65–77) | 1 |
BMI | 23.7 (21.9–27.7) | 22.9 (20.9–26.6) | 24.6 (23.3–29.6) | 0.204 |
HTN | 9 (36%) | 4 (22.2%) | 5 (71.4%) | 0.061 |
Hypercholesterolemia | 3 (12%) | 2 (11.1%) | 1 (14.3%) | 1 |
Diabetes | 1 (4%) | 1 (5.6%) | 0 (0%) | 1 |
Renal insufficiency | 0 (0%) | 0 (0%) | 0 (0%) | |
History of AF | 1 (4%) | 0 (0%) | 1 (14.3%) | 0.28 |
History of heart failure | 0 (0%) | 0 (0%) | 0 (0%) | |
History of stroke | 2 (8%) | 1 (5.6%) | 1 (14.3%) | 0.49 |
History of peripheral vascular disease | 1 (4%) | 1 (5.6%) | 0 (0%) | 1 |
Cardiac artery disease | 3 (12%) | 3 (16.7%) | 0 (0%) | 0.539 |
Veinous thromboembolism | 1 (4%) | 1 (5.6%) | 0 (0%) | 0.49 |
LBBB, RBBB, 1st degree AV block | 6 (24%) | 4 (22.2%) | 2 (28.6%) | 1 |
Type of hemopathy | ||||
-Chronic lymphoid leukemia | 17 (68%) | 13 (72.2%) | 4 (57.1%) | 0.64 |
-Lymphoma | 3 (12%) | 3 (16.7%) | 0 (0%) | 0.534 |
-Waldenstrom disease | 4 (16%) | 2 (11.1%) | 2 (28.6%) | 0.548 |
Drugs at baseline | ||||
-Aspirin | 6 (24%) | 4 (22.2%) | 2 (28.6%) | 1 |
-Anticoagulant | 2 (8%) | 1 (5.6%) | 1 (14.3%) | 0.49 |
-Statine | 5 (20%) | 4 (22.2%) | 1 (14.3%) | 1 |
-Beta-blocker | 4 (16%) | 3 (16.7%) | 1 (14.3%) | 1 |
-CCB dihydropyridinique | 8 (32%) | 3 (16.7%) | 5 (71.4%) | 0.017 |
-CCB non-dihydropyridinique | 1 (4%) | 1 (5.6%) | 0 (0%) | 1 |
-ACE inhibitors | 3 (12%) | 2 (11.1%) | 1 (14.3%) | 1 |
-Angiotensin-receptor blockers | 4 (16%) | 3 (16.7%) | 1 (14.3%) | 1 |
-Antiarrhythmic drugs | 1 (4%) | 0 (0%) | 1 (14.3%) | 0.28 |
Echographic parameters | ||||
LVEF (%) | 64.7 (60.9–68.6) | 64 (61.6–67.8) | 67.4 (61.3–71) | 0.274 |
LA dilatation | 10 (40%) | 6 (33%) | 4 (57%) | 0.314 |
E wave (cm/s) | 74.6 (63.4–82.9) | 72.6 (62.8–85.2) | 76.7 (70.1–79.2) | 0.85 |
E/A ratio | 0.9 (0.7–1.2) | 0.9 (0.8–1.1) | 0.9 (0.8–1.1) | 0.85 |
E/Ea ratio | 9 (7.4–9.8) | 8.1 (7.1–9.4) | 9.9 (8.3–13.3) | 0.083 |
LA reservoir strain | 31.8 (26.7–37.1) | 31.1 (26.7–37.1) | 33.9 (29.8–40.4) | 0.574 |
LA conduit strain | 17 (14.6–23.5) | 16.9 (13.9–22) | 21.2 (16.4–27.2) | 0.395 |
LA contractile strain | 14.3 (10.5–17.2) | 14.3 (10.7–17.2) | 12.7 (10.2–16.5) | 0.698 |
LA compliance | 4.6 (3.1–5) | 4.6 (3.7–5) | 3.2 (3–3.8) | 0.571 |
Biologic parameters | ||||
Creatinine (µmol/L) | 4 (16%) | 1 (6%) | 3 (43%) | 0.053 |
CRP (ng/mL) | 11 (44%) | 9 (50%) | 2 (29%) | 0.407 |
Galectin-3 (ng/mL) | 11 (44%) | 9 (50%) | 2 (29%) | 0.407 |
Myeloperoxydase (ng/mL) | 4 (16%) | 4 (22%) | 0 (0%) | 0.294 |
Renin (pg/mL) | 6 (24%) | 2 (11%) | 4 (57%) | 0.032 |
Aldosterone (pg/mL) | 9 (36%) | 4 (22%) | 5 (71%) | 0.058 |
TNF-alpha (pg/mL) | 3 (12%) | 1 (6%) | 2 (29%) | 0.18 |
IL-6 (pg/mL) | 8 (32%) | 4 (22%) | 4 (57%) | 0.156 |
ACE-2 (ng/mL) | 2 (8%) | 1 (6%) | 1 (14%) | 0.49 |
Troponin (pg/mL) | 4 (16%) | 1 (6%) | 3 (43%) | 0.053 |
miR-9 (zmol/µL) | 3 (12%) | 3 (17%) | 0 (0%) | 0.534 |
miR-199 (zmol/µL) | 6 (24%) | 4 (22%) | 2 (29%) | 1 |
miR-22 (zmol/µL) | 18 (72%) | 15 (83%) | 3 (43%) | 0.066 |
miR-99 (zmol/µL) | 6 (24%) | 5 (28%) | 1 (14%) | 0.637 |
miR-150-5p (zmol/µL) | 22 (88%) | 18 (100%) | 4 (57%) | 0.015 |
miR-328 (zmol/µL) | 19 (76%) | 15 (83%) | 4 (57%) | 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Font, J.; Hodzic, A.; Da-Silva, A.; Delapierre, B.; Damaj, G.; Neusy, A.; Plane, A.-F.; Legallois, D.; Milliez, P.; Dolladille, C.; et al. Association Between the Renin–Angiotensin System and Ibrutinib-Related Cardiovascular Adverse Events: A Translational Cohort Study. Biomedicines 2025, 13, 2184. https://doi.org/10.3390/biomedicines13092184
Font J, Hodzic A, Da-Silva A, Delapierre B, Damaj G, Neusy A, Plane A-F, Legallois D, Milliez P, Dolladille C, et al. Association Between the Renin–Angiotensin System and Ibrutinib-Related Cardiovascular Adverse Events: A Translational Cohort Study. Biomedicines. 2025; 13(9):2184. https://doi.org/10.3390/biomedicines13092184
Chicago/Turabian StyleFont, Jonaz, Amir Hodzic, Angélique Da-Silva, Baptiste Delapierre, Ghandi Damaj, Anne Neusy, Anne-Flore Plane, Damien Legallois, Paul Milliez, Charles Dolladille, and et al. 2025. "Association Between the Renin–Angiotensin System and Ibrutinib-Related Cardiovascular Adverse Events: A Translational Cohort Study" Biomedicines 13, no. 9: 2184. https://doi.org/10.3390/biomedicines13092184
APA StyleFont, J., Hodzic, A., Da-Silva, A., Delapierre, B., Damaj, G., Neusy, A., Plane, A.-F., Legallois, D., Milliez, P., Dolladille, C., Vernon, M., Burton, S., Vigneron, N., Denoyelle, C., & Alexandre, J. (2025). Association Between the Renin–Angiotensin System and Ibrutinib-Related Cardiovascular Adverse Events: A Translational Cohort Study. Biomedicines, 13(9), 2184. https://doi.org/10.3390/biomedicines13092184