Metabolic Dysfunction-Associated Steatotic Liver Disease as a Risk Factor for Chronic Kidney Disease: A Narrative Review
Abstract
1. Introduction
2. Bibliographic Search Strategy and Selection Criteria
3. New Steatotic Liver Disease Nomenclature
4. Shared Risk Factors Between MASLD and CKD
4.1. Metabolic Syndrome
4.2. Genetic Polymorphisms
4.3. Nutritional Aspects and Gut Dysbiosis
4.4. Aging
4.5. Platelet Activation
4.6. Sarcopenia
5. MASLD as a Possible Direct Cause of CKD
5.1. Endocrine and Metabolic Mediators
5.2. Hemodynamic Alterations
5.3. Immune-Mediated Mechanisms
5.4. Oxidative and Cellular Stress Pathways
6. Gaps and Limitations in Literature
6.1. Heterogeneity Among Studies
6.2. Studies in Pediatric Populations
6.3. Impact of Alcohol Intake and MetALD
7. Treatment Options for Both MASLD and CKD
8. Conclusions and Future Directions for Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
CKD | Chronic kidney disease |
MetALD | MASLD and increased alcohol intake |
MAFLD | Metabolic dysfunction-associated fatty liver disease |
MASH | Metabolic dysfunction-associated steatohepatitis |
NASH | Non-alcoholic steatohepatitis |
GFR | Glomerular filtration rate |
e-GFR | Estimated glomerular filtration rate |
m-GFR | Measured glomerular filtration rate |
T2DM | Type 2 diabetes mellitus |
ALD | Alcoholic liver disease |
SLD | Steatotic liver disease |
PPAR-γ | Peroxisome proliferator-activated receptor-gamma |
TM6SF2 | Transmembrane 6 superfamily member 2 |
MBOAT7 | Membrane-bound O-acyltransferase domain-containing 7 |
GCKR | Glucokinase regulator |
PNPLA3 | Patatin-like phospholipase domain-containing 3 gene |
TMAO | Trimethylamine-N-oxide |
TLR | Toll-like receptor |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1 beta |
TNF-α | Tumour necrosis factor-alpha |
TGF-β | Transforming growth factor-beta |
IGF-1 | Insulin-like growth factor-1 |
FGF | Fibroblast growth factor |
HR | Hazard ratio |
FLI | Fatty liver index |
CI | Confidence interval |
ICD-10 | International Classification of Diseases—tenth revision |
UACR | Urinary albumin-creatinine ratio |
OR | Odds ratio |
RR | Relative risk |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
ANGPTL8 | Angiopoietin-like protein 8 |
RAAS | Renin–angiotensin–aldosterone system |
CRP | C-reactive protein |
ROS | Reactive oxygen species |
NF-KB | Kappa-light-chain-enhancer of activated B cells |
ER | Endoplasmic reticulum |
PAI-1 | Plasminogen activator inhibitor-1 |
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Kalligeros, M.; Henry, L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2025, 31, S32–S50. [Google Scholar] [CrossRef]
- Lekakis, V.; Papatheodoridis, G.V. Natural history of metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 3–10. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef]
- Adinolfi, L.E.; Marrone, A.; Rinaldi, L.; Nevola, R.; Izzi, A.; Sasso, F.C. Metabolic dysfunction-associated steatotic liver disease (MASLD): A systemic disease with a variable natural history and challenging management. Explor. Med. 2025, 6, 1001281. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-Q.; Targher, G.; Byrne, C.D.; Wheeler, D.C.; Wong, V.W.-S.; Fan, J.-G.; Tilg, H.; Yuan, W.-J.; Wanner, C.; Gao, X.; et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg. Nutr. 2023, 12, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Al Ashi, S.; Rizvi, A.A.; Rizzo, M. Altered kidney function in fatty liver disease: Confronting the “MAFLD-renal syndrome. Front. Clin. Diabetes Healthc. 2025, 5, 1539117. [Google Scholar] [CrossRef]
- KDIGO, W. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar] [CrossRef]
- Trevisani, F.; Di Marco, F.; Capitanio, U.; Dell’aNtonio, G.; Cinque, A.; Larcher, A.; Lucianò, R.; Bettiga, A.; Vago, R.; Briganti, A.; et al. Renal histology across the stages of chronic kidney disease. J. Nephrol. 2021, 34, 699–707. [Google Scholar] [CrossRef]
- Oshima, M.; Shimizu, M.; Yamanouchi, M.; Toyama, T.; Hara, A.; Furuichi, K.; Wada, T. Trajectories of kidney function in diabetes: A clinicopathological update. Nat. Rev. Nephrol. 2021, 17, 740–750. [Google Scholar] [CrossRef]
- Kaya, E.; Yilmaz, Y. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver. J. Clin. Transl. Hepatol. 2022, 10, 329–338. [Google Scholar] [CrossRef]
- Bilson, J.; Hydes, T.J.; McDonnell, D.; Buchanan, R.M.; Scorletti, E.; Mantovani, A.; Targher, G.; Byrne, C.D. Impact of Metabolic Syndrome Traits on Kidney Disease Risk in Individuals with MASLD: A UK Biobank Study. Liver Int. 2024, 45, e16159. [Google Scholar] [CrossRef]
- Agustanti, N.; Soetedjo, N.N.M.; Damara, F.A.; Iryaningrum, M.R.; Permana, H.; Bestari, M.B.; Supriyadi, R. The association between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102780. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of Non-alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-analysis. PLoS Med. 2014, 11, e1001680. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Lonardo, A.; Schattenberg, J.M.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: An updated meta-analysis. Gut 2022, 71, 156–162. [Google Scholar]
- Byrne, C.D.; Targher, G. NAFLD as a driver of chronic kidney disease. J. Hepatol. 2020, 72, 785–801. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Mantovani, A.; Targher, G.; Baffy, G. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: Epidemiology, Pathogenesis, and Clinical and Research Implications. Int. J. Mol. Sci. 2022, 23, 13320. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Gu, Y.; Zhao, J.; Zhu, P.-W.; Chen, W.-Y.; Li, G.; Liu, W.-Y.; Zheng, W.; Zhang, N.; Chen, L.-L.; et al. Associations between skeletal muscle strength and chronic kidney disease in patients with MASLD. Commun. Med. 2025, 5, 118. [Google Scholar] [CrossRef]
- Caussy, C.; Rieusset, J.; Koppe, L. The Gut Microbiome and the Gut-Liver-Kidney Axis in Metabolic-Associated Steatotic Liver Disease and Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2025. [Google Scholar] [CrossRef]
- Gusev, E.; Solomatina, L.; Zhuravleva, Y.; Sarapultsev, A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int. J. Mol. Sci. 2021, 22, 11453. [Google Scholar] [CrossRef] [PubMed]
- Mambrini, S.P.; Grillo, A.; Colosimo, S.; Zarpellon, F.; Pozzi, G.; Furlan, D.; Amodeo, G.; Bertoli, S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front. Nutr. 2024, 11, 1426551. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Carrera-Bastos, P.; Castillo-García, A.; Lieberman, D.E.; Santos-Lozano, A.; Lucia, A. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 2023, 20, 475–494. [Google Scholar] [CrossRef]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef]
- Nardolillo, M.; Rescigno, F.; Bartiromo, M.; Piatto, D.; Guarino, S.; Marzuillo, P.; del Giudice, E.M.; Di Sessa, A. Interplay between metabolic dysfunction-associated fatty liver disease and renal function: An intriguing pediatric perspective. World J. Gastroenterol. 2024, 30, 2081–2086. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Mantovani, A.; Morieri, M.L.; Muraca, E.; Invernizzi, P.; Perseghin, G. Impact of MASLD and MetALD on clinical outcomes: A meta-analysis of preliminary evidence. Liver Int. 2024, 44, 1762–1767. [Google Scholar] [CrossRef]
- Stefan, N.; Yki-Järvinen, H.; Neuschwander-Tetri, B.A. Metabolic dysfunction-associated steatotic liver disease: Heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol. 2025, 13, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Armandi, A.; Pellegrinelli, V.; Vidal-Puig, A.; Bugianesi, E. Metabolic dysfunction-associated steatotic liver disease: A condition of heterogeneous metabolic risk factors, mechanisms and comorbidities requiring holistic treatment. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 314–328. [Google Scholar] [CrossRef]
- Pipitone, R.M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; Pennisi, G.; Grimaudo, S.; Petta, S. MAFLD: A multisystem disease. Ther. Adv. Endocrinol. Metab. 2023, 14, 204201882211455. [Google Scholar] [CrossRef]
- Loomba, R.; Wong, V.W. Implications of the new nomenclature of steatotic liver disease and definition of metabolic dysfunction-associated steatotic liver disease. Aliment. Pharmacol. Ther. 2024, 59, 150–156. [Google Scholar] [CrossRef]
- Diaz, L.A.; Ajmera, V.; Arab, J.P.; Huang, D.Q.; Hsu, C.; Lee, B.P.; Louvet, A.; Thiele, M.; Tavaglione, F.; Tincopa, M.; et al. An Expert Consensus Delphi Panel in MetALD: Opportunities and Challenges in Clinical Practice. Clin. Gastroenterol. Hepatol. 2025, S1542–S3565. [Google Scholar] [CrossRef]
- Kanwal, F.; Neuschwander-Tetri, B.A.; Loomba, R.; Rinella, M.E. Metabolic dysfunction-associated steatotic liver disease: Update and impact of new nomenclature on the American Association for the Study of Liver Diseases practice guidance on nonalcoholic fatty liver disease. Hepatology 2024, 79, 1212–1219. [Google Scholar] [CrossRef]
- Noureddin, M.; Wei, L.; Castera, L.; Tsochatzis, E.A. Embracing Change: From Nonalcoholic Fatty Liver Disease to Metabolic Dysfunction-Associated Steatotic Liver Disease Under the Steatotic Liver Disease Umbrella. Clin. Gastroenterol. Hepatol. 2024, 22, 9–11. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Infantino, G.; Celsa, C.; Di Maria, G.; Enea, M.; Vaccaro, M.; Cannella, R.; Ciccioli, C.; La Mantia, C.; Mantovani, A.; et al. Clinical outcomes of MAFLD versus NAFLD: A meta-analysis of observational studies. Liver Int. 2024, 44, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Sripongpun, P.; Kaewdech, A.; Udompap, P.; Kim, W.R. Characteristics and long-term mortality of individuals with MASLD, MetALD, and ALD, and the utility of SAFE score. JHEP Rep. 2024, 6, 101127. [Google Scholar] [CrossRef] [PubMed]
- Bilson, J.; Mantovani, A.; Byrne, C.D.; Targher, G. Steatotic liver disease, MASLD and risk of chronic kidney disease. Diabetes Metab. 2024, 50, 101506. [Google Scholar] [CrossRef]
- Suzuki, K.; Tamaki, N.; Kurosaki, M.; Takahashi, Y.; Yamazaki, Y.; Uchihara, N.; Tanaka, Y.; Miyamoto, H.; Yamada, M.; Keitoku, T.; et al. Concordance between metabolic dysfunction-associated steatotic liver disease and nonalcoholic fatty liver disease. Hepatol. Res. 2024, 54, 600–605. [Google Scholar] [CrossRef]
- Sandireddy, R.; Sakthivel, S.; Gupta, P.; Behari, J.; Tripathi, M.; Singh, B.K. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front. Cell Dev. Biol. 2024, 12, 1433857. [Google Scholar] [CrossRef]
- O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal Aging: Causes and Consequences. J. Am. Soc. Nephrol. 2017, 28, 407–420. [Google Scholar] [CrossRef]
- Du, K.; Wang, L.; Jun, J.H.; Dutta, R.K.; Maeso-Díaz, R.; Oh, S.H.; Ko, D.C.; Diehl, A.M. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. Nat. Aging 2024, 4, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Hakim, A.; Lin, K.-H.; Schwantes-An, T.-H.; Abreu, M.; Tan, J.; Guo, X.; Yates, K.P.; Lotta, L.; Verweij, N.; Loomba, R.; et al. A comprehensive evaluation of candidate genetic polymorphisms in a large histologically characterized MASLD cohort using a novel framework. Hepatol. Commun. 2025, 9, e0728. [Google Scholar] [CrossRef]
- Jurek, J.M.; Zablocka-Sowinska, K.; Clavero Mestres, H.; Reyes Gutiérrez, L.; Camaron, J.; Auguet, T. The Impact of Dietary Interventions on Metabolic Outcomes in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Comorbid Conditions, Including Obesity and Type 2 Diabetes. Nutrients 2025, 17, 1257. [Google Scholar] [CrossRef]
- Carvalho, K.D.; Daltro, C.; Daltro, C.; Cotrim, H.P. Renal injury and metabolic dysfunction-associated steatotic liver disease in patients with obesity. Arq. Gastroenterol. 2025, 62, e25008. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Kalaitzidis, R.G. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J. Gastroenterol. 2022, 28, 5691–5706. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Inukai, Y.; Ito, T.; Yokoyama, S.; Yamamoto, K.; Imai, N.; Ishizu, Y.; Honda, T.; Shimizu, T.; Hattori, M.; Takeyama, T.; et al. Type 2 Diabetes and Hypertension as Risk Factors for Advanced Fibrosis in Biopsy Proven Metabolic Dysfunction–Associated Steatotic Liver Disease. J. Dig. Dis. 2025, 25, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, K.; Shimizu, M.; Yamanouchi, M.; Hoshino, J.; Sakai, N.; Iwata, Y.; Toyama, T.; Kitajima, S.; Hara, A.; Yuzawa, Y.; et al. Clinicopathological features of fast eGFR decliners among patients with diabetic nephropathy. BMJ Open Diabetes Res. Care 2020, 8, e001157. [Google Scholar] [CrossRef]
- Gao, Z.; Deng, H.; Qin, B.; Bai, L.; Li, J.; Zhang, J. Impact of hypertension on liver fibrosis in patients with metabolic dysfunction-associated fatty liver disease. Front. Med. 2025, 12, 1539283. [Google Scholar] [CrossRef]
- Mantovani, A.; Targher, G. PNPLA3 variation and kidney disease. Liver Int. 2025, 45, e16010. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Oliveira, C.P.; Stefano, J.T.; Yokogawa, R.P.; Gomes-Gouvea, M.; Zitelli, P.M.Y.; Silva-Etto, J.M.K.; Martins, E.D.; Pessoa, M.G.; Alcantara, F.F.; et al. Polymorphism’s MBOAT7 as Risk and MTARC1 as Protection for Liver Fibrosis in MASLD. Int. J. Mol. Sci. 2025, 26, 6406. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Li, D.; Chen, S.; Chen, J.; Zhu, X.; Bai, F. Gut microbiome composition and metabolic activity in metabolic-associated fatty liver disease. Virulence 2025, 16, 2482158. [Google Scholar] [CrossRef]
- Woo, C.; Jeong, W.-I. Immunopathogenesis of liver fibrosis in steatotic liver disease. Clin. Mol. Hepatol. 2024, 30, 299–302. [Google Scholar] [CrossRef]
- Villarroel, C.; Karim, G.; Sehmbhi, M.; Debroff, J.; Weisberg, I.; Dinani, A. Advanced Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease Is Independently Associated with Reduced Renal Function. Gastro Hep. Adv. 2024, 3, 122–127. [Google Scholar] [CrossRef]
- Chekol Abebe, E.; Tilahun Muche, Z.; Behaile T/Mariam, A.; Mengie Ayele, T.; Mekonnen Agidew, M.; Teshome Azezew, M.; Abebe Zewde, E.; Asmamaw Dejenie, T.; Asmamaw Mengstie, M. The structure, biosynthesis, and biological roles of fetuin-A: A review. Front. Cell Dev. Biol. 2022, 10, 945287. [Google Scholar] [CrossRef]
- Castillo-Núñez, Y.; Almeda-Valdes, P.; González-Gálvez, G.; Arechavaleta-Granell Mdel, R. Metabolic dysfunction-associated steatotic liver disease and atherosclerosis. Curr. Diabetes Rep. 2024, 24, 158–166. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Airola, C.; Pallozzi, M.; Cerrito, L.; Santopaolo, F.; Stella, L.; Gasbarrini, A.; Ponziani, F.R. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023, 12, 1712. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Ou, Q.; Ou, X.; Pan, D. Association between non-alcoholic fatty liver disease and risk of sarcopenia: A systematic review and meta-analysis. BMJ Open 2024, 14, e078933. [Google Scholar] [CrossRef]
- Altajar, S.; Baffy, G. Skeletal Muscle Dysfunction in the Development and Progression of Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2020, 8, 414–423. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, L.; Li, W. Correlation of sarcopenia with progression of liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease: A study from two cohorts in China and the United States. Nutr. J. 2025, 24, 6. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Jha, R.K.; Keerti, A. Chronic Kidney Disease: Its Relationship with Obesity. Cureus 2022, 14, e30535. [Google Scholar] [CrossRef] [PubMed]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Zelber-Sagi, S.; Lazarus, J.V.; Wong, V.W.-S.; Yilmaz, Y.; Duseja, A.; Eguchi, Y.; Castera, L.; Pessoa, M.G.; Oliveira, C.P.; et al. Global Consensus Recommendations for Metabolic Dysfunction-Associated Steatotic Liver Disease and Steatohepatitis. Gastroenterology 2025. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Price, J.K.; Owrangi, S.; Gundu-Rao, N.; Satchi, R.; Paik, J.M. The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients with Type 2 Diabetes. Clin. Gastroenterol. Hepatol. 2024, 22, 1999–2010.e8. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; Wanner, C.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Ng, W.H.; Yeo, Y.H.; Kim, H.; Seki, E.; Rees, J.; Ma, K.S.-K.; Moylan, C.A.; Rodriquez, L.M.; Abdelmalek, M.; Villanueva, A.; et al. Renin-angiotensin-aldosterone system inhibitor use improves clinical outcomes in patients with metabolic dysfunction-associated steatotic liver diseases: Target trial emulation using real-world data. Hepatology 2025. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, Y.; Yang, H.; Ma, Z.; Liu, W.; Zhao, M.; Peng, X.; Qin, X.; Xia, Y. Dietary fiber intake, genetic predisposition of gut microbiota, and the risk of metabolic dysfunction-associated steatotic liver disease. Food Res. Int. 2025, 211, 116497. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Kamyshna, I.; Halabitska, I.; Petakh, P.; Kunduzova, O.; Oksenych, V.; Kamyshnyi, O. Unlocking the gut-liver axis: Microbial contributions to the pathogenesis of metabolic-associated fatty liver disease. Front. Microbiol. 2025, 16, 1577724. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, X. Does metabolic dysfunction-associated fatty liver disease increase the risk of chronic kidney disease? A meta-analysis of cohort studies. BMC Nephrol. 2024, 25, 467. [Google Scholar] [CrossRef] [PubMed]
- Mouzaki, M.; Yates, K.P.; Arce-Clachar, A.C.; Behling, C.; Blondet, N.M.; Fishbein, M.H.; Flores, F.; Adams, K.H.; Hertel, P.; Jain, A.K.; et al. Renal impairment is prevalent in pediatric NAFLD/MASLD and associated with disease severity. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 238–249. [Google Scholar] [CrossRef]
- Zuo, G.; Xuan, L.; Xin, Z.; Xu, Y.; Lu, J.; Chen, Y.; Dai, M.; Zhang, D.; Wang, W.; Li, M.; et al. New Nonalcoholic Fatty Liver Disease and Fibrosis Progression Associate with the Risk of Incident Chronic Kidney Disease. J. Clin. Endocrinol. Metab. 2021, 106, E3957–E3968. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Van Natta, M.L.; Clark, J.; Neuschwander-Tetri, B.A.; Diehl, A.; Dasarathy, S.; Loomba, R.; Chalasani, N.; Kowdley, K.; Hameed, B.; et al. Prospective Study of Outcomes in Adults with Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2021, 385, 1559–1569. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, H.; Liu, Y.; Hou, X.; Wei, L.; Bao, Y.; Yang, C.; Zong, G.; Wu, J.; Jia, W. Association of MAFLD with Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J. Clin. Endocrinol. Metab. 2022, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Tanaka, M.; Sato, T.; Akiyama, Y.; Endo, K.; Ogawa, T.; Suzuki, T.; Aida, H.; Kawaharata, W.; Nakata, K.; et al. Metabolic dysfunction-associated steatotic liver disease (SLD) and alcohol-associated liver disease, but not SLD without metabolic dysfunction, are independently associated with new onset of chronic kidney disease during a 10-year follow-up period. Hepatol. Res. 2024, 55, 34–45. [Google Scholar] [CrossRef]
- Heo, J.H.; Lee, M.Y.; Kim, S.H.; Zheng, M.-H.; Byrne, C.D.; Targher, G.; Sung, K.-C. Comparative associations of non-alcoholic fatty liver disease and metabolic dysfunction-associated steatotic liver disease with risk of incident chronic kidney disease: A cohort study. Hepatobiliary Surg. Nutr. 2024, 13, 801–813. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Zhang, Y.; Zhan, X.; Tian, X.; Li, J.; Wang, R.; He, Y.; Wang, A.; Wu, S. Severity and Remission of Metabolic Dysfunction–Associated Fatty/Steatotic Liver Disease with Chronic Kidney Disease Occurrence. J. Am. Heart Assoc. 2024, 13, e032604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, W.J.; Chen, W.; Pan, Z.; Zhang, J.; Fan, L.; Li, J. Metabolic dysfunction-associated steatotic liver disease-related hepatic fibrosis increases risk of insulin resistance, type 2 diabetes, and chronic kidney disease. Eur. J. Gastroenterol. Hepatol. 2024, 36, 802–810. [Google Scholar] [CrossRef]
- Targher, G.; Bertolini, L.; Rodella, S.; Lippi, G.; Franchini, M.; Zoppini, G.; Muggeo, M.; Day, C.P. NASH Predicts Plasma Inflammatory Biomarkers Independently of Visceral Fat in Men. Obesity 2008, 16, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, B.; Yin, J.; Hou, C.; Wang, Q. Targeting Insulin Resistance and Liver Fibrosis: CKD Screening Priorities in MASLD. Biomedicines 2025, 13, 842. [Google Scholar] [CrossRef] [PubMed]
- Manco, M.; Ciampalini, P.; DeVito, R.; Vania, A.; Cappa, M.; Nobili, V. Albuminuria and insulin resistance in children with biopsy proven non-alcoholic fatty liver disease. Pediatr. Nephrol. 2009, 24, 1211–1217. [Google Scholar] [CrossRef]
- Mitrofanova, A.; Merscher, S.; Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 2023, 19, 629–645. [Google Scholar] [CrossRef]
- Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.; Majumdar, S.S.; Bhattacharya, S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 18, 1279–1285. [Google Scholar] [CrossRef]
- Baffy, G.; Bosch, J. Overlooked subclinical portal hypertension in non-cirrhotic NAFLD: Is it real and how to measure it? J. Hepatol. 2022, 76, 458–463. [Google Scholar] [CrossRef]
- An, J.N.; Joo, S.K.; Koo, B.K.; Kim, J.H.; Oh, S.; Kim, W. Portal inflammation predicts renal dysfunction in patients with nonalcoholic fatty liver disease. Hepatol. Int. 2020, 14, 798–807. [Google Scholar] [CrossRef]
- Gurun, M.; Brennan, P.; Handjiev, S.; Khatib, A.; Leith, D.; Dillon, J.F.; Byrne, C.J.; Di Sessa, A. Increased risk of chronic kidney disease and mortality in a cohort of people diagnosed with metabolic dysfunction associated steatotic liver disease with hepatic fibrosis. PLoS ONE 2024, 19, e0299507. [Google Scholar] [CrossRef]
- Lonardo, A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: An updated narrative review. Metab. Target Organ Damage 2024, 4, 16. [Google Scholar] [CrossRef]
- Sun, W.; Fang, Y.; Zhou, B.; Mao, G.; Cheng, J.; Zhang, X.; Liu, Y.; Chen, H. The association of systemic inflammatory biomarkers with non-alcoholic fatty liver disease: A large population-based cross-sectional study. Prev. Med. Rep. 2024, 37, 102536. [Google Scholar] [CrossRef]
- Lai, J.; Wang, H.L.; Zhang, X.; Wang, H.; Liu, X. Pathologic Diagnosis of Nonalcoholic Fatty Liver Disease. Arch. Pathol. Lab. Med. 2022, 146, 940–946. [Google Scholar] [CrossRef]
- Yoneda, M.; Kobayashi, T.; Iwaki, M.; Nogami, A.; Saito, S.; Nakajima, A. Nonalcoholic Fatty Liver Disease as a Systemic Disease and the Need for Multidisciplinary Care. Gut Liver 2023, 17, 843–852. [Google Scholar] [CrossRef]
- Abdallah, H.; Khalil, M.; Awada, E.; Lanza, E.; Di Ciaula, A.; Portincasa, P. Metabolic dysfunction-associated steatotic liver disease (MASLD). Assessing metabolic dysfunction, cardiovascular risk factors, and lifestyle habits. Eur. J. Intern. Med. 2025, 138, 101–111. [Google Scholar] [CrossRef]
- Liu, A.; Huang, M.; Xi, Y.; Deng, X.; Xu, K. Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation. Biomedicines 2025, 13, 1422. [Google Scholar] [CrossRef]
- Sirota, J.C.; McFann, K.; Targher, G.; Chonchol, M.; Jalal, D.I. Association between nonalcoholic liver disease and chronic kidney disease: An ultrasound analysis from NHANES 1988-1994. Am. J. Nephrol. 2012, 36, 466–471. [Google Scholar] [CrossRef]
- Hydes, T.J.; Kennedy, O.J.; Buchanan, R.; Cuthbertson, D.J.; Parkes, J.; Fraser, S.D.S.; Roderick, P. The impact of non-alcoholic fatty liver disease and liver fibrosis on adverse clinical outcomes and mortality in patients with chronic kidney disease: A prospective cohort study using the UK Biobank. BMC Med. 2023, 21, 185. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Deng, Y.; Wang, J.; Zhao, H.; Zhang, J.; Xie, W. The association between NAFLD and risk of chronic kidney disease: A cross-sectional study. Ther. Adv. Chronic Dis. 2021, 12, 204062232110486. [Google Scholar] [CrossRef] [PubMed]
- Gbadamosi, S.O.; Nagelhout, E.; Sienko, D.; Lamarre, N.; Noshad, S.; Ding, Y.; Hoovler, A. Association of Index and Changes in Fibrosis-4 Score with Outcomes in Metabolic Dysfunction-Associated Steatohepatitis. Gastro Hep Advances 2025, 4, 100666. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, Q.; Gong, R. Association between metabolic associated fatty liver disease and chronic kidney disease: A cross-sectional study from NHANES 2017–2018. Diabetes Metab. Syndr. Obes. 2021, 14, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014, 20, 475. [Google Scholar] [CrossRef]
- Minichmayr, I.K.; Plan, E.L.; Weber, B.; Ueckert, S. A Model-Based Evaluation of Noninvasive Biomarkers to Reflect Histological Nonalcoholic Fatty Liver Disease Scores. Pharm. Res. 2024, 42, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Pichiri, I.; Zoppini, G.; Trombetta, M.; Bonora, E. Increased prevalence of chronic kidney disease in patients with Type 1 diabetes and non-alcoholic fatty liver. Diabet. Med. 2012, 29, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Rodella, S.; Lippi, G.; Zoppini, G.; Chonchol, M. Relationship between Kidney Function and Liver Histology in Subjects with Nonalcoholic Steatohepatitis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Rodella, S.; Zoppini, G.; Lippi, G.; Day, C.; Muggeo, M. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia 2008, 51, 444–450. [Google Scholar] [CrossRef]
- Targher, G.; Bertolini, L.; Chonchol, M.; Rodella, S.; Zoppini, G.; Lippi, G.; Zenari, L.; Bonora, E. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and retinopathy in type 1 diabetic patients. Diabetologia 2010, 53, 1341–1348. [Google Scholar] [CrossRef]
- Porrini, E.; Ruggenenti, P.; Luis-Lima, S.; Carrara, F.; Jiménez, A.; de Vries, A.P.J.; Torres, A.; Gaspari, F.; Remuzzi, G. Estimated GFR: Time for a critical appraisal. Nat. Rev. Nephrol. 2019, 15, 177–190. [Google Scholar] [CrossRef]
- Niizuma, S.; Nakamura, S.; Ishibashi-Ueda, H.; Yoshihara, F.; Kawano, Y. Kidney function and histological damage in autopsy subjects with myocardial infarction. Ren. Fail. 2011, 33, 847–852. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, S.; Wang, M.-F.; Huang, J.-F.; Liu, S.-Y.; Wu, S.-M.; Zhang, H.-Y.; Wu, Z.-M.; Liu, W.-Y.; Zhang, D.-C.; et al. Association between NAFLD and risk of prevalent chronic kidney disease: Why there is a difference between east and west? BMC Gastroenterol. 2020, 20, 139. [Google Scholar] [CrossRef]
- Miller, K.C.; Geyer, B.; Alexopoulos, A.S.; Moylan, C.A.; Pagidipati, N. Disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease Prevalence, Diagnosis, Treatment, and Outcomes: A Narrative Review. Dig. Dis. Sci. 2024, 70, 154–167. [Google Scholar] [CrossRef]
- Zhao, D.; Zheng, X.; Wang, L.; Xie, Y.; Chen, Y.; Zhang, Y. Overlap prevalence and interaction effect of cardiometabolic risk factors for metabolic dysfunction-associated steatotic liver disease. Nutr. Metab. 2025, 22, 10. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Alqahtani, S.A.; Eslam, M. MAFLD and chronic kidney disease: Two sides of the same coin? Hepatol. Int. 2023, 17, 519–521. [Google Scholar] [CrossRef]
- Liu, J.; Mu, C.; Li, K.; Luo, H.; Liu, Y.; Li, Z. Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Children and Adolescents: Systematic Review and Meta-Analysis. Int. J. Public Health 2021, 66, 1604371. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Nobili, V.; Anania, C.; Verdecchia, P.; Chiesa, C. Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk. World J. Gastroenterol. 2011, 17, 3082–3091. [Google Scholar] [PubMed]
- Mitsinikos, T.; Mrowczynski-Hernandez, P.; Kohli, R. Pediatric Nonalcoholic Fatty Liver Disease. Pediatr. Clin. N. Am. 2021, 68, 1309–1320. [Google Scholar] [CrossRef]
- Goyal, N.P.; Xanthakos, S.; Schwimmer, J.B. Metabolic dysfunction-associated steatotic liver disease in children. Gut 2025, 74, 669–677. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Charatcharoenwitthaya, P.; Treeprasertsuk, S.; Benson, J.T.; Enders, F.B.; Angulo, P. The natural history of non-alcoholic fatty liver disease in children: A follow-up study for up to 20 years. Gut 2009, 58, 1538–1544. [Google Scholar] [CrossRef]
- Pacifico, L.; Bonci, E.; Andreoli, G.M.; Di Martino, M.; Gallozzi, A.; De Luca, E.; Chiesa, C. The Impact of Nonalcoholic Fatty Liver Disease on Renal Function in Children with Overweight/Obesity. Int. J. Mol. Sci. 2016, 17, 1218. [Google Scholar] [CrossRef]
- Zhang, L.; El-Shabrawi, M.; Baur, L.A.; Byrne, C.D.; Targher, G.; Kehar, M.; Porta, G.; Lee, W.S.; Lefere, S.; Turan, S.; et al. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. Med 2024, 5, 797–815.e2. [Google Scholar] [CrossRef]
- Arab, J.P.; Díaz, L.A.; Rehm, J.; Im, G.; Arrese, M.; Kamath, P.S.; Lucey, M.R.; Mellinger, J.; Thiele, M.; Thursz, M.; et al. Metabolic Dysfunction and Alcohol-related Liver Disease (MetALD): Position statement by an expert panel on alcohol-related liver disease. J. Hepatol. 2024, 82, 744–756. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Krawczyk, M.; Frühbeck, G.; Portincasa, P. Synergistic and Detrimental Effects of Alcohol Intake on Progression of Liver Steatosis. Int. J. Mol. Sci. 2022, 23, 2636. [Google Scholar] [CrossRef] [PubMed]
- Marti-Aguado, D.; Calleja, J.L.; Vilar-Gomez, E.; Iruzubieta, P.; Rodríguez-Duque, J.C.; Del Barrio, M.; Puchades, L.; Rivera-Esteban, J.; Perelló, C.; Puente, A.; et al. Low-to-moderate alcohol consumption is associated with increased fibrosis in individuals with metabolic dysfunction-associated steatotic liver disease. J. Hepatol. 2024, 81, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Dixon, W.; Corey, K.; Luther, J.; Goodman, R.; Schaefer, E.A. Prevalence and clinical correlation of cardiometabolic risk factors in alcohol-related liver disease and MetALD. J. Clin. Exp. Hepatol. 2024, 15, 102492. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, X.; Kamili, K.; Luo, C.; Hu, Y.; Wang, D.; Wang, B.; Gao, P.; Tian, G. The relationship between alcohol consumption and chronic kidney disease in patients with nonalcoholic fatty liver disease. Scand. J. Gastroenterol. 2024, 59, 480–488. [Google Scholar] [CrossRef]
- Li, D.; Xu, J.; Liu, F.; Wang, X.; Yang, H.; Li, X. Alcohol Drinking and the Risk of Chronic Kidney Damage: A Meta-Analysis of 15 Prospective Cohort Studies. Alcohol. Clin. Exp. Res. 2019, 43, 1360–1372. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Calzadilla-Bertot, L.; Friedman, S.L.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Villa-Jimenez, O.; Vallin, S.L.; Diago, M.; Adams, L.A.; Romero-Gomez, M.; et al. Improvement in liver histology due to lifestyle modification is independently associated with improved kidney function in patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2017, 45, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Liu, Y.; Bai, S.; Jiang, J.; Zhou, H.; Luan, J.; Cao, L.; Lv, Y.; Zhang, Q.; et al. Adherence to healthy lifestyle was associated with an attenuation of the risk of chronic kidney disease from metabolic dysfunction–associated fatty liver disease: Results from two prospective cohorts. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102873. [Google Scholar] [CrossRef]
- Zhang, X.; Rouillard, N.; Mao, X.; Lai, R.; Cheung, R.; Sasaki, K.; Nguyen, M.H. Enhanced long-term outcomes with laparoscopic bariatric surgery in patients with severe obesity and metabolic dysfunction-associated steatotic liver disease: A retrospective cohort study. Hepatobiliary Surg. Nutr. 2023. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Au, K.; Yang, W. Resmetirom as an important cornerstone of multidisciplinary management of metabolic dysfunction-associated steatohepatitis. Hepatobiliary Surg. Nutr. 2025, 14, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-G.; Xu, X.-Y.; Yang, R.-X.; Nan, Y.-M.; Wei, L.; Jia, J.-D.; Zhuang, H.; Shi, J.-P.; Li, X.-Y.; Sun, C.; et al. Guideline for the Prevention and Treatment of Metabolic Dysfunction-associated Fatty Liver Disease (Version 2024). J. Clin. Transl. Hepatol. 2024, 12, 955–974. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Ozkaya, E.; Rosberger, S.; Sigel, K.M.; Doucette, J.T.; Bansal, M.B.; Taouli, B. Concordance of vibration-controlled transient elastography and magnetic resonance elastography for fibrosis staging in patients with metabolic dysfunction-associated steatotic liver disease. Eur. Radiol. 2025. [Google Scholar] [CrossRef]
- Ratziu, V.; Hompesch, M.; Petitjean, M.; Serdjebi, C.; Iyer, J.S.; Parwani, A.V.; Tai, D.; Bugianesi, E.; Cusi, K.; Friedman, S.L.; et al. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: Current status and future directions. J. Hepatol. 2024, 80, 335–351. [Google Scholar] [CrossRef]
- Zerehpooshnesfchi, S.; Lonardo, A.; Fan, J.-G.; Elwakil, R.; Tanwandee, T.; Altarrah, M.Y.; Örmeci, N.; Eslam, M. Dual etiology vs. MetALD: How MAFLD and MASLD address liver diseases coexistence. Metab. Target Organ Damage 2025, 5, 15. [Google Scholar] [CrossRef]
- Samanta, A.; Sarma, M.S. Metabolic dysfunction-associated steatotic liver disease: A silent pandemic. World J. Hepatol. 2024, 16, 511–516. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Effect on MASLD/Pathogenic Mechanisms | Effect on CKD/Pathogenic Mechanisms | Bidirectional Effect/Pathogenic Mechanisms |
---|---|---|---|
Metabolic Syndrome | Increases steatosis, MASH, and fibrosis, through ectopic fat accumulation, inflammation, oxidative stress, fibrogenic factors, dysregulation of PPAR-γ, ↑ leptin, ↓ adiponectin, and increased insulin resistance [45,46,47,48,49]. | Direct parenchymal compression by visceral fat, renal artery stenosis, glomerulosclerosis, proteinuria, ↓ GFR, and microvascular disease through ectopic fat accumulation, atherogenic dyslipidemias, activation of the RAAS, and ↑ advanced glycation end-products [11,21,50]. | MASLD and CKD worsen metabolic syndrome by increasing insulin resistance, dyslipidemia, and hypertension through inflammation, oxidative stress, uremia, metabolic acidosis, sedentarism, and further activation of the RAAS [7,47,51]. |
Genetic Polymorphisms | Mutations in PNPLA3, TM6SF2, MBOAT7, and GCKR genes cause steatosis/steatohepatitis and liver fibrosis through fat deposition and inflammation [52,53]. | These mutations promote glomerular and tubular lesions through lipotoxicity, inflammation, and insulin resistance [52,53]. | Not applicable |
Nutritional aspects | Hypercaloric and fructose-rich diets promote steatosis through insulin resistance and dyslipidemia [20,44]. | This diet induces nephrotoxicity through hyperuricemia, insulin resistance, and dyslipidemia [7,46]. | Not applicable |
Gut Dysbiosis | Toxins (LPS, TMAO) produced by harmful bacteria reach portal circulation and stimulate liver inflammation and fibrosis through activation of TLR, Kupffer cells, and stellate cells [8,54,55]. | LPS and TMAO trigger renal atherosclerosis and interstitial fibrosis through activation of TLR, oxidative stress, and inflammatory pathways [20,21]. | Hepatotoxins and increased urea levels in systemic circulation promote further intestinal absorption of LPS and TMAO through disruption of the gut barrier and increased permeability [54,56]. |
Aging | Associated with steatosis/steatohepatitis and fibrosis through mitochondrial dysfunction, low antioxidant capacity, and damage to sinusoidal cells [41,42]. | Renal artery stenosis and interstitial fibrosis through calcification, ↑ fetuin-A, ↓ adiponectin, and ↑ oxidative stress [38,57]. | Not applicable |
Platelet Activation | Promotes liver fibrosis and inflammation through cytokines (IL-6, TNF-alpha) and growth factors (PDGF, IGF-1, FGF, and TGF-beta) [58,59,60]. | Kidney fibrosis and atherosclerosis through these cytokines and growth factors [59,60]. | Parenchymal damage in both organs activates platelets through endothelial activation, oxidative stress, and systemic liberation of uremic toxins [13,40,60]. |
Sarcopenia | Induces liver inflammation and fibrosis through activation of hepatic stellate cells caused by myostatin liberation by sarcopenic muscles [61]. | Worsens renal function through systemic inflammation and insulin resistance [19]. | Reduced muscle mass through liver catabolism of amino acids and production of cytokines and ammonia (in case of cirrhosis). Additional sarcopenia through CKD-induced systemic inflammation, protein loss in dialysis, protein catabolism, and reduced anabolism, along with metabolic acidosis and sedentarism [40,62,63,64]. |
Authors, Year | Study Characteristics | Diagnosis of SLD/CKD | Main Findings | Comments |
---|---|---|---|---|
Liu et al., 2024 [73] | Systematic review and meta-analysis of 8 cohort studies from Asia and the UK, comprising 598,531 patients. Follow-up ranging from 4.6 to 12.9 years. Aim: to compare the incidence of CKD in persons with MAFLD and controls without MAFLD. | SLD: MAFLD criteria, diagnosed by ultrasound. CKD: eGFR < 60 mL/min/1.73 m2, proteinuria, or urine albumin/creatinine ratio ≥ 30 mg/g. | MAFLD was associated with a higher incidence of CKD (HR: 1.38, 95% CI: 1.24–1.53) adjusted for sex, body mass index, cardiovascular disease, diabetes, hypertension, and smoking status. | 1. Meta-analysis with high heterogeneity (I2 = 95%). 2. Seven of the eight studies were from Asia. 3. No assessment of MAFLD severity at baseline. |
Agustanti et al., 2023 [14] | Systematic review and meta-analysis of 11 studies (7 cross-sectional and 4 longitudinal) from Asia, Europe, and the USA, comprising 355,886 patients. Follow-up ranging from 4.6 to 6.5 years. Aim: to determine the incidence and prevalence of CKD according to the presence and severity of MAFLD at baseline. | SLD: MAFLD or NAFLD criteria, diagnosed by ultrasound, transient elastography, or FLI. CKD: eGFR < 60 mL/min/1.73 m2 or UACR of 30 mg/g or greater or proteinuria (positive dipstick test result of +1 or greater). | MAFLD was associated with higher prevalence (OR = 1.50, 95% CI 1.02–2.23) and incidence (HR = 1.35, 95% CI 1.18–1.52) of CKD adjusted for age, sex, comorbidities, study region, and follow-up duration. Significant liver fibrosis, but not steatosis, was associated with greater likelihood of developing CKD. | 1. Meta-analysis with high heterogeneity (I2: 97.7% for cross-sectional and 84.6% for longitudinal studies). 2. The exposure group included patients with either NAFLD or MAFLD criteria, leading to possible selection bias. 3. Absence of histological analysis of SLD. |
* Mantovani et al., 2022 [16] | Systematic review and meta-analysis of 13 longitudinal studies from Asia, Europe, and the USA, comprising 1,222,032 patients. Median follow-up of 9.7 years. Aim: to determine the incidence of CKD according to the presence and severity of MAFLD at baseline. | SLD: NAFLD criteria, diagnosed by liver enzymes, blood biomarkers, imaging methods, liver histology, or ICD-10 codes. CKD: eGFR < 60 mL/min/1.73 m2 with or without overt proteinuria. | NAFLD was associated with higher incidence of CKD (HR = 1.43, 95% CI 1.33–1.54) adjusted for age, sex, obesity, hypertension, diabetes, and other conventional CKD risk factors. | The authors suggest a possible association between the severity of NAFLD (especially liver fibrosis) and incident CKD but emphasize that the studies that assessed hepatic fibrosis did not include a control group without NAFLD, resulting in insufficient data for a meta-analysis. |
* Musso et al., 2014 [15] | Systematic review and meta-analysis of 33 studies (20 cross-sectional and 13 longitudinal) from Asia, the USA, Europe, and Saudi Arabia, comprising 63,902 patients. Follow-up ranging from 3 to 27 years. Aim: to determine the incidence and prevalence of CKD according to the presence and severity of NAFLD at baseline. | SLD: NAFLD criteria, diagnosed by liver histology, imaging (ultrasound, computer tomography, magnetic resonance imaging, spectroscopy), or biochemistry (elevations in serum liver enzymes). CKD: eGFR < 60 mL/min/1.73 m2, proteinuria (UACR, 24 h albumin excretion rate, fresh morning urine dipstick), or other abnormalities due to tubular disorders or structural abnormalities detected by electrolyte or urinary sediment alterations, histology, imaging, or history of kidney transplantation. | NAFLD was associated with higher prevalence (OR = 2.12, 95% CI 1.69–2.66) and incidence (HR = 1.79, 95% CI 1.65–1.95) of CKD. NASH was associated with higher prevalence (OR = 2.53, 95% CI 1.58–4.05) and incidence (HR = 2.12, 95% CI 1.42–3.17) of CKD than steatosis alone. Advanced liver fibrosis was associated with higher prevalence (OR = 5.20, 95% CI 3.14–8.61) and incidence (HR = 3.29, 95% CI 2.30–4.71) of CKD than non-advanced fibrosis. All findings were adjusted for diabetes status, traditional risk factors for CKD, obesity, and insulin resistance. | Only 5 studies with biopsy-proven NAFLD, totaling 690 patients, leading to possible small study bias. |
Sanyal, 2021 [76] | Prospective multicenter cohort study from the USA, including 1773 patients with NAFLD (with or without fibrosis). Median follow-up of 4 years. Aim: to determine longitudinal outcomes according to the severity of NAFLD. | SDL: NAFLD criteria, diagnosed by liver biopsy. CKD: decrease in eGFR of >40%. | Patients with stage F4 fibrosis had a decrease of more than 40% in the eGFR compared to those with stages F0 to F2 fibrosis (2.98 vs. 0.97 events per 100 person-years; HR = 1.9; 95% CI 1.1–3.4) adjusted for age, race, sex, length of biopsy specimen, and diabetes status. | 1. Limited generalizability (study conducted at tertiary care centers with predominantly White populations. 2. F3 fibrosis was not associated with a decrease in eGFR of >40% when compared to F0-F2 (HR = 0.9; 95% CI 0.6–1.6). |
Gao et al., 2024 [80] | Retrospective cohort study from China, including 79,540 patients. Median follow-up of 12.9 years. Aim: to determine the incidence of CKD according to the presence, severity, and remission of MAFLD/MASLD. | SLD: MAFLD and MASLD criteria, diagnosed by ultrasound. CKD: eGFR < 60 mL/min/1.73 m2 or positive proteinuria (≥1+). | MAFLD/MASLD was associated with a higher incidence of CKD (HR, 1.12 [95% CI, 1.09–1.16]); risk increased according to severity of steatosis (p < 0.001). Even after remission of MAFLD/MASLD, patients with prior moderate to severe hepatic steatosis still had a higher risk of CKD. Adjustments: age, sex, smoking, drinking, exercise, education, income, eGFR at baseline, uric acid, ALT, metabolic dysfunction, use of antihyperglycemic, antihypertensive, and antilipidemic agents. | Most patients in the study were male (80%). |
Mori et al., 2024 [78] | Retrospective cohort study from Japan, including 12,138 patients. Follow-up of 10 years. Aim: to determine the incidence of CKD according to SLD status at baseline (MASLD, MetALD, ALD, and SLD without metabolic dysfunction) compared to the incidence of CKD in non-SLD control subjects. | SLD: MASLD, MetALD, and ALD criteria, diagnosed by ultrasound. CKD: eGFR < 60 mL/min/1.73 m2 or proteinuria by dipstick. | The incidence of CKD was higher in individuals with MASLD (HR = 1.20; CI 1.08–1.33) and ALD (HR = 1.41; CI 1.05–1.88), but not MetALD (HR = 1.11; CI 0.90–1.36), when compared to those without SLD. Individuals with SLD without metabolic dysfunction had a lower incidence (HR = 0.61 [0.39–0.96]) than those without SLD. Adjustments: age, sex, baseline eGFR, smoking, diabetes, systemic hypertension, and dyslipidemia. | Study conducted in a single urban clinic (possibility of selection bias). |
* Liang et al., 2022 [77] | Prospective cohort study from China, including 6873 patients. Follow-up of 4.6 years. Aim: to compare the incidence of extra-hepatic diseases in persons with MAFLD and controls without MAFLD. | SLD: NAFLD and MAFLD criteria, diagnosed by ultrasound. CKD: eGFR < 60 mL/min/1.73 m2 or UACR 30 μg/mg or greater. | MAFLD was associated with a higher incidence of CKD (RR = 1.64; 95% CI 1.39–1.94). Similar associations for NAFLD were observed. Adjustments: age, sex, education, smoking status, and leisure-time exercise. | NAFLD and MAFLD were also associated with an increased incidence of diabetes and cardiovascular diseases. |
* Mouzaki et al., 2024 [74] | Prospective multicenter cohort study from the USA, including 1164 children (age 13 ± 3 years). Median follow-up of 2 years. Aims: to determine the prevalence of hyperfiltration or CKD in children with NAFLD/MASLD and determine links with liver disease severity. | SLD: MASLD/NAFLD criteria, diagnosed by biopsy. CKD: hyperfiltration or eGFR < 90 mL/min/1.73 m2. | Significant liver fibrosis was associated with hyperfiltration (OR: 1.45). Progression of renal impairment was not associated with change in liver disease severity. Adjustments: BMI, insulin resistance, hemoglobin A1c, blood pressure, age, ethnicity, race, gender, and T2DM. | 1. Most participants were Hispanic. 2. Short follow-up. 3. Study did not include proteinuria as a definition of CKD. |
* Zuo et al., 2021 [75] | Prospective cohort study from China, including 4042 patients aged 40 years or more. Mean follow-up of 4.4 years. Participants were divided into 4 groups at baseline: 57.4% participants with non-NAFLD, 13.2% with incident NAFLD, 21.6% with persistent NAFLD, and 7.8% with NAFLD resolution. Aim: to assess associations between changes in NAFLD status/progression of NAFLD fibrosis and the risk of incident CKD. | SLD: NAFLD criteria, diagnosed by ultrasound and NAFLD fibrosis score. CKD: UACR 30 mg/g or greater, or eGFR 60 mL/min/1.73 m2 or lower. | Incident NAFLD was associated with incident CKD (OR = 1.44; 95% CI, 1.003–2.06) compared to non-NAFLD. However, the risk of incident CKD was not significantly different between groups with NAFLD resolution and persistent NAFLD. In the persistent NAFLD group, fibrosis progression was associated with a higher incidence of CKD compared to stable fibrosis (OR = 2.82; 95% CI, 1.22–6.56). Adjustments: baseline and evolution of diabetes, hypertension, and obesity. | 1. The study population consisted of more women and older participants from a community-based population. 2. NAFLD and CKD at baseline and follow-up were determined concurrently, precluding the determination of causation. |
* Heo et al., 2024 [79] | Prospective cohort study from Korea, including 214,145 adults with normal kidney function at baseline. Median follow-up: 6.1 years. Aim: to compare the incidence of CKD among 5 groups of participants: without steatosis, NAFLD-only, MASLD-only, both NAFLD and MASLD, and SLD not categorized as NAFLD or MASLD. | SLD: NAFLD and MASLD criteria, diagnosed by ultrasound. CKD: eGFR < 60 mL/min/1.73 m2 or albuminuria. | The group meeting both NAFLD and MASLD criteria had the highest risk of CKD (HR = 1.21 [95% CI, 1.04–1.42]). The MASLD-only group had a similar risk (HR = 1.96 [95% CI, 1.44–2.67]), but NAFLD alone was not independently associated with CKD or albuminuria. Adjustments: age, sex, education, smoking history, exercise, alcohol intake, history of coronary artery disease, use of anti-hypertensive medications, and levels of eGFR at baseline. | Authors suggest that MASLD criteria are better than NAFLD criteria at identifying individuals at high risk of incident CKD or albuminuria. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto Maior, M.d.R.M.; Ribeiro, N.d.L.I.; Silva, H.V.V.; Lopes, E.P.; Costa, E.C. Metabolic Dysfunction-Associated Steatotic Liver Disease as a Risk Factor for Chronic Kidney Disease: A Narrative Review. Biomedicines 2025, 13, 2162. https://doi.org/10.3390/biomedicines13092162
Souto Maior MdRM, Ribeiro NdLI, Silva HVV, Lopes EP, Costa EC. Metabolic Dysfunction-Associated Steatotic Liver Disease as a Risk Factor for Chronic Kidney Disease: A Narrative Review. Biomedicines. 2025; 13(9):2162. https://doi.org/10.3390/biomedicines13092162
Chicago/Turabian StyleSouto Maior, Marcelo do Rego Maciel, Nathália de Lacerda Interaminense Ribeiro, Hannah Vicentini Vitoriano Silva, Edmundo Pessoa Lopes, and Emilia Chagas Costa. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease as a Risk Factor for Chronic Kidney Disease: A Narrative Review" Biomedicines 13, no. 9: 2162. https://doi.org/10.3390/biomedicines13092162
APA StyleSouto Maior, M. d. R. M., Ribeiro, N. d. L. I., Silva, H. V. V., Lopes, E. P., & Costa, E. C. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease as a Risk Factor for Chronic Kidney Disease: A Narrative Review. Biomedicines, 13(9), 2162. https://doi.org/10.3390/biomedicines13092162