Immunodynamic Disruption in Sepsis: Mechanisms and Strategies for Personalized Immunomodulation
Abstract
1. Introduction
2. Immunodynamic Disruption in Sepsis
Checkpoint Signaling and Treg Expansion
3. Mechanisms of Immune Dysfunction
3.1. Adaptive Immune Exhaustion
3.2. Innate Effector Failure
4. Mechanistic Ambiguities and Translational Targets
5. Persistent Immune Remnant
5.1. Epigenetic Reprogramming
5.2. Immunometabolic Alterations
5.3. Endothelial Dysfunction and Immunothrombosis
5.4. Clinically Relevant Biomarkers of PSCR
6. Experimental Models of Immunodysfunction
6.1. Classical Animal and In Vitro Models
6.2. Advanced and Translational Platforms
6.3. Strategies to Enhance Translational Relevance of Experimental Models
7. Adaptive Immune Collapse
7.1. Septic Lymphocytic Apoptosis
7.2. Septic Treg Suppression
7.3. Adaptive Immune Resuscitation
7.4. Sepsis Immune Phases
8. SIMMP–Sepsis: Toward an Integrative Framework
9. Clinical Implications of Sepsis-Induced Immunosuppression
9.1. Sepsis and Cancer Immunosurveillance
9.2. Pulmonary Immune Reprogramming
9.3. Calprotectin Endothelial Disruption
9.4. IL-36, Sepsis, and Lung Injury
9.5. Trained Immunity and IL-4
9.6. β1-Adrenergic Modulation
9.7. Tachycardia and Immune Regulation
10. Ebola-Driven Immunoparalysis
11. Post-Inflammatory Oncologic Surveillance
12. Precision Immunotherapy After Sepsis
13. Discussion
Limitations
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cell |
ASC | Apoptosis-Associated Speck-Like Protein Containing a CARD |
B cell | B lymphocyte |
CD | Cluster of Differentiation |
CLP | Cecal ligation and puncture |
CTLA-4 | Cytotoxic T lymphocyte–associated protein 4 |
DC | Dendritic cell |
DAMP | Damage-Associated Molecular Pattern |
HLA-DR | Human Leukocyte Antigen–DR isotype |
IL | Interleukin |
IL-7R | Interleukin-7 Receptor |
LAG-3 | Lymphocyte Activation Gene-3 |
LDN | Low-density neutrophil |
LPS | Lipopolysaccharide |
Ly6Chi | Lymphocyte Antigen 6 Complex, locus C high |
MDSC | Myeloid-derived suppressor cell |
mtDNA | Mitochondrial DNA |
NETs | Neutrophil Extracellular Traps |
NLRP3 | NOD-Like Receptor Family Pyrin Domain Containing 3 |
PAMP | Pathogen-Associated Molecular Pattern |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed Death-Ligand 1 |
STING | Stimulator of Interferon Genes |
SYRCLE | Systematic Review Centre for Laboratory Animal Experimentation |
T cell | T lymphocyte |
TCR | T cell receptor |
Treg | Regulatory T cell |
TNF | Tumor Necrosis Factor |
References
- Sundar, K.M.; Sires, M. Sepsis Induced Immunosuppression: Implications for Secondary Infections and Complications. Indian J. Crit. Care Med. 2013, 17, 162–169. [Google Scholar] [CrossRef]
- Baykara, N.; Akalın, H.; Arslantaş, M.K.; Hancı, V.; Çağlayan, Ç.; Kahveci, F.; Demirağ, K.; Baydemir, C.; Ünal, N.; Sepsis Study Group. Epidemiology of Sepsis in Intensive Care Units in Turkey: A Multicenter, Point-Prevalence Study. Crit. Care 2018, 22, 93. [Google Scholar] [CrossRef]
- Lundberg, O.H.M.; Lengquist, M.; Spångfors, M.; Annborn, M.; Bergmann, D.; Schulte, J.; Levin, H.; Melander, O.; Frigyesi, A.; Friberg, H. Circulating Bioactive Adrenomedullin as a Marker of Sepsis, Septic Shock and Critical Illness. Crit. Care 2020, 24, 636. [Google Scholar] [CrossRef]
- Ramakers, B.P.; Giamarellos-Bourboulis, E.J.; Tasioudis, C.; Coenen, M.J.H.; Kox, M.; Vermeulen, S.H.; Groothuismink, J.M.; van der Hoeven, J.G.; Routsi, C.; Savva, A.; et al. Effects of the 34C>T Variant of the AMPD1 Gene on Immune Function, Multi-Organ Dysfunction, and Mortality in Sepsis Patients. Shock 2015, 44, 542–547. [Google Scholar] [CrossRef]
- Labib, A. Sepsis Care Pathway 2019. Qatar Med. J. 2019, 2019, 4. [Google Scholar] [CrossRef]
- Jensen, I.J.; Sjaastad, F.V.; Griffith, T.S.; Badovinac, V.P. Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. J. Immunol. 2018, 200, 1543–1553. [Google Scholar] [CrossRef]
- McLellan, A.D.; Terbeck, G.; Mengling, T.; Starling, G.C.; Kiener, P.A.; Gold, R.; Bröcker, E.-B.; Leverkus, M.; Kämpgen, E. Differential Susceptibility to CD95 (Apo-1/Fas) and MHC Class II-Induced Apoptosis during Murine Dendritic Cell Development. Cell Death Differ. 2000, 7, 933–938. [Google Scholar] [CrossRef]
- Wakamatsu, E.; Machiyama, H.; Toyota, H.; Takeuchi, A.; Hashimoto, R.; Kozono, H.; Yokosuka, T. Indirect Suppression of CD4 T Cell Activation through LAG-3-Mediated Trans-Endocytosis of MHC Class II. Cell Rep. 2024, 43, 114655. [Google Scholar] [CrossRef]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T Cells in Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef]
- He, W.; Xiao, K.; Fang, M.; Xie, L. Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. Aging Dis. 2021, 12, 277–296. [Google Scholar] [CrossRef]
- Nasa, P.; Juneja, D.; Singh, O. Severe Sepsis and Septic Shock in the Elderly: An Overview. World J. Crit. Care Med. 2012, 1, 23–30. [Google Scholar] [CrossRef]
- Martín, S.; Pérez, A.; Aldecoa, C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front. Med. 2017, 4, 20. [Google Scholar] [CrossRef]
- Cao, C.; Yu, M.; Chai, Y. Pathological Alteration and Therapeutic Implications of Sepsis-Induced Immune Cell Apoptosis. Cell Death Dis. 2019, 10, 782. [Google Scholar] [CrossRef]
- Delano, M.J.; Ward, P.A. The Immune System’s Role in Sepsis Progression, Resolution, and Long-term Outcome. Immunol. Rev. 2016, 274, 330–353. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Fleishman, J.S.; Liu, X.; Wang, H.; Huo, L. Targeting Novel Regulated Cell death: Ferroptosis, Pyroptosis, and Autophagy in Sepsis-Associated Encephalopathy. Biomed. Pharmacother. 2024, 174, 116453. [Google Scholar] [CrossRef]
- Wang, T.S.; Deng, J.C. Molecular and Cellular Aspects of Sepsis-Induced Immunosuppression. J. Mol. Med. 2008, 86, 495–506. [Google Scholar] [CrossRef]
- Patil, N.K.; Bohannon, J.K.; Sherwood, E.R. Immunotherapy: A Promising Approach to Reverse Sepsis-Induced Immunosuppression. Pharmacol. Res. 2016, 111, 688–702. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Scicluna, B.P.; Arts, R.J.W.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.; Manjeri, G.R.; Wagenaars, J.A.L.; Cremer, O.L.; et al. Broad Defects in the Energy Metabolism of Leukocytes Underlie Immunoparalysis in Sepsis. Nat. Immunol. 2016, 17, 406–413. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nature 2014, 514, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Fan, J. Neutrophil in Reverse Migration: Role in Sepsis. Front. Immunol. 2021, 12, 656039. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, J.; Berner, R.; Löser, T.; Schöll, E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. Front. Netw. Physiol. 2021, 1, 730385. [Google Scholar] [CrossRef]
- Engelmann, B.; Massberg, S. Thrombosis as an Intravascular Effector of Innate Immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Chang, K.C.; Cobb, J.P.; Buchman, T.G.; Korsmeyer, S.J.; Karl, I.E. Prevention of Lymphocyte Cell Death in Sepsis Improves Survival in Mice. Proc. Natl. Acad. Sci. USA 1999, 96, 14541–14546. [Google Scholar] [CrossRef]
- Joshi, I.; Carney, W.P.; Rock, E.P. Utility of Monocyte HLA-DR and Rationale for Therapeutic GM-CSF in Sepsis Immunoparalysis. Front. Immunol. 2023, 14, 1130214. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Z.; Chen, X.; Yu, F.; Huang, H.; Shen, X.; Tan, Y.; Wu, Q. Relationship Between the Expression of PD-1 and CTLA-4 on T Lymphocytes and the Severity and Prognosis of Sepsis. Int. J. Gen. Med. 2023, 16, 1513–1525. [Google Scholar] [CrossRef]
- Padovani, C.M.; Yin, K. Immunosuppression in Sepsis: Biomarkers and Specialized Pro-Resolving Mediators. Biomedicines 2024, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Sheeja Prabhakaran, H.; Zhang, Y.-Y.; Luo, G.; He, W.; Liou, Y.-C. Mitochondrial Dysfunction in Sepsis: Mechanisms and Therapeutic Perspectives. Crit. Care 2024, 28, 292. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, H.; Li, G.; Wang, D.; Zhou, Q.; Wu, J.; Zheng, J.; Huang, J.; Slade, D.A.; Wu, X.; et al. STING-Mediated Intestinal Barrier Dysfunction Contributes to Lethal Sepsis. EBioMedicine 2019, 41, 497–508. [Google Scholar] [CrossRef]
- Cui, J.; Oehrl, S.; Ahmad, F.; Brenner, T.; Uhle, F.; Nusshag, C.; Rupp, C.; Funck, F.; Meisel, S.; Weigand, M.A.; et al. Detection of In Vivo Inflammasome Activation for Predicting Sepsis Mortality. Front. Immunol. 2020, 11, 613745. [Google Scholar] [CrossRef]
- Gierlikowska, B.; Stachura, A.; Gierlikowski, W.; Demkow, U. The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis-A Review. Int. J. Mol. Sci. 2022, 23, 5076. [Google Scholar] [CrossRef]
- Girardot, T.; Rimmelé, T.; Venet, F.; Monneret, G. Apoptosis-Induced Lymphopenia in Sepsis and Other Severe Injuries. Apoptosis 2017, 22, 295–305. [Google Scholar] [CrossRef]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight 2018, 3, e98960. [Google Scholar] [CrossRef]
- Lélu, K.; Dubois, C.; Evlachev, A.; Crausaz, M.; Baldazza, M.; Kehrer, N.; Brandely, R.; Schlesinger, Y.; Silvestre, N.; Marchand, J.-B.; et al. Viral Delivery of IL-7 Is a Potent Immunotherapy Stimulating Innate and Adaptive Immunity and Confers Survival in Sepsis Models. J. Immunol. 2022, 209, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.; Horie, S.; Laffey, J.G. Role of the Adaptive Immune Response in Sepsis. Intensive Care Med. Exp. 2020, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, E.; D’Angerio, M.; Ciobanu, A.L.; Masini, L.; Lo Tartaro, D.; Coloretti, I.; Busani, S.; Rubio, I.; Meschiari, M.; Franceschini, E.; et al. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024, 13, 439. [Google Scholar] [CrossRef]
- Cui, J.; Cai, W.; Zhang, L.; Wu, Y.; Huang, Y.; Zhao, W. Decreased Monocytic HLA-DR in Patients with Sepsis: Prediction of Diagnosis, Severity and Prognosis. Clin. Biochem. 2025, 135, 110851. [Google Scholar] [CrossRef]
- Nedel, W.; Deutschendorf, C.; Portela, L.V.C. Sepsis-Induced Mitochondrial Dysfunction: A Narrative Review. World J. Crit. Care Med. 2023, 12, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cai, S.; Li, X.; Wu, G. Sepsis-Induced Immunosuppression: Mechanisms, Biomarkers and Immunotherapy. Front. Immunol. 2025, 16, 1577105. [Google Scholar] [CrossRef]
- Sun, H.; Lee, H.-S.; Kim, S.H.-J.; Fernandes de Lima, M.; Gingras, A.R.; Du, Q.; McLaughlin, W.; Ablack, J.; Lopez-Ramirez, M.A.; Lagarrigue, F.; et al. IL-2 Can Signal via Chemokine Receptors to Promote Regulatory T Cells’ Suppressive Function. Cell Rep. 2023, 42, 112996. [Google Scholar] [CrossRef]
- Jones, D.M.; Read, K.A.; Oestreich, K.J. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4+ T Cell Populations. J. Immunol. 2020, 205, 1721–1730. [Google Scholar] [CrossRef]
- Mahmud, S.A.; Manlove, L.S.; Farrar, M.A. Interleukin-2 and STAT5 in Regulatory T Cell Development and Function. JAK-STAT 2013, 2, e23154. [Google Scholar] [CrossRef] [PubMed]
- Garduno, A.; Martín-Loeches, I. Targeting Sepsis: Disease Tolerance, Immune Resilience, and Compartmentalized Immunity. Biomedicines 2024, 12, 2420. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Calandra, T.; Soares, M.P.; Bauer, M.; Wiersinga, W.J.; Prescott, H.C.; Knight, J.C.; Baillie, K.J.; Bos, L.D.J.; Derde, L.P.G.; et al. Reframing Sepsis Immunobiology for Translation: Towards Informative Subtyping and Targeted Immunomodulatory Therapies. Lancet Respir. Med. 2024, 12, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Rudick, C.P.; Cornell, D.L.; Agrawal, D.K. Single versus Combined Immunoregulatory Approach Using PD-1 and CTLA-4 Modulators in Controlling Sepsis. Expert. Rev. Clin. Immunol. 2017, 13, 907–919. [Google Scholar] [CrossRef]
- Izquierdo-Condoy, J.S.; Vásconez-Gonzáles, J.; Morales-Lapo, E.; Tello-De-la-Torre, A.; Naranjo-Lara, P.; Fernández, R.; Hidalgo, M.R.; Escobar, A.; Yépez, V.H.; Díaz, A.M.; et al. Beyond the Acute Phase: A Comprehensive Literature Review of Long-Term Sequelae Resulting from Infectious Diseases. Front. Cell. Infect. Microbiol. 2024, 14, 1293782. [Google Scholar] [CrossRef]
- Silva, E.E.; Skon-Hegg, C.; Badovinac, V.P.; Griffith, T.S. The Calm after the Storm: Implications of Sepsis Immunoparalysis on Host Immunity. J. Immunol. 2023, 211, 711–719. [Google Scholar] [CrossRef]
- Lee, S.I.; Kim, N.Y.; Chung, C.; Park, D.; Kang, D.H.; Kim, D.K.; Yeo, M.-K.; Sun, P.; Lee, J.E. IL-6 and PD-1 Antibody Blockade Combination Therapy Regulate Inflammation and T Lymphocyte Apoptosis in Murine Model of Sepsis. BMC Immunol. 2025, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-L.; Yao, Y.; Zhang, X.; Chen, F.; Meng, X.-L.; Chen, X.-S.; Wang, C.-L.; Liu, Y.-C.; Tian, X.; Shou, S.-T.; et al. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front. Immunol. 2022, 13, 829210. [Google Scholar] [CrossRef]
- Jensen, I.J.; Li, X.; McGonagill, P.W.; Shan, Q.; Fosdick, M.G.; Tremblay, M.M.; Houtman, J.C.; Xue, H.-H.; Griffith, T.S.; Peng, W.; et al. Sepsis Leads to Lasting Changes in Phenotype and Function of Memory CD8 T Cells. eLife 2021, 10, e70989. [Google Scholar] [CrossRef]
- Durand, M.; Hagimont, E.; Louis, H.; Asfar, P.; Frippiat, J.-P.; Singer, M.; Gauchotte, G.; Labat, C.; Lacolley, P.; Levy, B.; et al. The β 1-Adrenergic Receptor Contributes to Sepsis-Induced Immunosuppression Through Modulation of Regulatory T-Cell Inhibitory Function. Crit. Care Med. 2022, 50, e707–e718. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Qu, M.; Li, W.; Wu, D.; Cata, J.P.; Miao, C. Neutrophil, Neutrophil Extracellular Traps and Endothelial Cell Dysfunction in Sepsis. Clin. Transl. Med. 2023, 13, e1170. [Google Scholar] [CrossRef]
- Tu, Q.; Li, Y.; Zhu, J.; Guo, L.; Liu, C.; Liu, L.; Yuan, Y.; Zou, Y.; Chen, F.; Yao, L.; et al. Mitochondrial DNA Mediates Immunoparalysis of Dendritic Cells in Sepsis via STING Signalling. Cell Prolif. 2022, 55, e13328. [Google Scholar] [CrossRef]
- Gao, D.-N.; Yang, Z.-X.; Qi, Q.-H. Roles of PD-1, Tim-3 and CTLA-4 in Immunoregulation in Regulatory T Cells among Patients with Sepsis. Int. J. Clin. Exp. Med. 2015, 8, 18998–19005. [Google Scholar] [PubMed]
- Nascimento, D.C.; Alves-Filho, J.C.; Sônego, F.; Fukada, S.Y.; Pereira, M.S.; Benjamim, C.; Zamboni, D.S.; Silva, J.S.; Cunha, F.Q. Role of Regulatory T Cells in Long-Term Immune Dysfunction Associated with Severe Sepsis. Crit. Care Med. 2010, 38, 1718–1725. [Google Scholar] [CrossRef]
- Kimmoun, A.; Louis, H.; Al Kattani, N.; Delemazure, J.; Dessales, N.; Wei, C.; Marie, P.Y.; Issa, K.; Levy, B. β1-Adrenergic Inhibition Improves Cardiac and Vascular Function in Experimental Septic Shock. Crit. Care Med. 2015, 43, e332–e340. [Google Scholar] [CrossRef]
- Zheng, L.; Duan, Y.; He, P.; Wu, M.; Wei, S.; Du, X.; Yao, R.; Yao, Y. Dysregulated Dendritic Cells in Sepsis: Functional Impairment and Regulated Cell Death. Cell Mol. Biol. Lett. 2024, 29, 81. [Google Scholar] [CrossRef]
- Lu, J.; Sun, K.; Yang, H.; Fan, D.; Huang, H.; Hong, Y.; Wu, S.; Zhou, H.; Fang, F.; Li, Y.; et al. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front. Immunol. 2021, 12, 732612. [Google Scholar] [CrossRef]
- Venet, F.; Chung, C.-S.; Kherouf, H.; Geeraert, A.; Malcus, C.; Poitevin, F.; Bohé, J.; Lepape, A.; Ayala, A.; Monneret, G. Increased Circulating Regulatory T Cells (CD4+CD25+CD127−) Contribute to Lymphocyte Anergy in Septic Shock Patients. Intensive Care Med. 2009, 35, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Koike, Y.; Shimura, T.; Okigami, M.; Ide, S.; Toiyama, Y.; Okugawa, Y.; Inoue, Y.; Araki, T.; Uchida, K.; et al. In Vivo Characterization of Neutrophil Extracellular Traps in Various Organs of a Murine Sepsis Model. PLoS ONE 2014, 9, e111888. [Google Scholar] [CrossRef] [PubMed]
- Chandrabhatla, B.; A V, A.; Puvvula, L.S.; Gopal, P.B. Decoding Inflammation: Predicting Sepsis in the ICU. Cureus 2024, 16, e75256. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, J.; Sun, Y.; Ding, X.; Zhang, X.; Liu, S.; Han, B.; Wang, H.; Duan, X.; Sun, T. A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Front. Public Health 2021, 9, 754348. [Google Scholar] [CrossRef]
- Cavaillon, J.-M.; Adib-Conquy, M. Bench-to-Bedside Review: Endotoxin Tolerance as a Model of Leukocyte Reprogramming in Sepsis. Crit. Care 2006, 10, 233. [Google Scholar] [CrossRef]
- Wang, N.; Lu, Y.; Zheng, J.; Liu, X. Of Mice and Men: Laboratory Murine Models for Recapitulating the Immunosuppression of Human Sepsis. Front. Immunol. 2022, 13, 956448. [Google Scholar] [CrossRef] [PubMed]
- Stortz, J.A.; Raymond, S.L.; Mira, J.C.; Moldawer, L.L.; Mohr, A.M.; Efron, P.A. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR J. 2017, 58, 90–105. [Google Scholar] [CrossRef]
- Muenzer, J.T.; Davis, C.G.; Dunne, B.S.; Unsinger, J.; Dunne, W.M.; Hotchkiss, R.S. Pneumonia after Cecal Ligation and Puncture: A Clinically Relevant “Two-Hit” Model of Sepsis. Shock 2006, 26, 565–570. [Google Scholar] [CrossRef]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal Ligation and Puncture: The Gold Standard Model for Polymicrobial Sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D.-Z.; Zhu, C.-L.; Ren, S.-C.; Sun, C.-Y.; Wang, Y.; Wang, J.-F. The Implication of Targeting PD-1:PD-L1 Pathway in Treating Sepsis through Immunostimulatory and Anti-Inflammatory Pathways. Front. Immunol. 2023, 14, 1323797. [Google Scholar] [CrossRef]
- Kumar, S.; Payal, N.; Srivastava, V.K.; Kaushik, S.; Saxena, J.; Jyoti, A. Neutrophil Extracellular Traps and Organ Dysfunction in Sepsis. Clin. Chim. Acta 2021, 523, 152–162. [Google Scholar] [CrossRef]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D’Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of Heart Rate Control with Esmolol on Hemodynamic and Clinical Outcomes in Patients with Septic Shock: A Randomized Clinical Trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Darden, D.B.; Kelly, L.S.; Fenner, B.P.; Moldawer, L.L.; Mohr, A.M.; Efron, P.A. Dysregulated Immunity and Immunotherapy after Sepsis. J. Clin. Med. 2021, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Arens, C.; Bajwa, S.A.; Koch, C.; Siegler, B.H.; Schneck, E.; Hecker, A.; Weiterer, S.; Lichtenstern, C.; Weigand, M.A.; Uhle, F. Sepsis-Induced Long-Term Immune Paralysis--Results of a Descriptive, Explorative Study. Crit. Care 2016, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.K.; Ghita, G.L.; Wang, Z.; Ozrazgat-Baslanti, T.; Raymond, S.L.; Mankowski, R.T.; Brumback, B.A.; Efron, P.A.; Bihorac, A.; Moore, F.A.; et al. The Development of Chronic Critical Illness Determines Physical Function, Quality of Life, and Long-Term Survival Among Early Survivors of Sepsis in Surgical ICUs. Crit. Care Med. 2019, 47, 566–573. [Google Scholar] [CrossRef]
- Huang, Z.; Fu, Z.; Huang, W.; Huang, K. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Sepsis: A Meta-Analysis. Am. J. Emerg. Med. 2020, 38, 641–647. [Google Scholar] [CrossRef]
- Coudereau, R.; Haem Rahimi, M.; Lukaszewicz, A.-C.; Cour, M.; Bidar, F.; Argaud, L.; Venet, F.; Monneret, G. Immature Neutrophils and Myeloid-Derived Suppressor Cells in Sepsis: Differences in Occurrence Kinetics. Crit. Care 2024, 28, 7. [Google Scholar] [CrossRef] [PubMed]
- Mira, J.C.; Brakenridge, S.C.; Moldawer, L.L.; Moore, F.A. Persistent Inflammation, Immunosuppression and Catabolism Syndrome. Crit. Care Clin. 2017, 33, 245–258. [Google Scholar] [CrossRef]
- Malavika, M.; Sanju, S.; Poorna, M.R.; Vishnu Priya, V.; Sidharthan, N.; Varma, P.; Mony, U. Role of Myeloid Derived Suppressor Cells in Sepsis. Int. Immunopharmacol. 2022, 104, 108452. [Google Scholar] [CrossRef]
- Maestraggi, Q.; Lebas, B.; Clere-Jehl, R.; Ludes, P.-O.; Chamaraux-Tran, T.-N.; Schneider, F.; Diemunsch, P.; Geny, B.; Pottecher, J. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis. Biomed. Res. Int. 2017, 2017, 7897325. [Google Scholar] [CrossRef]
- Falcão-Holanda, R.B.; Leite, G.G.F.; Brunialti, M.K.C.; Jasiulionis, M.G.; Salomão, R. ALTERED LEVELS OF H3K9AC, H3K4ME3, AND H3K27ME3 IN PROMOTERS OF DIFFERENTIALLY EXPRESSED GENES RELATED TO INNATE IMMUNE RESPONSE IN SEPTIC PATIENTS WITH DIFFERENT CLINICAL OUTCOMES. Shock 2023, 59, 882–891. [Google Scholar] [CrossRef]
- Karmodiya, K.; Krebs, A.R.; Oulad-Abdelghani, M.; Kimura, H.; Tora, L. H3K9 and H3K14 Acetylation Co-Occur at Many Gene Regulatory Elements, While H3K14ac Marks a Subset of Inactive Inducible Promoters in Mouse Embryonic Stem Cells. BMC Genom. 2012, 13, 424. [Google Scholar] [CrossRef]
- Bermick, J.R.; Lambrecht, N.J.; denDekker, A.D.; Kunkel, S.L.; Lukacs, N.W.; Hogaboam, C.M.; Schaller, M.A. Neonatal Monocytes Exhibit a Unique Histone Modification Landscape. Clin. Epigenetics 2016, 8, 99. [Google Scholar] [CrossRef]
- Ziogas, A.; Novakovic, B.; Ventriglia, L.; Galang, N.; Tran, K.A.; Li, W.; Matzaraki, V.; van Unen, N.; Schlüter, T.; Ferreira, A.V.; et al. Long-Term Histone Lactylation Connects Metabolic and Epigenetic Rewiring in Innate Immune Memory. Cell 2025, 188, 2992–3012.e16. [Google Scholar] [CrossRef]
- Cai, H.; Chen, X.; Liu, Y.; Chen, Y.; Zhong, G.; Chen, X.; Rong, S.; Zeng, H.; Zhang, L.; Li, Z.; et al. Lactate Activates Trained Immunity by Fueling the Tricarboxylic Acid Cycle and Regulating Histone Lactylation. Nat. Commun. 2025, 16, 3230. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shi, Y.; Zhang, H.; Miao, C. Epigenetic Mechanisms of Immune Remodeling in Sepsis: Targeting Histone Modification. Cell Death Dis. 2023, 14, 112. [Google Scholar] [CrossRef]
- Manzoli, T.F.; Troster, E.J.; Ferranti, J.F.; Sales, M.M. Prolonged Suppression of Monocytic Human Leukocyte Antigen-DR Expression Correlates with Mortality in Pediatric Septic Patients in a Pediatric Tertiary Intensive Care Unit. J. Crit. Care 2016, 33, 84–89. [Google Scholar] [CrossRef]
- Lee, M.J.; Bae, J.; Lee, J.H.; Park, Y.J.; Lee, H.A.R.; Mun, S.; Kim, Y.-S.; Yune, C.J.; Chung, T.N.; Kim, K. Serial Change of Endotoxin Tolerance in a Polymicrobial Sepsis Model. Int. J. Mol. Sci. 2022, 23, 6581. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, G.; Wang, X.; Liu, D. Metabolic Reprogramming Consequences of Sepsis: Adaptations and Contradictions. Cell Mol. Life Sci. 2022, 79, 456. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Xuan, Y.; Zhang, X.; Liu, Y.; Yang, S.; Yang, K. Immune Cell Metabolism and Metabolic Reprogramming. Mol. Biol. Rep. 2022, 49, 9783–9795. [Google Scholar] [CrossRef]
- Willmann, K.; Moita, L.F. Physiologic Disruption and Metabolic Reprogramming in Infection and Sepsis. Cell Metab. 2024, 36, 927–946. [Google Scholar] [CrossRef]
- Gritte, R.B.; Souza-Siqueira, T.; da Silva, E.B.; Oliveira, L.C.d.S.d.; Borges, R.C.; Alves, H.H.d.O.; Masi, L.N.; Murata, G.M.; Gorjão, R.; Levada-Pires, A.C.; et al. Evidence for Monocyte Reprogramming in a Long-Term Postsepsis Study. Crit. Care Explor. 2022, 4, e0734. [Google Scholar] [CrossRef]
- de Azambuja Rodrigues, P.M.; Valente, R.H.; Brunoro, G.V.F.; Nakaya, H.T.I.; Araújo-Pereira, M.; Bozza, P.T.; Bozza, F.A.; Trugilho, M.R. de O. Proteomics Reveals Disturbances in the Immune Response and Energy Metabolism of Monocytes from Patients with Septic Shock. Sci. Rep. 2021, 11, 15149. [Google Scholar] [CrossRef]
- Caldwell, B.A.; Wu, Y.; Wang, J.; Li, L. Altered DNA Methylation Underlies Monocyte Dysregulation and Immune Exhaustion Memory in Sepsis. Cell Rep. 2024, 43, 113894. [Google Scholar] [CrossRef]
- Ferreira, B.L.; Sousa, M.B.; Leite, G.G.F.; Brunialti, M.K.C.; Nishiduka, E.S.; Tashima, A.K.; van der Poll, T.; Salomão, R. Glucose Metabolism Is Upregulated in the Mononuclear Cell Proteome during Sepsis and Supports Endotoxin-Tolerant Cell Function. Front. Immunol. 2022, 13, 1051514. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, B.; Habibi, E.; Wang, S.Y.; Arts, R.J.W.; Davar, R.; Megchelenbrink, W.; Kim, B.; Kuznetsova, T.; Kox, M.; Zwaag, J.; et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 2016, 167, 1354–1368.E14. [Google Scholar] [CrossRef] [PubMed]
- Bordon, Y. Macrophages: Innate Memory Training. Nat. Rev. Immunol. 2014, 14, 713. [Google Scholar] [CrossRef]
- Rusek, P.; Wala, M.; Druszczyńska, M.; Fol, M. Infectious Agents as Stimuli of Trained Innate Immunity. Int. J. Mol. Sci. 2018, 19, 456. [Google Scholar] [CrossRef]
- Saeed, S.; Quintin, J.; Kerstens, H.H.D.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.-C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; et al. Epigenetic Programming of Monocyte-to-Macrophage Differentiation and Trained Innate Immunity. Science 2014, 345, 1251086. [Google Scholar] [CrossRef]
- Rahmel, T.; Marko, B.; Nowak, H.; Bergmann, L.; Thon, P.; Rump, K.; Kreimendahl, S.; Rassow, J.; Peters, J.; Singer, M.; et al. Mitochondrial Dysfunction in Sepsis Is Associated with Diminished Intramitochondrial TFAM despite Its Increased Cellular Expression. Sci. Rep. 2020, 10, 21029. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Yang, L.; Peng, Y.; Wang, Q.; Gao, M.; Yang, M.; Xiao, X. Ginsenoside Rg3 Attenuates Sepsis-Induced Injury and Mitochondrial Dysfunction in Liver via AMPK-Mediated Autophagy Flux. Biosci. Rep. 2017, 37, BSR20170934. [Google Scholar] [CrossRef]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 (PGC-1) Family in Physiological and Pathophysiological Process and Diseases. Signal Transduct. Target. Ther. 2024, 9, 50. [Google Scholar] [CrossRef]
- Rius-Pérez, S.; Torres-Cuevas, I.; Millán, I.; Ortega, Á.L.; Pérez, S. PGC-1α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid. Med. Cell Longev. 2020, 2020, 1452696. [Google Scholar] [CrossRef] [PubMed]
- Maneta, E.; Aivalioti, E.; Tual-Chalot, S.; Emini Veseli, B.; Gatsiou, A.; Stamatelopoulos, K.; Stellos, K. Endothelial Dysfunction and Immunothrombosis in Sepsis. Front. Immunol. 2023, 14, 1144229. [Google Scholar] [CrossRef] [PubMed]
- Joffre, J.; Hellman, J.; Ince, C.; Ait-Oufella, H. Endothelial Responses in Sepsis. Am. J. Respir. Crit. Care Med. 2020, 202, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The Effects of Sepsis on Endothelium and Clinical Implications. Cardiovasc. Res. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- Tuculeanu, G.; Barbu, E.C.; Lazar, M.; Chitu-Tisu, C.E.; Moisa, E.; Negoita, S.I.; Ion, D.A. Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J. Clin. Med. 2023, 12, 601. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Inflammation and Thrombosis: Roles of Neutrophils, Platelets and Endothelial Cells and Their Interactions in Thrombus Formation during Sepsis. J. Thromb. Haemost. 2018, 16, 231–241. [Google Scholar] [CrossRef]
- Zou, S.; Jie, H.; Han, X.; Wang, J. The Role of Neutrophil Extracellular Traps in Sepsis and Sepsis-Related Acute Lung Injury. Int. Immunopharmacol. 2023, 124, 110436. [Google Scholar] [CrossRef]
- Cajander, S.; Kox, M.; Scicluna, B.P.; Weigand, M.A.; Mora, R.A.; Flohé, S.B.; Martin-Loeches, I.; Lachmann, G.; Girardis, M.; Garcia-Salido, A.; et al. Profiling the Dysregulated Immune Response in Sepsis: Overcoming Challenges to Achieve the Goal of Precision Medicine. Lancet Respir. Med. 2024, 12, 305–322. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A.; Rello, J. Managing Sepsis in the Era of Precision Medicine: Challenges and Opportunities. Expert. Rev. Anti Infect. Ther. 2022, 20, 871–880. [Google Scholar] [CrossRef]
- Mankowski, R.T.; Anton, S.D.; Ghita, G.L.; Brumback, B.; Darden, D.B.; Bihorac, A.; Leeuwenburgh, C.; Moldawer, L.L.; Efron, P.A.; Brakenridge, S.C.; et al. Older Adults Demonstrate Biomarker Evidence of the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) After Sepsis. J. Gerontol. Ser. A 2022, 77, 188–196. [Google Scholar] [CrossRef]
- Chen, P.; Stanojcic, M.; Jeschke, M.G. Differences between Murine and Human Sepsis. Surg. Clin. N. Am. 2014, 94, 1135–1149. [Google Scholar] [CrossRef]
- Masopust, D.; Sivula, C.P.; Jameson, S.C. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. J. Immunol. 2017, 199, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Sans-Fons, M.G.; Yeramian, A.; Pereira-Lopes, S.; Santamaría-Babi, L.F.; Modolell, M.; Lloberas, J.; Celada, A. Arginine Transport Is Impaired in C57Bl/6 Mouse Macrophages as a Result of a Deletion in the Promoter of Slc7a2 (CAT2), and Susceptibility to Leishmania Infection Is Reduced. J. Infect. Dis. 2013, 207, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Shalova, I.N.; Lim, J.Y.; Chittezhath, M.; Zinkernagel, A.S.; Beasley, F.; Hernández-Jiménez, E.; Toledano, V.; Cubillos-Zapata, C.; Rapisarda, A.; Chen, J.; et al. Human Monocytes Undergo Functional Re-Programming during Sepsis Mediated by Hypoxia-Inducible Factor-1α. Immunity 2015, 42, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.; Vardon-Bounes, F.; Merlet-Dupuy, V.; Conil, J.-M.; Buléon, M.; Fourcade, O.; Tack, I.; Minville, V. Sepsis Modeling in Mice: Ligation Length Is a Major Severity Factor in Cecal Ligation and Puncture. Intensive Care Med. Exp. 2016, 4, 22. [Google Scholar] [CrossRef]
- Wen, H. Sepsis Induced by Cecal Ligation and Puncture. Methods Mol. Biol. 2013, 1031, 117–124. [Google Scholar] [CrossRef]
- Chen, I.-C.; Chen, H.-H.; Jiang, Y.-H.; Hsiao, T.-H.; Ko, T.-M.; Chao, W.-C. Whole Transcriptome Analysis to Explore the Impaired Immunological Features in Critically Ill Elderly Patients with Sepsis. J. Transl. Med. 2023, 21, 141. [Google Scholar] [CrossRef]
- Caldwell, B.A.; Li, L. Epigenetic Regulation of Innate Immune Dynamics during Inflammation. J. Leukoc. Biol. 2024, 115, 589–606. [Google Scholar] [CrossRef]
- Meijer, E.M.; Koch, S.E.; van Dijk, C.G.M.; Maas, R.G.C.; Chrifi, I.; Szymczyk, W.; Besseling, P.J.; Pomp, L.; Koomen, V.J.C.H.; Buikema, J.W.; et al. 3D Human iPSC Blood Vessel Organoids as a Source of Flow-Adaptive Vascular Cells for Creating a Human-Relevant 3D-Scaffold Based Macrovessel Model. Adv. Biol. 2023, 7, e2200137. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, L.; Tong, X.; He, H.; Zheng, Y.; Xia, Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J. Inflamm. Res. 2024, 17, 9953–9973. [Google Scholar] [CrossRef]
- Liu, D.; Langston, J.C.; Prabhakarpandian, B.; Kiani, M.F.; Kilpatrick, L.E. The Critical Role of Neutrophil-Endothelial Cell Interactions in Sepsis: New Synergistic Approaches Employing Organ-on-Chip, Omics, Immune Cell Phenotyping and in Silico Modeling to Identify New Therapeutics. Front. Cell Infect. Microbiol. 2023, 13, 1274842. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Ayala, A.; Bahrami, S.; Bauer, M.; Boros, M.; Cavaillon, J.-M.; Chaudry, I.H.; Coopersmith, C.M.; Deutschman, C.; Drechsler, S.; et al. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Infection 2018, 46, 687–691. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Singer, M.; Leone, M. Sepsis: Key Insights, Future Directions, and Immediate Goals. A Review and Expert Opinion. Intensive Care Med. 2024, 50, 2043–2049. [Google Scholar] [CrossRef]
- Xiong, W.; Zhan, Y.; Xiao, R.; Liu, F. Advancing Sepsis Diagnosis and Immunotherapy Machine Learning-Driven Identification of Stable Molecular Biomarkers and Therapeutic Targets. Sci. Rep. 2025, 15, 8333. [Google Scholar] [CrossRef]
- van der Slikke, E.C.; An, A.Y.; Hancock, R.E.W.; Bouma, H.R. Exploring the Pathophysiology of Post-Sepsis Syndrome to Identify Therapeutic Opportunities. EBioMedicine 2020, 61, 103044. [Google Scholar] [CrossRef]
- Huang, C.Y.; Daniels, R.; Lembo, A.; Hartog, C.; O’Brien, J.; Heymann, T.; Reinhart, K.; Nguyen, H.B.; Sepsis Survivors Engagement Project (SSEP). Life after Sepsis: An International Survey of Survivors to Understand the Post-Sepsis Syndrome. Int. J. Qual. Health Care 2019, 31, 191–198. [Google Scholar] [CrossRef]
- Torres, J.S.S.; Tamayo-Giraldo, F.J.; Bejarano-Zuleta, A.; Nati-Castillo, H.A.; Quintero, D.A.; Ospina-Mejía, M.J.; Salazar-Santoliva, C.; Suárez-Sangucho, I.; Ortiz-Prado, E.; Izquierdo-Condoy, J.S. Sepsis and Post-Sepsis Syndrome: A Multisystem Challenge Requiring Comprehensive Care and Management—A Review. Front. Med. 2025, 12, 1560737. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.-L. Sepsis and Septic Shock. Nat. Rev. Dis. Prim. 2016, 2, 16045. [Google Scholar] [CrossRef] [PubMed]
- Divangahi, M.; Aaby, P.; Khader, S.A.; Barreiro, L.B.; Bekkering, S.; Chavakis, T.; van Crevel, R.; Curtis, N.; DiNardo, A.R.; Dominguez-Andres, J.; et al. Trained Immunity, Tolerance, Priming and Differentiation: Distinct Immunological Processes. Nat. Immunol. 2021, 22, 2–6. [Google Scholar] [CrossRef]
- Im, G.-B.; Melero-Martin, J.M. Mitochondrial Transfer in Endothelial Cells and Vascular Health. Trends Cell Biol. 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- van der Slikke, E.C.; Beumeler, L.F.E.; Holmqvist, M.; Linder, A.; Mankowski, R.T.; Bouma, H.R. Understanding Post-Sepsis Syndrome: How Can Clinicians Help? Infect. Drug Resist. 2023, 16, 6493–6511. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Hashimoto, K.; Yuan, S.; Zhang, J. The Gut-Liver Axis in Sepsis: Interaction Mechanisms and Therapeutic Potential. Crit. Care 2022, 26, 213. [Google Scholar] [CrossRef]
- Saavedra-Torres, J.S.; Pinzón-Fernández, M.V.; Ocampo-Posada, M.; Nati-Castillo, H.A.; Jiménez Hincapie, L.A.; Cadrazo-Gil, E.J.; Arias-Intriago, M.; Rojas-Cadena, M.; Tello-De-la-Torre, A.; Osejos, W.; et al. Inflammasomes and Signaling Pathways: Key Mechanisms in the Pathophysiology of Sepsis. Cells 2025, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, K.; Wang, Y.; Gu, Y. Comprehensive Review of Histone Lactylation: Structure, Function, and Therapeutic Targets. Biochem. Pharmacol. 2024, 225, 116331. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Du, J. Histone and Non-Histone Lactylation: Molecular Mechanisms, Biological Functions, Diseases, and Therapeutic Targets. Mol. Biomed. 2025, 6, 38. [Google Scholar] [CrossRef]
- Li, Y.; Wan, D.; Luo, X.; Song, T.; Wang, Y.; Yu, Q.; Jiang, L.; Liao, R.; Zhao, W.; Su, B. Circulating Histones in Sepsis: Potential Outcome Predictors and Therapeutic Targets. Front. Immunol. 2021, 12, 650184. [Google Scholar] [CrossRef] [PubMed]
- Srdić, T.; Đurašević, S.; Lakić, I.; Ružičić, A.; Vujović, P.; Jevđović, T.; Dakić, T.; Đorđević, J.; Tosti, T.; Glumac, S.; et al. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int. J. Mol. Sci. 2024, 25, 7770. [Google Scholar] [CrossRef]
- Caraballo, C.; Jaimes, F. Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death. Yale J. Biol. Med. 2019, 92, 629–640. [Google Scholar]
- Fry, D.E. Sepsis, Systemic Inflammatory Response, and Multiple Organ Dysfunction: The Mystery Continues. Am. Surg. 2012, 78, 1–8. [Google Scholar] [CrossRef]
- Qazi Arisar, F.A.; Abid, S.; Shaikh, P.A.; Awan, S. Impact of Sepsis and Non-Communicable Diseases on Prognostic Models to Predict the Outcome of Hospitalized Chronic Liver Disease Patients. World J. Hepatol. 2018, 10, 944–955. [Google Scholar] [CrossRef] [PubMed]
- DeMerle, K.M.; Angus, D.C.; Baillie, J.K.; Brant, E.; Calfee, C.S.; Carcillo, J.; Chang, C.-C.H.; Dickson, R.; Evans, I.; Gordon, A.C.; et al. Sepsis Subclasses: A Framework for Development and Interpretation. Crit. Care Med. 2021, 49, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Danahy, D.B.; Kurup, S.P.; Winborn, C.S.; Jensen, I.J.; Harty, J.T.; Griffith, T.S.; Badovinac, V.P. Sepsis-Induced State of Immunoparalysis Is Defined by Diminished CD8 T Cell-Mediated Antitumor Immunity. J. Immunol. 2019, 203, 725–735. [Google Scholar] [CrossRef]
- Danahy, D.B.; Jensen, I.J.; Griffith, T.S.; Badovinac, V.P. Cutting Edge: Polymicrobial Sepsis Has the Capacity to Reinvigorate Tumor-Infiltrating CD8 T Cells and Prolong Host Survival. J. Immunol. 2019, 202, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Condotta, S.A.; Khan, S.H.; Rai, D.; Griffith, T.S.; Badovinac, V.P. Polymicrobial Sepsis Increases Susceptibility to Chronic Viral Infection and Exacerbates CD8+ T Cell Exhaustion. J. Immunol. 2015, 195, 116–125. [Google Scholar] [CrossRef]
- Denstaedt, S.J.; Bustamante, A.C.; Newstead, M.W.; Moore, B.B.; Standiford, T.J.; Zemans, R.L.; Singer, B.H. Long-Term Survivors of Murine Sepsis Are Predisposed to Enhanced LPS-Induced Lung Injury and Proinflammatory Immune Reprogramming. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L451–L465. [Google Scholar] [CrossRef]
- Janicova, A.; Becker, N.; Xu, B.; Wutzler, S.; Vollrath, J.T.; Hildebrand, F.; Ehnert, S.; Marzi, I.; Störmann, P.; Relja, B. Endogenous Uteroglobin as Intrinsic Anti-Inflammatory Signal Modulates Monocyte and Macrophage Subsets Distribution Upon Sepsis Induced Lung Injury. Front. Immunol. 2019, 10, 2276. [Google Scholar] [CrossRef]
- Pinzón-Fernández, M.V.; Saavedra T, J.S.; López Garzón, N.A.; Pachón Bueno, J.S.; Tamayo-Giraldo, F.J.; Rojas Gomez, M.C.; Arias-Intriago, M.; Gaibor-Pazmiño, A.; López-Cortés, A.; Izquierdo-Condoy, J.S. NLRP3 and Beyond: Inflammasomes as Central Cellular Hub and Emerging Therapeutic Target in Inflammation and Disease. Front. Immunol. 2025, 16, 1624770. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, B.; Pi, Q.; Zhou, G.; Cheng, Z.; Qu, C.; Wang, X.; Kong, L.; Luo, S.; Du, D.; et al. Deficiency of S100A8/A9 Attenuates Pulmonary Microvascular Leakage in Septic Mice. Respir. Res. 2023, 24, 288. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Y.; Huang, X.; Li, J.; Sun, T.; Wang, X.; Zhao, Y.; Wang, T. S100A9 in Sepsis: A Biomarker for Inflammation and a Mediator of Organ Damage. Biochem. Biophys. Res. Commun. 2025, 752, 151484. [Google Scholar] [CrossRef] [PubMed]
- Denstaedt, S.J.; Spencer-Segal, J.L.; Newstead, M.; Laborc, K.; Zeng, X.; Standiford, T.J.; Singer, B.H. Persistent Neuroinflammation and Brain-Specific Immune Priming in a Novel Survival Model of Murine Pneumosepsis. Shock 2020, 54, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Shao, Y.; Lu, X.; Zhang, H.; Miao, C. S100A8/A9hi Neutrophils Induce Mitochondrial Dysfunction and PANoptosis in Endothelial Cells via Mitochondrial Complex I Deficiency during Sepsis. Cell Death Dis. 2024, 15, 462. [Google Scholar] [CrossRef]
- Cai, X.-Y.; Huang, G.-Q.; Zhou, Y.-M.; Li, D.-J. Targeting Calprotectin S100A8/A9 to Overcome AML Progression in DNMT3A-Mutant Cells. Curr. Med. Sci. 2025, 45, 458–468. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Chen, J.; Hou, H.; Guo, Z.; Yang, H.; Tang, H.; Chen, B. Interleukin-36 Is Overexpressed in Human Sepsis and IL-36 Receptor Deletion Aggravates Lung Injury and Mortality through Epithelial Cells and Fibroblasts in Experimental Murine Sepsis. Crit. Care 2023, 27, 490. [Google Scholar] [CrossRef]
- Scheibe, K.; Backert, I.; Wirtz, S.; Hueber, A.; Schett, G.; Vieth, M.; Probst, H.C.; Bopp, T.; Neurath, M.F.; Neufert, C. IL-36R Signalling Activates Intestinal Epithelial Cells and Fibroblasts and Promotes Mucosal Healing in Vivo. Gut 2017, 66, 823–838. [Google Scholar] [CrossRef]
- Wu, C.; Ma, J.; Yang, H.; Zhang, J.; Sun, C.; Lei, Y.; Liu, M.; Cao, J. Interleukin-37 as a Biomarker of Mortality Risk in Patients with Sepsis. J. Infect. 2021, 82, 346–354. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, S.; Peng, G.; Tang, Y.; Yang, Y. ICU and Sepsis: Role of Myeloid and Lymphocyte Immune Cells. J. Oncol. 2022, 2022, 7340266. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, D.P.; Röring, R.J.; Deckers, J.; de Dreu, A.; Toner, Y.C.; Prevot, G.; Priem, B.; Munitz, J.; Nugraha, E.G.; van Elsas, Y.; et al. Resolving Sepsis-Induced Immunoparalysis via Trained Immunity by Targeting Interleukin-4 to Myeloid Cells. Nat. Biomed. Eng. 2023, 7, 1097–1112. [Google Scholar] [CrossRef]
- Dong, C. Cytokine Regulation and Function in T Cells. Annu. Rev. Immunol. 2021, 39, 51–76. [Google Scholar] [CrossRef]
- Reddy, H.; Javvaji, C.K.; Malali, S.; Kumar, S.; Acharya, S.; Toshniwal, S. Navigating the Cytokine Storm: A Comprehensive Review of Chemokines and Cytokines in Sepsis. Cureus 2024, 16, e54275. [Google Scholar] [CrossRef]
- Jing, D.; Xiong, L.; Zhang, R.; Fang, H.; Chen, L. Esmolol Improves Sepsis Outcomes through Cardiovascular and Immune Modulation. Front. Pharmacol. 2025, 16, 1498227. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Santonocito, C.; Morelli, A.; Foex, P. Beta-Blocker Use in Severe Sepsis and Septic Shock: A Systematic Review. Curr. Med. Res. Opin. 2015, 31, 1817–1825. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; Liu, J. Early Heart Rate Fluctuation and Outcomes in Critically Ill Patients with Sepsis: A Retrospective Cohort Study of the MIMIC-IV Database. Heliyon 2023, 9, e20898. [Google Scholar] [CrossRef]
- Ning, Y.-L.; Li, W.-J.; Lu, X.; Zhang, Y.; Zhang, J.-W.; Zhou, J.-H. Association between Heart Rate and Mortality in Patients with Septic Shock: An Analysis Revealed by Time Series Data. BMC Infect. Dis. 2024, 24, 1088. [Google Scholar] [CrossRef] [PubMed]
- Iampietro, M.; Amurri, L.; Reynard, O.; Bukreyev, A. Interplay of Ebola Virus With Immune Cells Leading to Their Death by Diverse Mechanisms. J. Infect. Dis. 2023, 228, S582–S586. [Google Scholar] [CrossRef] [PubMed]
- Danahy, D.B.; Anthony, S.M.; Jensen, I.J.; Hartwig, S.M.; Shan, Q.; Xue, H.-H.; Harty, J.T.; Griffith, T.S.; Badovinac, V.P. Polymicrobial Sepsis Impairs Bystander Recruitment of Effector Cells to Infected Skin despite Optimal Sensing and Alarming Function of Skin Resident Memory CD8 T Cells. PLoS Pathog. 2017, 13, e1006569. [Google Scholar] [CrossRef]
- Ficenec, S.; Bond, N.; Zifodya, J.; Schieffelin, J. A Systematic Review of the Immuno-Inflammatory Dysfunction Secondary to Viral Hemorrhagic Fevers; Ebola and Lassa Fever. PLoS Negl. Trop. Dis. 2025, 19, e0013230. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mahale, P.; Engels, E.A. Sepsis and Risk of Cancer Among Elderly Adults in the United States. Clin. Infect. Dis. 2019, 68, 717–724. [Google Scholar] [CrossRef]
- Hästbacka, J.; But, A.; Strandberg, G.; Lipcsey, M. Risk of Malignant Disease in 1-Year Sepsis Survivors, a Registry-Based Nationwide Follow-up Study. Crit. Care 2023, 27, 376. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Colston, E.; Yende, S.; Angus, D.C.; Moldawer, L.L.; Crouser, E.D.; Martin, G.S.; Coopersmith, C.M.; Brakenridge, S.; Mayr, F.B.; et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559). Crit. Care Med. 2019, 47, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Heipertz, E.L.; Walker, W.E. Creation of BLT Humanized Mice for Sepsis Studies. Methods Mol. Biol. 2021, 2321, 137–154. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Colston, E.; Yende, S.; Crouser, E.D.; Martin, G.S.; Albertson, T.; Bartz, R.R.; Brakenridge, S.C.; Delano, M.J.; Park, P.K.; et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Nivolumab. Intensive Care Med. 2019, 45, 1360–1371. [Google Scholar] [CrossRef]
- Laudanski, K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int. J. Mol. Sci. 2021, 22, 2403. [Google Scholar] [CrossRef] [PubMed]
- Murrieta-Coxca, J.M.; Rodríguez-Martínez, S.; Cancino-Diaz, M.E.; Markert, U.R.; Favaro, R.R.; Morales-Prieto, D.M. IL-36 Cytokines: Regulators of Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int. J. Mol. Sci. 2019, 20, 1649. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Source or Cell | Clinical Significance | Limitations/Current Validation | References |
---|---|---|---|---|
HLA-DR | Monocytes | Reduced expression linked to immunosuppression and higher risk of secondary infections. | Variability in measurement techniques and lack of standardized clinical thresholds. | [23,24] |
PD-1/PD-L1 | T lymphocytes (PD-1) and antigen-presenting cells (PD-L1) | Overexpression correlates with T cell exhaustion and sepsis severity. | Requires flow cytometry; expression varies by disease phase. | [6,25] |
IL-10 | Immune cells (lymphocytes, macrophages) | Elevated levels indicate immunosuppression and worse prognosis. | Non-specific (elevated in other inflammatory conditions). | [26,27] |
mtDNA | Mitochondria released during cellular damage | Activates STING pathway in dendritic cells, associated with immunoparalysis. | Technically challenging to quantify; present in other tissue-damage pathologies. | [28,29] |
ASC-specks | Monocytes and neutrophils | Indicator of NLRP3 inflammasome activation; low levels predict higher mortality. | Complex detection (flow cytometry); limited clinical validation. | [30] |
LDN | Circulating neutrophils | Associated with immune dysfunction, high PD-L1 expression, and infection risk. | Isolation challenges; heterogeneous studies on prognostic value. | [20,31] |
Caspase-3/Caspase-9 | Lymphocytes and dendritic cells | Activation indicates apoptosis, contributing to lymphopenia and immunosuppression. | Measuring active caspases is technically challenging in clinical settings. | [23,32] |
IL-7R | T lymphocytes | Reduced expression linked to T cell dysfunction; potential therapeutic target. | Experimental-phase studies; variability based on patient immune status. | [6,33] |
Immune Cell Type | Key Dysregulated Pathways | Functional Outcome (Clinical Relevance) | Reference |
---|---|---|---|
Adaptive Immunity | |||
CD4+ T lymphocytes | Apoptosis; checkpoint overexpression (PD-1, CTLA-4) | Reduced proliferation, impaired helper function → susceptibility to secondary infections | [6] |
CD8+ T lymphocytes | Exhaustion, loss of cytotoxicity, PD-1/LAG-3 upregulation | Impaired tumor surveillance, viral reactivation | [50] |
B cells | Apoptosis, decreased antibody production | Low antibody levels → poor humoral response, increased reinfection risk | [13] |
Regulatory T cells | β1-adrenergic expansion, suppressive dominance | Inhibition of effector T cells → immune tolerance, persistent infection | [51] |
Innate immunity | |||
Neutrophils | Delayed apoptosis, PD-L1+ low-density neutrophils, impaired chemotaxis | Reduced pathogen clearance, tissue damage | [52] |
Monocytes | Decreased HLA-DR, metabolic reprogramming | Loss of antigen presentation → immunoparalysis | [18] |
Dendritic cells | Mitochondrial DNA–induced STING activation, apoptosis | Impaired T cell priming, poor adaptive activation | [53] |
Innate Immune Dysfunction | Reference | Adaptive Immune Dysfunction | Reference |
---|---|---|---|
Decreased HLA-DR expression in monocytes | [60] | Massive apoptosis of CD4+ and B lymphocytes | [13] |
Expansion of low-density neutrophils (LDNs) | [17] | T cell exhaustion (PD-1, LAG-3, CTLA-4 overexpression) | [54] |
Dysregulated NLRP3 inflammasome activation | [30] | Reduced IL-7R expression and impaired immune memory | [50] |
LPS tolerance and impaired PAMP response | [64] | Th17/Treg axis imbalance | [59] |
Elevated circulating mtDNA and STING pathway activation | [53] | Impaired antibody production and humoral response | [13] |
Altered neutrophil migration and chemotaxis | [31] | Loss of clonal diversity in T and B cell repertoires | [47] |
Affected Cell Type | Functional Alterations | Clinical Implications | Biomarkers | Reference |
---|---|---|---|---|
Monocytes | Mitochondrial dysfunction, reduced IL-6, TNF-α, and IFN-γ production. | Leads to immunoparalysis and increased reinfection risk. | ↓HLA-DR, ↓TLR5 | [60] |
CD4+ T Lymphocytes | Functional exhaustion. | Favors susceptibility to opportunistic infections. | ↑PD-1, ↑BTLA, ↓IFN-γ | [54] |
Endothelial Cells | Persistent activation, ↑ ROS, impaired nitric oxide signaling. | Promotes immunothrombosis and microvascular damage. | ↑ sVCAM-1, ↑ angiopoietin-2 | [105] |
Macrophages | Sustained epigenetic reprogramming. | Leads to chronic inflammatory hyper-responsiveness. | ↑ H3K4me3, ↑ H3K27ac | [80] |
Neutrophils | Persistent NETosis, release of cfDNA, and citrullinated histones. | Drives endothelial injury and thrombotic risk. | cfDNA, citrullinated H3 | [70] |
CD8+ TEMRA T Cells | Senescent phenotype, impaired cytotoxic function. | Reduces immune surveillance. | ↓Perforin, ↑CD57+ | [50] |
Model | Description | Strengths | Limitations | References |
---|---|---|---|---|
One-hit model | Single septic insults using LPS, live bacteria, or CLP to induce sepsis. | Reproduces early immune alterations such as T cell apoptosis and MDSC/Treg expansion. | Fails to replicate transition to prolonged immunosuppression. | [60,67] |
Two-hit model | Initial sepsis followed by a secondary infection (e.g., P. aeruginosa, C. albicans). | Mimics clinical progression; induces PD-1/PD-L1 upregulation and impaired lymphocyte proliferation. | High variability in secondary insult and timing; challenges for standardization. | [66,114] |
LPS tolerance | Repeated sublethal LPS doses induce hyporesponsive leukocyte phenotype. | Useful to study leukocyte reprogramming and cytokine suppression. | Does not reflect polymicrobial or systemic infection features of human sepsis. | [64] |
Level | Description | Key Pathophysiological Processes | Clinical Consequences | Reference |
---|---|---|---|---|
1. Acute Activation | Initial immune response to PAMPs and DAMPs | IL-1β, TNF, NETosis, complement activation, early mitochondrial dysfunction, redox imbalance, endothelial injury | Acute multiorgan dysfunction, need for life support, ICU admission | [1] |
2. Cellular Reprogramming | Persistent molecular alterations beyond clinical recovery | Trained immunity, maladaptive tolerance, epigenetic marks (H3K4me3, histone lactylation), Warburg-like metabolism, lactate and succinate accumulation | Sustained immunometabolic activation, relapsed risk, subclinical inflammation | [18] |
3. Prolonged Organ Dysfunction | Multisystemic consolidation of injury | Mitochondrial fragmentation, mtDNA release, incomplete mitophagy, elevated ICAM-1/VCAM-1, chronic neuroinflammation, gut dysbiosis | Persistent endotheliopathy, neurodysfunction, inflammatory liver injury, increased intestinal permeability | [99] |
4. Post-Sepsis Clinical Phenotypes | Dynamic clinical manifestations of persistent damage | Fatigue, myalgia, dysautonomia, cognitive decline, recurrent infections, multiorgan fibrosis, delayed mortality | Functional decline, frequent rehospitalizations, chronic disability, reduced quality of life | [128] |
5. Integrated Clinical Entity | Diagnostic proposal: SIMMP–Sepsis | Interaction across 5 domains: innate immunity, cellular metabolism, endothelium, neuroimmune axis, intestinal microbiota | Phenotypic stratification, extended monitoring, targeted immunometabolic intervention | [135] |
Component | Description | Reference |
---|---|---|
Immune Activation Timeline | Immune response in sepsis follows a biphasic pattern: an early hyperinflammatory phase (≤72 h) with cytokine storm and tissue damage, followed by a prolonged immunosuppressive phase (after day 7) marked by immune cell exhaustion and impaired pathogen clearance. | [60] |
Predominant Immune Cells | Early phase: neutrophils, macrophages, and natural killer cells. Late phase: exhausted CD4+/CD8+ T cells, monocytes with low HLA-DR expression, dysfunctional dendritic cells. | [14] |
Key Cytokines and Mediators | Proinflammatory: IL-1β, TNF-α, IL-6, ROS, NETs. Anti-inflammatory: IL-10, TGF-β; Immunosuppressive: PD-1, CTLA-4, BTLA expression, persistent lymphopenia. | [60] |
Molecular Dysregulation | NETosis, mitochondrial dysfunction, glycolytic shift, upregulation of immune checkpoints, and epigenetic reprogramming of immune cells. | [18] |
Clinical Manifestations | Early: fever, hypotension, ARDS, and multiorgan failure. Late: secondary infections, viral reactivation, impaired wound healing, prolonged ICU stay, and late mortality. | [59] |
Diagnostic Biomarkers | Elevated IL-6 and sTNFR1, circulating mitochondrial DNA, reduced HLA-DR on monocytes, persistent PD-1 on T cells, and S100A8/A9. | [77] |
Therapeutic Windows | The transition phase (days 3–7) is optimal for immune profiling and tailored interventions. Immunotherapies should be avoided during the hyperinflammatory phase and initiated during adaptive immune suppression. | [44] |
Potential Interventions | Early: source control, antibiotics, fluids, and vasopressors. Late: recombinant IL-7, anti–PD-1 antibodies, statins, antioxidants, metabolic modulators to restore immune function and prevent complications. | [33] |
Immunological Paradigms in Sepsis | Core Description | Limitations | Added Value of the Immunodynamic Disruption Model | Reference |
---|---|---|---|---|
Classic Paradigm (Hyperinflammation → Immunosuppression) | Sequential model with an early proinflammatory phase followed by immunosuppression. | Oversimplifies the timeline; does not account for overlapping responses or cell-specific contradictions. | Recognizes immune heterogeneity, temporal overlap, and dual-function immune cells. | [60] |
Previous Models (Immunoparalysis, Trained Immunity) | Describe immune tolerance or epigenetically driven immune enhancement. | Do not integrate coexisting immune states or account for time-dependent transitions. | Provide partial frameworks that are unified in the immunodynamic model. | [98] |
Proposed Model (Immunodynamic Disruption + Persistent Immune Remnant) [44] | Highlights dynamic coexistence of immune activation and suppression, driven by epigenetic, functional, and metabolic rewiring. | Remains under clinical validation. | Introduces the concept of a Persistent Immune Remnant to explain lasting immunometabolic dysfunction and supports stratified, biomarker-guided decision-making. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saavedra-Torres, J.S.; Pinzón-Fernández, M.V.; Nati-Castillo, H.A.; Cadena Correa, V.; Lopez Molina, L.C.; Gaitán, J.E.; Tenorio-Castro, D.; Lucero Guanga, D.A.; Arias-Intriago, M.; Tello-De-la-Torre, A.; et al. Immunodynamic Disruption in Sepsis: Mechanisms and Strategies for Personalized Immunomodulation. Biomedicines 2025, 13, 2139. https://doi.org/10.3390/biomedicines13092139
Saavedra-Torres JS, Pinzón-Fernández MV, Nati-Castillo HA, Cadena Correa V, Lopez Molina LC, Gaitán JE, Tenorio-Castro D, Lucero Guanga DA, Arias-Intriago M, Tello-De-la-Torre A, et al. Immunodynamic Disruption in Sepsis: Mechanisms and Strategies for Personalized Immunomodulation. Biomedicines. 2025; 13(9):2139. https://doi.org/10.3390/biomedicines13092139
Chicago/Turabian StyleSaavedra-Torres, Jhan S., María Virginia Pinzón-Fernández, Humberto Alejandro Nati-Castillo, Valentina Cadena Correa, Luis Carlos Lopez Molina, Juan Estaban Gaitán, Daniel Tenorio-Castro, Diego A. Lucero Guanga, Marlon Arias-Intriago, Andrea Tello-De-la-Torre, and et al. 2025. "Immunodynamic Disruption in Sepsis: Mechanisms and Strategies for Personalized Immunomodulation" Biomedicines 13, no. 9: 2139. https://doi.org/10.3390/biomedicines13092139
APA StyleSaavedra-Torres, J. S., Pinzón-Fernández, M. V., Nati-Castillo, H. A., Cadena Correa, V., Lopez Molina, L. C., Gaitán, J. E., Tenorio-Castro, D., Lucero Guanga, D. A., Arias-Intriago, M., Tello-De-la-Torre, A., Gaibor-Pazmiño, A., & Izquierdo-Condoy, J. S. (2025). Immunodynamic Disruption in Sepsis: Mechanisms and Strategies for Personalized Immunomodulation. Biomedicines, 13(9), 2139. https://doi.org/10.3390/biomedicines13092139