Analysis of Pro-Inflammatory and Anti-Inflammatory Cytokine Serum Concentrations in Pediatric Patients with Neuroblastoma: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
Ethical Considerations
2.2. Determination of MYCN Gene Amplification
2.3. Determination of Serum Levels of Pro-Inflammatory Cytokines, Chemokines and Anti-Inflammatory
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Relationship of Serum Levels of Pro-Inflammatory, Anti-Inflammatory Cytokines and Chemokines Between NB Cases and Control Group
3.3. Correlation of Serum Levels of Pro-Inflammatory, Anti-Inflammatory Cytokines and Chemokines in Patients with NB
3.4. Analysis of Serum Levels of Pro-Inflammatory and Anti-Inflammatory Cytokines and Chemokines and Prognostic Factors of Patients with NB
3.5. Association of Serum Cytokine Levels with the Clinicopathological Characteristics of Patients with NB
3.6. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cytokine | Low Levels (pg/mL) | High Levels (pg/mL) |
---|---|---|
IL-1β | ≤3.4 | >3.4 |
IL-6 | ≤7 | >7 |
IL-12 p40 | ≤41 | >41 |
IL-12 p70 | ≤65 | >65 |
TNF-α | ≤10 | >10 |
IFN-γ | ≤20 | >20 |
IL-8 | ≤40 | >40 |
MCP-1 | ≤1000 | >1000 |
IL-10 | ≤8 | >8 |
TGF-β1 | ≤5000 | >5000 |
Frequencies n (%) of Serum Levels of Pro-Inflammatory Cytokines. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IL-6 | TNF-α | IL-12p40 | IL-12p70 | IFN-γ | ||||||
Variables | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels |
INSS stage | ||||||||||
1 | 3 (11.1) | 2 (7.4) | 5 (18.5) | 0 | 2 (7.4) | 3 (11.1) | 5 (18.5) | 0 | 1 (3.7) | 4 (14.8) |
2b | 2 (7.4) | 0 | 2(7.4) | 0 | 0 | 2 (7.4) | 2 (7.4) | 0 | 1 (3.7) | 1 (3.7) |
3 | 6 (22.2) | 1 (3.7) | 6 (22.2) | 1 (3.7) | 5 (18.5) | 2 (7.4) | 6 (22.2) | 1 (3.7) | 2 (7.4) | 5 (18.5) |
4 | 6 (22.2) | 7 (25.9) | 11 (40.7) | 2 (7.4) | 7 (25.9) | 6 (22.2) | 12 (44.4) | 1 (3.7) | 3 (11.1) | 10 (37) |
p Value | 0.29 | 1 | 0.42 | 1 | 0.91 | |||||
INRG | ||||||||||
L1 | 4 (14.8) | 1 (3.7) | 5 (18.5) | 0 | 3 (11.1) | 2 (7.4) | 5 (18.5) | 0 | 2 (7.4) | 3 (11.1) |
L2 | 6 (22.2) | 2 (7.4) | 7(25.9) | 1 (3.7) | 4 (14.8) | 4 (14.8) | 7(25.9) | 1 (3.7) | 2 (7.4) | 6 (22.2) |
M | 7 (25.9) | 7 (25.9) | 12 (44.4) | 2 (7.4) | 7 (25.9) | 7 (25.9) | 13 (48.1) | 1 (3.7) | 3 (11.1) | 11 (40.7) |
MS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p Value | 0.36 | 1 | 1 | 1 | 0.84 | |||||
Risk | ||||||||||
Low | 4 (14.8) | 1 (3.7) | 5 (18.5) | 0 | 2 (7.4) | 3 (11.1) | 5 (18.5) | 0 | 2 (7.4) | 3 (11.1) |
Intermediate | 6 (22.2) | 1 (3.7) | 5 (18.5) | 2 (7.4) | 3 (11.1) | 4 (14.8) | 6 (22.2) | 1 (3.7) | 0 | 7 (25.9) |
High | 7 (25.9) | 8 (29.6) | 14 (51.9) | 1 (3.7) | 9 (33.3) | 6 (22.2) | 14 (51.9) | 1 (3.7) | 5 (18.5) | 10 (37) |
p Value | 0.22 | 0.23 | 0.66 | 1 | 0.17 | |||||
Differentiation | ||||||||||
Undifferentiated | 1 (3.7) | 1 (3.7) | 2 (7.4) | 0 | 1 (3.7) | 1 (3.7) | 2 (7.4) | 0 | 1(3.7) | 1(3.7) |
Partially differentiated | 12 (44.4) | 4 (14.8) | 13 (48.1) | 3 (11.1) | 7 (25.9) | 9 (33.3) | 14 (51.9) | 2 (7.4) | 3 (11.1) | 13 (48.1) |
Differentiated | 4 (14.8) | 1 (3.7) | 5 (18.5) | 0 | 4 (14.8) | 1 (3.7) | 5 (18.5) | 0 | 2 (7.4) | 3 (11.1) |
Not specified | 0 | 4(14.8) | 4 (14.8) | 0 | 2 (7.4) | 2 (7.4) | 4 (14.8) | 0 | 1(3.7) | 3 (11.1) |
p Value | 0.022 | 0.79 | 0.67 | 1 | 0.67 | |||||
Histology | ||||||||||
Favorable | 12 (44.4) | 3 (11.1) | 15 (55.6) | 0 | 7 (25.9) | 8 (29.6) | 13 (48.1) | 2 (7.4) | 5 (18.5) | 10 (37) |
Unfavorable | 5 (18.5) | 7 (25.9) | 9 (33.3) | 3 (11.1) | 7 (25.9) | 5 (18.5) | 12 (44.4) | 0 | 2 (7.4) | 10 (37) |
p Value | 0.05 | 0.07 | 0.41 | 0.29 | 0.29 | |||||
MYCN | ||||||||||
Amplified | 0 | 1(3.7) | 1 (3.7) | 0 | 1 (3.7) | 0 | 1 (3.7) | 0 | 0 | 1 (3.7) |
Not amplified | 17 (63) | 9 (33.3) | 23 (85.2) | 3 (11.1) | 13 (48.1) | 13 (48.1) | 24 (88.9) | 2 (7.4) | 7 (25.9) | 19 (70.4) |
p Value | 0.18 | 1 | 0.75 | 0.96 | 0.37 |
Frequencies n (%) of Serum Levels of Chemokines. | ||||
---|---|---|---|---|
IL-8 | MCP-1 | |||
Variables | Low Levels | High Levels | Low Levels | High Levels |
INSS stage | ||||
1 | 1 (3.7) | 4 (14.8) | 2 (7.4) | 3 (11.1) |
2b | 2 (7.4) | 0 | 1 (3.7) | 1 (3.7) |
3 | 3 (11.1) | 4 (14.8) | 4 (14.8) | 3 (11.1) |
4 | 7 (25.9) | 6 (22.2) | 8 (29.6) | 5 (18.5) |
p Value | 0.33 | 0.93 | ||
INRG | ||||
L1 | 3 (11.1) | 2 (7.4) | 3 (11.1) | 2 (7.4) |
L2 | 3 (11.1) | 5 (18.5) | 4 (14.8) | 4 (14.8) |
M | 7 (25.9) | 7 (25.9) | 8 (29.6) | 6 (22.2) |
MS | 0 | 0 | 0 | 0 |
p Value | 0.77 | 1 | ||
Risk | ||||
Low | 2 (7.4) | 3 (11.1) | 2 (7.4) | 3 (11.1) |
Intermediate | 3 (11.1) | 4 (14.8) | 3 (11.1) | 4 (14.8) |
High | 8 (29.6) | 7 (25.9) | 10 (37) | 5 (18.5) |
p Value | 1 | 0.38 | ||
Differentiation | ||||
Undifferentiated | 2 (7.4) | 0 | 2 (7.4) | 0 |
Partially differentiated | 9 (33.3) | 7 (25.9) | 11 (40.7) | 5 (18.5) |
Differentiated | 2 (7.4) | 3 (11.1) | 2 (7.4) | 3 (11.1) |
Not specified | 0 | 4 (14.8) | 0 | 4(14.8) |
p Value | 0.09 | 0.027 | ||
Histology (Shimada) | ||||
Favorable | 8 (29.6) | 7 (25.9) | 8 (29.6) | 7 (25.9) |
Unfavorable | 5 (18.5) | 7 (25.9) | 7 (25.9) | 5 (18.5) |
p Value | 0.7 | 1 | ||
MYCN | ||||
Amplified | 0 | 1 (3.7) | 0 | 1(3.7) |
Not amplified | 13 (48.1) | 13 (48.1) | 15 (55.6) | 11 (40.7) |
p Value | 0.25 | 0.22 |
Frequencies n (%) of Serum Levels of Anti-Inflammatory Cytokines. | ||||
---|---|---|---|---|
IL-10 | TGF-β1 | |||
Variables | Low Levels | High Levels | Low Levels | High Levels |
INSS Stage | ||||
1 | 3 (11.1) | 2 (7.4) | 4 (14.8) | 1 (3.7) |
2b | 1 (3.7) | 1 (3.7) | 1 (3.7) | 1 (3.7) |
3 | 6 (22.2) | 1 (3.7) | 6 (22.2) | 1 (3.7) |
4 | 11 (40.7) | 2 (7.4) | 12 (44.4) | 1 (3.7) |
p Value | 0.43 | 0.41 | ||
INRG | ||||
L1 | 4 (14.8) | 1 (3.7) | 4 (14.8) | 1 (3.7) |
L2 | 6 (22.2) | 2 (7.4) | 6 (22.2) | 2 (7.4) |
M | 11 (40.7) | 3(11.1) | 13 (48.1) | 1 (3.7) |
MS | 0 | 0 | 0 | 0 |
p Value | 1 | 0.48 | ||
Risk | ||||
Low | 3 (11.1) | 2 (7.4) | 4 (14.8) | 1 (3.7) |
Intermediate | 5 (18.5) | 2 (7.4) | 6 (22.2) | 1 (3.7) |
High | 13 (48.1) | 2 (7.4) | 13 (48.1) | 2 (7.4) |
p Value | 0.47 | 1 | ||
Differentiation | ||||
Undifferentiated | 1 (3.7) | 1 (3.7) | 2 (7.4) | 0 |
Partially differentiated | 14 (51.9) | 2 (7.4) | 13 (48.1) | 3 (11.1) |
Differentiated | 3 (11.1) | 2 (7.4) | 5 (18.5) | 0 |
Not specified | 3 (11.1) | 1 (3.7) | 3 (11.1) | 1 (3.7) |
p Value | 0.28 | 0.70 | ||
Histology (Shimada) | ||||
Favorable | 11 (40.7) | 4 (14.8) | 11 (40.7) | 4 (14.8) |
Unfavorable | 10 (37) | 2 (7.4) | 12 (44.4) | 0 |
p Value | 0.66 | 0.078 | ||
MYCN | ||||
Amplified | 1 (3.7) | 0 | 1 (3.7) | 0 |
Not amplified | 20 (74.1) | 6 (22.2) | 22 (81.5) | 4 (14.8) |
p Value | 1 | 0.92 |
References
- Georgakis, M.K.; Dessypris, N.; Baka, M.; Moschovi, M.; Papadakis, V.; Polychronopoulou, S.; Kourti, M.; Hatzipantelis, E.; Stiakaki, E.; Dana, H.; et al. Neuroblastoma among children in Southern and Eastern European cancer registries: Variations in incidence and temporal trends compared to US. Int. J. Cancer 2018, 142, 1977–1985. [Google Scholar] [CrossRef]
- Swift, C.C.; Eklund, M.J.; Kraveka, J.M.; Alazraki, A.L. Updates in Diagnosis, Management, and Treatment of Neuroblastoma. Radiographics 2018, 38, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Villegas, L.E.; Zapata-Tarrés, M.; Lezama del Valle, P. Resultados del tratamiento de niños con neuroblastoma en el Hospital Infantil de México “Federico Gómez”. Gac. Mex. Oncología 2014, 13, 26–30. [Google Scholar]
- Juárez-Ocaña, S.; Palma-Padilla, V.; González-Miranda, G.; Siordia-Reyes, A.G.; López-Aguilar, E.; Aguilar-Martínez, M.; Mejía-Aranguré, J.M.; Carreón-Cruz, R.; Rendón-Macías, M.E.; Fajardo-Gutiérrez, A. Epidemiological and some clinical characteristics of neuroblastoma in Mexican children (1996–2005). BMC Cancer 2009, 3, 266. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.A.; Abdessalam, S.; Aldrink, J.H.; Austin, M.; Heaton, T.E.; Bruny, J.; Ehrlich, P.; Dasgupta, R.; Baertschiger, R.M.; Lautz, T.B.; et al. Update on neuroblastoma. J. Pediatr. Surg. 2019, 54, 383–389. [Google Scholar] [CrossRef]
- Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, K.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Primers 2016, 2, 16078. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.O.; Bhatia, S.; Pinto, N.; London, W.B.; McGrady, P.; Crotty, C.; Sun, C.-L.; Cohn, S.L. Racial and ethnic disparities in risk and survival in children with neuroblastoma: A Children’s Oncology Group study. J. Clin. Oncol. 2011, 29, 76–82. [Google Scholar] [CrossRef]
- Takita, J. Molecular Basis and Clinical Features of Neuroblastoma. JMA J. 2021, 4, 321–331. [Google Scholar] [CrossRef]
- Cangemi, G.; Barco, S.; Reggiardo, G.; Viscardi, E.; Di Cataldo, A.; Garaventa, A.; Melioli, G.; Conte, M. Interchangeability between 24-hour collection and single spot urines for vanillylmandelic and homovanillic acid levels in the diagnosis of neuroblastoma. Pediatr. Blood Cancer 2013, 60, E170–E172. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, S.; Braga, F.; Luksch, R.; Terenziani, M.; Caruso, S.; Panteghini, M. Measurement of Serum Neuron-Specific Enolase in Neuroblastoma: Is There a Clinical Role? Clin. Chem. 2020, 66, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Barr, E.K.; Applebaum, M.A. Genetic Predisposition to Neuroblastoma. Children 2018, 5, 119. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Munjal, A. Interplay between inflammation and cancer. Adv. Protein Chem. Struct. Biol. 2020, 119, 199–245. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blavier, L.; Yang, R.M.; DeClerck, Y.A. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers 2020, 12, 2912. [Google Scholar] [CrossRef] [PubMed]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Li, L.; Yu, R.; Cai, T.; Chen, Z.; Lan, M.; Zou, T.; Wang, B.; Wang, Q.; Zhao, Y.; Cai, Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol. 2020, 88, 106939. [Google Scholar] [CrossRef]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef]
- Rallis, K.S.; Corrigan, A.E.; Dadah, H.; Stanislovas, J.; Zamani, P.; Makker, S.; Szabados, B.; Sideris, M. IL-10 in cancer: An essential thermostatic regulator between homeostatic immunity and inflammation a comprehensive review. Future Oncol. 2022, 18, 3349–3365. [Google Scholar] [CrossRef]
- Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K., Jr.; Brábek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022, 11, 3698. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 2014, 141, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol. 2014, 26, 54–74. [Google Scholar] [CrossRef]
- Ara, T.; Song, L.; Shimada, H.; Keshelava, N.; Russell, H.V.; Metelitsa, L.S.; Groshen, S.G.; Seeger, R.C.; DeClerck, Y.A. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 2009, 69, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Morandi, F.; Croce, M.; Cangemi, G.; Barco, S.; Rigo, V.; Carlini, B.; Amoroso, L.; Pistoia, V.; Ferrini, S.; Corrias, M.V. IL-10 and ARG-1 concentrations in bone marrow and peripheral blood of metastatic neuroblastoma patients do not associate with clinical outcome. J. Immunol. Res. 2015, 2015, 718975. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, E.; Ciurleo, R.; Petralia, M.C.; Fagone, P.; Bella, R.; Mangano, K.; Nicoletti, F.; Bramanti, P.; Basile, M.S. Emerging Role of the Macrophage Migration Inhibitory Factor Family of Cytokines in Neuroblastoma. Pathogenic Effectors and Novel Therapeutic Targets? Molecules 2020, 25, 1194. [Google Scholar] [CrossRef]
- Egler, R.A.; Burlingame, S.M.; Nuchtern, J.G.; Russell, H.V. Interleukin-6 and soluble interleukin-6 receptor levels as markers of disease extent and prognosis in neuroblastoma. Clin. Cancer Res. 2008, 14, 7028–7034. [Google Scholar] [CrossRef]
- Airoldi, I.; Meazza, R.; Croce, M.; Di Carlo, E.; Piazza, T.; Cocco, C.; D’Antuono, T.; Pistoia, V.; Ferrini, S.; Corrias, M.V. Low-dose interferon-gamma-producing human neuroblastoma cells show reduced proliferation and delayed tumorigenicity. Br. J. Cancer 2004, 90, 2210–2218. [Google Scholar] [CrossRef]
- Montaldo, P.G.; Chiesa, V.; Bado, M.; Raffaghello, L.; Rozzo, C.; Ponzoni, M. Induction of differentiation and apoptosis by interferon-gamma in human neuroblastoma cells in vitro as a dual and alternative early biological response. Cell Death Differ. 1997, 4, 150–158. [Google Scholar] [CrossRef]
- Janiczek-Polewska, M.; Szylberg, Ł.; Malicki, J.; Marszałek, A. Role of Interleukins and New Perspectives in Mechanisms of Resistance to Chemotherapy in Gastric Cancer. Biomedicines 2022, 10, 1600. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef]
- Singh, R.; Mishra, M.K.; Aggarwal, H. Inflammation, Immunity, and Cancer. Mediators Inflamm. 2017, 2017, 6027305. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Karin, M. Inflammation and oncogenesis: A vicious connection. Curr. Opin. Genet. Dev. 2010, 20, 65–71. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Siddiqui, S.A.; Ibrahim, M.; Hakim, M.L.; Ahammed, M.S.; Kabir, A.; Sultana, F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020, 8, 2050312120965752. [Google Scholar] [CrossRef]
- Michels, N.; van Aart, C.; Morisse, J.; Mullee, A.; Huybrechts, I. Chronic inflammation towards cancer incidence: A systematic review and meta-analysis of epidemiological studies. Crit. Rev. Oncol. Hematol. 2021, 157, 103177. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Okamura, S.; Yamaji, T.; Iwasaki, M.; Tsugane, S.; Shetty, V.; Koizumi, T. Plasma cytokine levels and the presence of colorectal cancer. PLoS ONE 2019, 14, e0213602. [Google Scholar] [CrossRef]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Fang, X.; Zhu, J.; Li, B.; Du, B. Predictive value of IL-10 and GFPA for postoperative prognosis in patients with brain glioma. Am. J. Transl. Res. 2024, 16, 5692–5699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhen, Z.; Guo, X.; Liao, R.; Yang, K.; Ye, L.; You, Z. Involvement of IL-10 and TGF-β in HLA-E-mediated neuroblastoma migration and invasion. Oncotarget 2016, 7, 44340–44349. [Google Scholar] [CrossRef]
- Fultang, L.; Gamble, L.D.; Gneo, L.; Berry, A.M.; Egan, S.A.; De Bie, F.; Yogev, O.; Eden, G.L.; Booth, S.; Brownhill, S.; et al. Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma. Cancer Res. 2019, 79, 611–624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, C.E.; Bauer, D.C.; Yuan, J.M.; Cauley, J.A. Circulating IL-10 is associated with reduced risk of prostate cancer in a prospective cohort of elderly men: The MrOS Study. Cancer Causes Control 2023, 34, 59–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winkler, B.; Taschik, J.; Haubitz, I.; Eyrich, M.; Schlegel, P.G.; Wiegering, V. TGFβ and IL10 have an impact on risk group and prognosis in childhood ALL. Pediatr. Blood Cancer 2015, 62, 72–79. [Google Scholar] [CrossRef]
- Hao, Y.; Baker, D.; Dijke, P.T. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int. J. Mol. Sci. 2019, 20, 2767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- David, C.J.; Massagué, J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 2018, 19, 419–435, Erratum in Nat. Rev. Mol. Cell Biol. 2018, 19, 479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, X.; Sun, X.; Ye, P. The Diagnostic Value of Serum TGF-β1, p2PSA Combined with PSA in Prostate Cancer. Altern. Ther. Health Med. 2024, 30, 184–191. [Google Scholar] [PubMed]
- Goncharov, A.P.; Elissaiou, C.D.; Farzalla, E.B.A.; Akhvlediani, G.; Vashakidze, N.; Kharaishvili, G. Signalling pathways in a nutshell: From pathogenesis to therapeutical implications in prostate cancer. Ann. Med. 2025, 57, 2474175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, H.Y.; Wei, F. TGF-β: An active participant in the immune and metabolic microenvironment of multiple myeloma: TGF-β in the microenvironment of multiple myeloma. Ann. Hematol. 2024, 103, 4351–4362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rana, P.S.; Soler, D.C.; Kort, J.; Driscoll, J.J. Targeting TGF-β signaling in the multiple myeloma microenvironment: Steering CARs and T cells in the right direction. Front. Cell Dev. Biol. 2022, 10, 1059715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Guo, H.; Wei, Y.; Cai, C.; Zhang, B.; Li, J. TGF-β induces growth suppression in multiple myeloma MM.1S cells via E2F1. Oncol. Lett. 2017, 14, 1884–1888, Erratum in Oncol. Lett. 2021, 21, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, Y.; Iwamura, A.; Shimada, Y.J.; Wakai, K.; Tamakoshi, A.; Iso, H. JACC Study Group. Transforming Growth Factor-β1 as a Predictor for the Development of Hepatocellular Carcinoma: A Nested Case-Controlled Study. EBioMedicine 2016, 12, 68–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirlekar, B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022, 10, 20503121211069012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39. [Google Scholar] [CrossRef]
- Huang, Q.; Lei, Y.; Li, X.; Guo, F.; Liu, M. A highlight of the mechanisms of immune checkpoint blocker resistance. Front. Cell Dev. Biol. 2020, 8, 580140. [Google Scholar] [CrossRef]
- Barrueto, L.; Caminero, F.; Cash, L.; Makris, C.; Lamichhane, P.; Deshmukh, R.R. Resistance to check point inhibition in cancer immunotherapy. Transl. Oncol. 2020, 13, 100738. [Google Scholar] [CrossRef]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: Why does check point inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Mittra, A.; Naqash, A.R.; Takebe, N. A review of mechanisms of resistance to immune checkpoint inhibitors and potential strategies for therapy. Cancer Drug Resist. 2020, 3, 252–275. [Google Scholar] [CrossRef]
- Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 2005, 7, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, C.; Sanmamed, M.F.; Rodríguez-Ruiz, M.E.; Teijeira, Á.; Oñate, C.; González, Á.; Ponz, M.; Schalper, K.A.; Pérez-Gracia, J.L.; Melero, I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017, 60, 24–31. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Katsikogianni, F.; Tsiouda, T.; Sakkas, A.; Katsikogiannis, N.; Zarogoulidis, K. Interleukin-8 and interleukin-17 for cancer. Cancer Investig. 2014, 32, 197–205. [Google Scholar] [CrossRef]
- Ferrer, F.A.; Pantschenko, A.G.; Miller, L.J.; Anderson, K.; Grunnet, M.; McKenna, P.H.; Kreutzer, D. Angiogenesis and neuroblastomas: Interleukin-8 and interleukin-8 receptor expression in human neuroblastoma. J. Urol. 2000, 164, 1016–1020. [Google Scholar] [CrossRef]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef]
- Czajka-Francuz, P.; Francuz, T.; Cisoń-Jurek, S.; Czajka, A.; Fajkis, M.; Szymczak, B.; Kozaczka, M.; Malinowski, K.P.; Zasada, W.; Wojnar, J.; et al. Serum cytokine profile as a potential prognostic tool in colorectal cancer patients-one center study. Rep. Pract. Oncol. Radiother. 2020, 25, 867–875. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Zhang, J.; Patel, L.; Pienta, K.J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 2010, 21, 41–48. [Google Scholar] [CrossRef]
- Li, M.H.; Harel, M.; Hla, T.; Ferrer, F. Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma. J. Pediatr. Surg. 2014, 49, 1286–1291. [Google Scholar] [CrossRef]
- Tanaka, T.; Kishimoto, T. The biology and medical implications of interleukin-6. Cancer Immunol. Res. 2014, 2, 288–294. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Tawara, K.; Oxford, J.T.; Jorcyk, C.L. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: Potential of anti-IL-6 therapies. Cancer Manag. Res. 2011, 3, 177–189. [Google Scholar] [CrossRef]
- Burger, R. Impact of interleukin-6 in hematological malignancies. Transfus. Med. Hemother. 2013, 40, 336–343. [Google Scholar] [CrossRef]
- Chen, M.F.; Chen, P.T.; Lu, M.S.; Lin, P.Y.; Chen, W.C.; Lee, K.D. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol. Cancer 2013, 12, 26. [Google Scholar] [CrossRef]
- Bezel, P.; Valaperti, A.; Steiner, U.; Scholtze, D.; Wieser, S.; Vonow-Eisenring, M.; Widmer, A.; Kowalski, B.; Kohler, M.; Franzen, D.P. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol. Immunother. 2021, 70, 1867–1876. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, L.; Luo, G.; Son, H.; Prectoni, J.H.; Zheng, W. Effect of the cytokine levels in serum on osteosarcoma. Tumour Biol. 2014, 35, 1023–1028. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, Y.; Dai, Z.J.; Wu, C.J.; Ji, Y.H.; Xu, J. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv. Clin. Exp. Med. 2017, 26, 421–426. [Google Scholar] [CrossRef]
- Alikhani, M.; Esmaeili, M.; Tashakoripour, M.; Mohagheghi, M.A.; Hosseini, M.E.; Touati, E.; Vosough, M.; Mohammadi, M. Alteration in Serum Levels of Tumor Necrosis Factor Alpha is associated with Histopathologic Progression of Gastric Cancer. Iran. Biomed. J. 2023, 27, 72–78. [Google Scholar] [CrossRef]
- Suzuki, S.; Mita, S.; Kamohara, H.; Sakamoto, K.; Ishiko, T.; Ogawa, M. IL-6 and IFN-gamma regulation of IL-10 production by human colon carcinoma cells. Int. J. Oncol. 2001, 18, 581–586. [Google Scholar]
- Lippitz, B.E. Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 2013, 14, e218–e228. [Google Scholar] [CrossRef]
- Park, J.W.; Chang, H.J.; Yeo, H.Y.; Han, N.; Kim, B.C.; Kong, S.Y.; Kim, J.; Oh, J.H. The relationships between systemic cytokine profiles and inflammatory markers in colorectal cancer and the prognostic significance of these parameters. Br. J. Cancer 2020, 123, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Guerrero, S.S.; Ramírez-Pacheco, A.; Rocha-Ramírez, L.M.; Hernández-Pliego, G.; Eguía-Aguilar, P.; Escobar-Sánchez, M.A.; Reyes-López, A.; Juárez-Villegas, L.E.; Sienra-Monge, J.J.L. Association of Genetic Polymorphisms and Serum Levels of IL-6 and IL-8 with the Prognosis in Children with Neuroblastoma. Cancers 2021, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Pacheco, A.; Moreno-Guerrero, S.S.; Rocha-Ramírez, L.M.; Hernández-Pliego, G.; Escobar-Sánchez, M.A.; Reyes-López, A.; Sienra-Monge, J.J.L.; Juárez-Villegas, L.E. Role of Genetic Polymorphisms -238 G>A and -308 G>A, and Serum TNF-α Levels in a Cohort of Mexican Pediatric Neuroblastoma Patients: Preliminary Study. Int. J. Mol. Sci. 2024, 25, 10590. [Google Scholar] [CrossRef]
- Berdat, P.A.; Wehrle, T.J.; Küng, A.; Achermann, F.; Sutter, M.; Carrel, T.P.; Nydegger, U.E. Age-specific analysis of normal cytokine levels in healthy infants. Clin. Chem. Lab. Med. 2003, 41, 1335–1339. [Google Scholar] [CrossRef]
- Decker, M.L.; Grobusch, M.P.; Ritz, N. Influence of Age and Other Factors on Cytokine Expression Profiles in Healthy Children-A Systematic Review. Front. Pediatr. 2017, 5, 255. [Google Scholar] [CrossRef]
- Larsson, A.; Carlsson, L.; Gordh, T.; Lind, A.L.; Thulin, M.; Kamali-Moghaddam, M. The effects of age and gender on plasma levels of 63 cytokines. J. Immunol. Methods 2015, 425, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Pine, S.R.; Mechanic, L.E.; Enewold, L.; Bowman, E.D.; Ryan, B.M.; Cote, M.L.; Wenzlaff, A.S.; Loffredo, C.A.; Olivo-Marston, S.; Chaturvedi, A.; et al. Differential Serum Cytokine Levels and Risk of Lung Cancer Between African and European Americans. Cancer Epidemiol Biomarkers Prev. 2016, 25, 488–497. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Bouras, E.; Karhunen, V.; Gill, D.; Huang, J.; Haycock, P.C.; Gunter, M.J.; Johansson, M.; Brennan, P.; Key, T.; Lewis, S.J.; et al. Circulating inflammatory cytokines and risk of five cancers: A Mendelian randomization analysis. BMC Med. 2022, 20, 3. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patients n = 27 (%) | Healthy Controls n = 27 (%) | |
---|---|---|---|
Age | <18 months | 16 (59.3) | 16 (59.3) |
18 months–5 years | 6 (22.2) | 6 (22.2) | |
>5 years | 5 (18.5) | 5 (18.4) | |
Sex | Male | 10 (37.03) | 10 (37.03) |
Female | 17 (62.97) | 17 (62.97) | |
INSS stage | 1 | 5 (18.5) | ----- |
2b | 2 (7.5) | ----- | |
3 | 7 (25.9) | ----- | |
4 | 13 (48.1) | ----- | |
4S | 0 (0) | ----- | |
INRG | L1 | 5 (18.5) | ----- |
L2 | 8 (29.6) | ----- | |
M | 14 (51.9) | ----- | |
MS | 0 (0) | ----- | |
Risk | Low | 5 (18.5) | ----- |
Intermediate | 7 (25.9) | ----- | |
High | 15 (55.6) | ----- | |
Primary Tumor Site | Adrenal | 8 (29.6) | ----- |
Retroperitoneal | 11 (40.7) | ----- | |
Paraspinal | 3 (11.1) | ----- | |
Abdomen/Pelvic | 1 (3.7) | ----- | |
Mediastinal | 4 (14.9) | ||
Differentiation | Undifferentiated | 2 (7.4) | ----- |
Partially differentiated | 16 (59.3) | ----- | |
Differentiated | 5 (18.5) | ----- | |
Not specified | 4 (14.8) | ----- | |
Histology (Shimada) | Favorable | 15 (55.6) | ----- |
Unfavorable | 12 (44.4) | ----- | |
MYCN | Amplified | 1 (3.7) | ----- |
Not amplified | 26 (96.3) | ----- | |
Metastasis | Yes | 15 (55.5) | ----- |
No | 12 (44.5) | ----- | |
Relapse | Yes | 7 (25.9) | |
Death | Yes | 6 (22.2) |
Cytokines (pg/mL) | IL-1β | IL-6 | IL-12 p40 | IL-12 p70 | TNFα | IFNγ | IL-8 | MCP1 | IL-10 |
---|---|---|---|---|---|---|---|---|---|
IL-1β | ---- | ||||||||
IL-6 | −0.055 | ---- | |||||||
IL-12 p40 | −0.162 | −0.068 | ---- | ||||||
IL-12 p70 | −0.105 | −0.092 | 0.742 * | ---- | |||||
TNFα | 0.071 | 0.667 * | −0.191 | −0.132 | ---- | ||||
IFNγ | −0.002 | −0.196 | 0.164 | −0.028 | −0.162 | ---- | |||
IL-8 | −0.036 | 0.641 * | −0.227 | −0.215 | 0.637 * | −0.281 | ---- | ||
MCP1 | 0.000 | 0.359 | −0.091 | −0.073 | −0.138 | 0.047 | 0.287 | ---- | |
IL-10 | −0.080 | -0.112 | 0.010 | −0.046 | −0.061 | 0.542 * | −0.268 | 0.034 | ---- |
TGF-β1 | 0.292 | 0.116 | −0.096 | −0.180 | −0.198 | −0.099 | 0.256 | 0.279 | −0.358 |
IL-6 | TNF-α | IL-12p40 | IL-12p70 | IFN-γ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels | Low Levels | High Levels |
Risk | ||||||||||
Low/Intermediate | 10 (37) | 2 (7.4) | 10 (37) | 2 (7.4) | 5 (18.5) | 7 (25.9) | 11 (40.7) | 1 (3.7) | 2 (7.4) | 10 (37) |
High | 7 (25.9) | 8 (29.6) | 14 (51.9) | 1 (3.7) | 9 (33.3) | 6(22.2) | 14 (51.9) | 1 (3.7) | 5 (18.5) | 10 (37) |
p Value | 0.105 | 0.33 | 0.18 | 0.78 | 0.12 | |||||
OR (95% CI) | 4.5 (0.73–27.7) | 0.3 (0.023–3.79) | 0.34 (0.06–1.68) | 0.66 (0.03–11.93) | 0.16 (0.01–1.64) | |||||
INSS stage | ||||||||||
stage 1/2 | 5 (18.5) | 2 (7.4) | 7 (25.9) | 0 | 2 (7.4) | 5 (18.5) | 7 (25.9) | 0 | 2 (7.4) | 5 (18.5) |
stage 3/4 | 12 (44.4) | 8 (29.6) | 17 (63) | 3 (11.1) | 8 (29.6) | 12 (44.4) | 18 (66.6) | 2 (7.4) | 5 (18.5) | 15 (55.6) |
p Value | 0.46 | NC | 0.007 | NC | 0.006 | |||||
OR (95% CI) | 0.51 (0.08–3.12) | NC | 0.08 (0.01–0.5) | NC | 0.18 (0.03–1.07) | |||||
Histology | ||||||||||
Favorable | 12 (44.4) | 3 (11.1) | 15 (55.6) | 0 | 7 (25.9) | 8 (29.6) | 13 (48.1) | 2 (7.4) | 5 (18.5) | 10 (37) |
Unfavorable | 5 (18.5) | 7 (25.9) | 9 (33.3) | 3 (11.1) | 7 (25.9) | 5 (18.5) | 12 (44.4) | 0 | 2 (7.4) | 10 (37) |
p Value | 0.048 | NC | 0.54 | NC | 0.33 | |||||
OR (95% CI) | 0.17 (0.032–0.98) | NC | 1.6 (0.34–7.4) | NC | 0.4 (0.06–2.56) | |||||
MYCN | ||||||||||
Amplified | 0 | 1 (3.7) | 1 (3.7) | 0 | 1 (3.7) | 0 | 1 (3.7) | 0 | 0 | 1 (3.7) |
Not amplified | 17 (63) | 9 (33.3) | 23 (85.2) | 3 (11.1) | 13 (48.1) | 13 (48.1) | 24 (88.9) | 2 (7.4) | 7 (25.9) | 19 (70.4) |
p Value | NC | NC | NC | NC | NC | |||||
OR (95% CI) | NC | NC | NC | NC | NC | |||||
Relapse | ||||||||||
Yes | 3 (11.19 | 4(14.8) | 7 (25.9) | 0 | 4 (14.8) | 3 (11.1) | 6 (22.2) | 1 (3.7) | 2 (7.4) | 5 (18.5) |
No | 14 (51.9) | 6(22.2) | 17 (63) | 3 (11.1) | 10 (37) | 10 (37) | 19 (70.4) | 1 (3.7) | 5 (18.5) | 15 (55.6) |
p Value | 0.21 | NC | 0.74 | 0.43 | 0.85 | |||||
OR (95% CI) | 3.11 (0.52–18.38) | NC | 1.33 (0.23–7.55) | 0.31 (0.01–5.85) | 1.2 (0.17–8.24) | |||||
Death | ||||||||||
Yes | 1 (3.7) | 5 (18.5) | 5 (18.5) | 1 (3.7) | 3 (11.1) | 3 (11.1) | 6 (22.2) | 0 | 0 | 6 (22.2) |
No | 16 (59.3) | 5 (18.5) | 19 (70.4) | 2 (7.4) | 11 (40.7) | 10 (37) | 19 (70.4) | 2 (7.4) | 7 (25.9) | 14 (51.9) |
p Value | 0.022 | 0.62 | 0.91 | NC | NC | |||||
OR (95% CI) | 15.99 (1.49–171.2) | 1.9 (0.14–25.44) | 1.1 (0.17–6.75) | NC | NC |
IL-8 | MCP-1 | |||
---|---|---|---|---|
Variables | Low Levels | High Levels | Low Levels | High Levels |
Risk | ||||
Low/Intermediate | 5 (18.5) | 7 (25.9) | 5 (18.5) | 7 (25.9) |
High | 8 (29.6) | 7 (25.9) | 10 (37) | 5 (18.5) |
p Value | 0.81 | 0.10 | ||
OR (95% CI) | 0.83 (0.17–3.88) | 0.25 (0.05–1.31) | ||
INSS stage | ||||
stage 1/2 | 10 (37) | 4 (14.8) | 12 (44.4) | 4 (14.8) |
stage 3/4 | 3 (11.1) | 10 (37) | 3 (11.1) | 8 (29.6) |
p Value | 0.05 | 0.029 | ||
OR (95% CI) | 0.20 (0.03–1.05) | 0.15 (0.02–0.82) | ||
Histology (Shimada) | ||||
Favorable | 8 (29.6) | 7 (25.9) | 8 (29.6) | 7 (25.9) |
Unfavorable | 5 (18.5) | 7 (25.9) | 7 (25.9) | 5 (18.5) |
p Value | 0.54 | 0.79 | ||
OR (95% CI) | 0.62 (0.13–2.89) | 1.22 (0.26–5.66) | ||
MYCN | ||||
Amplified | 0 | 1 (3.7) | 0 | 1(3.7) |
Not amplified | 13 (48.1) | 13 (48.1) | 15 (55.6) | 11 (40.7) |
p Value | NC | NC | ||
OR (95% CI) | NC | NC | ||
Relapse | ||||
Yes | 4 (14.8) | 3 (11.1) | 4 (14.8) | 3 (11.1) |
No | 9 (33.3) | 11 (40.7) | 11 (40.7) | 9 (33.3) |
p Value | 0.58 | 0.92 | ||
OR (95% CI) | 1.62 (0.28–9.25) | 1.09 (0.19–6.19) | ||
Death | ||||
Yes | 1 (3.7) | 5 (18.5) | 2 (7.4) | 4 (14.8) |
No | 12 (44.4) | 9 (33.3) | 13 (48.1) | 8 (29.6) |
p Value | 0.04 | 0.22 | ||
OR (95% CI) | 6.66 (0.65–67.47) | 3.25 (0.48–21.99) |
IL-10 | TGF-β | |||
---|---|---|---|---|
Variables | Low Levels | High Levels | Low Levels | High Levels |
Risk | ||||
Low/Intermediate | 8 (29.6) | 4 (14.8) | 13 (48.1) | 2 (7.4) |
High | 13 (48.1) | 2 (7.4) | 10 (37) | 2 (7.4) |
p Value | 0.6 | 0.68 | ||
OR (95% CI) | 0.61 (0.09–3.82) | 0.64 (0.074–5.41) | ||
INSS stage | ||||
stage 1/2 | 4 (14.8) | 3 (11.1) | 5 (18.5) | 2 (7.4) |
stage 3/4 | 17 (63) | 3 (11.1) | 18 (66.6) | 2 (7.4) |
p Value | 0.013 | 0.04 | ||
OR (95% CI) | 0.09 (0.01–0.6) | 0.11 (0.01–0.97) | ||
Histology (Shimada) | ||||
Favorable | 11 (40.7) | 4 (14.8) | 11 (40.7) | 4 (14.8) |
Unfavorable | 10 (37) | 2 (7.4) | 12 (44.4) | 0 |
p Value | 0.53 | NC | ||
OR (95% CI) | 1.81 (0.27–12.17) | NC | ||
MYCN | ||||
Amplified | 1 (3.7) | 0 | 1 (3.7) | 0 |
Not amplified | 20 (74.1) | 6 (22.2) | 22 (81.5) | 4 (14.8) |
p Value | NC | NC | ||
OR (95% CI) | NC | NC | ||
Relapse | ||||
Yes | 6 (22.2) | 1(3.7) | 6 (22.2) | 1(3.7) |
No | 15 (55.6) | 5 (18.5) | 17 (63) | 3 (11.1) |
p Value | 0.56 | 0.96 | ||
OR (95% CI) | 2 (0.19–20.89) | 1.05 (0.09–12.23) | ||
Death | ||||
Yes | 4 (14.8) | 2 (7.4) | 6 (22.2) | 0 |
No | 17 (63) | 4 (14.8) | 17 (63) | 4 (14.8) |
p Value | 0.46 | NC | ||
OR (95% CI) | 2.12 (0.28–15.96) | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Guerrero, S.S.; Ramírez-Pacheco, A.; Rocha-Ramírez, L.M.; Hernández-Pliego, G.; Reyes-López, A.; Sienra-Monge, J.J.L.; Juárez-Villegas, L.E. Analysis of Pro-Inflammatory and Anti-Inflammatory Cytokine Serum Concentrations in Pediatric Patients with Neuroblastoma: A Preliminary Study. Biomedicines 2025, 13, 1517. https://doi.org/10.3390/biomedicines13071517
Moreno-Guerrero SS, Ramírez-Pacheco A, Rocha-Ramírez LM, Hernández-Pliego G, Reyes-López A, Sienra-Monge JJL, Juárez-Villegas LE. Analysis of Pro-Inflammatory and Anti-Inflammatory Cytokine Serum Concentrations in Pediatric Patients with Neuroblastoma: A Preliminary Study. Biomedicines. 2025; 13(7):1517. https://doi.org/10.3390/biomedicines13071517
Chicago/Turabian StyleMoreno-Guerrero, Silvia Selene, Arturo Ramírez-Pacheco, Luz María Rocha-Ramírez, Gabriela Hernández-Pliego, Alfonso Reyes-López, Juan José Luis Sienra-Monge, and Luis Enrique Juárez-Villegas. 2025. "Analysis of Pro-Inflammatory and Anti-Inflammatory Cytokine Serum Concentrations in Pediatric Patients with Neuroblastoma: A Preliminary Study" Biomedicines 13, no. 7: 1517. https://doi.org/10.3390/biomedicines13071517
APA StyleMoreno-Guerrero, S. S., Ramírez-Pacheco, A., Rocha-Ramírez, L. M., Hernández-Pliego, G., Reyes-López, A., Sienra-Monge, J. J. L., & Juárez-Villegas, L. E. (2025). Analysis of Pro-Inflammatory and Anti-Inflammatory Cytokine Serum Concentrations in Pediatric Patients with Neuroblastoma: A Preliminary Study. Biomedicines, 13(7), 1517. https://doi.org/10.3390/biomedicines13071517