Macrolide Antibiotic Mediated Cardiac Arrhythmias: Emerging Concepts and Clinical Implications
Abstract
1. Introduction
2. Use of Macrolides in the Clinical Setting and Mechanism of Action
3. Association Between Macrolide Use and Types of Arrhythmias
4. Mechanisms Underlying Development of QT Prolongation and Torsade de Pointes by Macrolides
5. Risk Factors for Development of Arrhythmias with Macrolide Use
6. Minimizing the Risk of Cardiac Arrhythmias
6.1. History
6.2. Electrocardiogram Monitoring
6.3. Clinical Decision Support System
6.4. Pharmacogenetic Testing
7. Evaluation of Risk
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Zimmermann, P.; Ziesenitz, V.C.; Curtis, N.; Ritz, N. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms. Front. Immunol. 2018, 9, 302. [Google Scholar] [CrossRef]
- Pollock, J.; Chalmers, J.D. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef]
- Ray, W.A.; Arbogast, P.G. Azithromycin and the Risk of Cardiovascular Death. N. Engl. J. Med. 2012, 366, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Yıldırımer, M.; Özen, S.; Tanrıverdi, S.; Coskun, S. Clarithromycin-Induced Long QT Syndrome: A Case Report. Case Rep. Med. 2012, 2012, 634652. [Google Scholar] [CrossRef] [PubMed]
- Mehra, I.; Isaac, S.; Kundu, S.; Chahal, K. Azithromycin-Induced Torsades de Pointes. Chest 2021, 160, A155. [Google Scholar] [CrossRef]
- Mishra, A.; Friedman, H.S.; Sinha, A.K. The Effects of Erythromycin on the Electrocardiogram. Chest 1999, 115, 983–986. [Google Scholar] [CrossRef]
- Elisabetta Poluzzi, E.R. Macrolides and Torsadogenic Risk: Emerging Issues from the FDA Pharmacovigilance Database. J. Pharmacovigil. 2013, 1, 104. [Google Scholar] [CrossRef]
- Rao, G.A.; Mann, J.R.; Shoaibi, A.; Bennett, C.L.; Nahhas, G.; Sutton, S.S.; Jacob, S.; Strayer, S.M. Azithromycin and Levofloxacin Use and Increased Risk of Cardiac Arrhythmia and Death. Ann. Fam. Med. 2014, 12, 121–127. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Nie, X.-Y.; Chen, X.-M.; Lin, X.-X.; Tang, K.; Zeng, W.-T.; Mei, W.-Y.; Liu, L.-J.; Long, M.; Yao, F.-J.; et al. The Role of Macrolide Antibiotics in Increasing Cardiovascular Risk. J. Am. Coll. Cardiol. 2015, 66, 2173–2184. [Google Scholar] [CrossRef]
- Chou, H.-W.; Wang, J.-L.; Chang, C.-H.; Lai, C.-L.; Lai, M.-S.; Chan, K.A. Risks of Cardiac Arrhythmia and Mortality Among Patients Using New-Generation Macrolides, Fluoroquinolones, and β-Lactam/β-Lactamase Inhibitors: A Taiwanese Nationwide Study. Clin. Infect. Dis. 2015, 60, 566–577. [Google Scholar] [CrossRef]
- Wong, C.; Jayaram, L.; Karalus, N.; Eaton, T.; Tong, C.; Hockey, H.; Milne, D.; Fergusson, W.; Tuffery, C.; Sexton, P.; et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): A randomised, double-blind, placebo-controlled trial. Lancet 2012, 380, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Trac, M.H.; McArthur, E.; Jandoc, R.; Dixon, S.N.; Nash, D.M.; Hackam, D.G.; Garg, A.X. Macrolide antibiotics and the risk of ventricular arrhythmia in older adults. Can. Med. Assoc. J. 2016, 188, E120–E129. [Google Scholar] [CrossRef] [PubMed]
- Berni, E.; De Voogd, H.; Halcox, J.P.; Butler, C.C.; Bannister, C.A.; Jenkins-Jones, S.; Jones, B.; Ouwens, M.; Currie, C.J. Risk of cardiovascular events, arrhythmia and all-cause mortality associated with clarithromycin versus alternative antibiotics prescribed for respiratory tract infections: A retrospective cohort study. BMJ Open 2017, 7, e013398. [Google Scholar] [CrossRef] [PubMed]
- Trifirò, G.; De Ridder, M.; Sultana, J.; Oteri, A.; Rijnbeek, P.; Pecchioli, S.; Mazzaglia, G.; Bezemer, I.; Garbe, E.; Schink, T.; et al. Use of azithromycin and risk of ventricular arrhythmia. Can. Med. Assoc. J. 2017, 189, E560–E568. [Google Scholar] [CrossRef]
- Gorelik, E.; Masarwa, R.; Perlman, A.; Rotshild, V.; Muszkat, M.; Matok, I. Systematic Review, Meta-analysis, and Network Meta-analysis of the Cardiovascular Safety of Macrolides. Antimicrob. Agents Chemother. 2018, 62, e00438-18. [Google Scholar] [CrossRef]
- Polgreen, L.A.; Riedle, B.N.; Cavanaugh, J.E.; Girotra, S.; London, B.; Schroeder, M.C.; Polgreen, P.M. Estimated Cardiac Risk Associated With Macrolides and Fluoroquinolones Decreases Substantially When Adjusting for Patient Characteristics and Comorbidities. J. Am. Heart Assoc. 2018, 7, e008074. [Google Scholar] [CrossRef]
- Postma, D.F.; Spitoni, C.; Van Werkhoven, C.H.; Van Elden, L.J.R.; Oosterheert, J.J.; Bonten, M.J.M. Cardiac events after macrolides or fluoroquinolones in patients hospitalized for community-acquired pneumonia: Post-hoc analysis of a cluster-randomized trial. BMC Infect. Dis. 2019, 19, 17. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; Hammadah, M.; Joglar, J.A.; Leclerc, J.; Rajagopalan, B.; On behalf of the American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E214–E233. [Google Scholar] [CrossRef]
- Behr, E.R.; Roden, D. Drug-induced arrhythmia: Pharmacogenomic prescribing? Eur. Heart J. 2013, 34, 89–95. [Google Scholar] [CrossRef]
- Macrolide—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/macrolide (accessed on 3 April 2025).
- Sandman, Z.; Iqbal, O.A. Azithromycin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557766/ (accessed on 3 April 2025).
- Patel, P.H.; Hashmi, M.F. Macrolides. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK551495/ (accessed on 3 April 2025).
- Parsad, D.; Pandhi, R.; Dogra, S. A Guide to Selection and Appropriate Use of Macrolides in Skin Infections. Am. J. Clin. Dermatol. 2003, 4, 389–397. [Google Scholar] [CrossRef]
- Vaishnavi, C. Fidaxomicin—The new drug for Clostridium difficile infection. Indian J. Med. Res. 2015, 141, 398. [Google Scholar] [CrossRef] [PubMed]
- Kricker, J.A.; Page, C.P.; Gardarsson, F.R.; Baldursson, O.; Gudjonsson, T.; Parnham, M.J. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol. Rev. 2021, 73, 1404–1433. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, T.A.R.; Wilkinson, T.M.A.; Hurst, J.R.; Perera, W.R.; Sapsford, R.J.; Wedzicha, J.A. Long-term Erythromycin Therapy Is Associated with Decreased Chronic Obstructive Pulmonary Disease Exacerbations. Am. J. Respir. Crit. Care Med. 2008, 178, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.K.; Connett, J.; Bailey, W.C.; Casaburi, R.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; Lazarus, S.C.; et al. Azithromycin for Prevention of Exacerbations of COPD. N. Engl. J. Med. 2011, 365, 689–698. [Google Scholar] [CrossRef]
- Serisier, D.J.; Martin, M.L.; McGuckin, M.A.; Lourie, R.; Chen, A.C.; Brain, B.; Biga, S.; Schlebusch, S.; Dash, P.; Bowler, S.D. Effect of Long-term, Low-Dose Erythromycin on Pulmonary Exacerbations Among Patients With Non–Cystic Fibrosis Bronchiectasis: The BLESS Randomized Controlled Trial. JAMA 2013, 309, 1260. [Google Scholar] [CrossRef]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; van’t Veer, N.E.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; Eerden, M.M. van der Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y. Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr. Res. 2022, 91, 1036–1042. [Google Scholar] [CrossRef]
- Vázquez-Laslop, N.; Mankin, A.S. How Macrolide Antibiotics Work. Trends Biochem. Sci. 2018, 43, 668–684. [Google Scholar] [CrossRef]
- Wong, A.Y.S.; Root, A.; Douglas, I.J.; Chui, C.S.L.; Chan, E.W.; Ghebremichael-Weldeselassie, Y.; Siu, C.-W.; Smeeth, L.; Wong, I.C.K. Cardiovascular outcomes associated with use of clarithromycin: Population based study. BMJ 2016, 352, h6926. [Google Scholar] [CrossRef]
- Risgaard, B.; Lynge, T.H.; Wissenberg, M.; Jabbari, R.; Glinge, C.; Gislason, G.H.; Haunsø, S.; Winkel, B.G.; Tfelt-Hansen, J. Risk factors and causes of sudden noncardiac death: A nationwide cohort study in Denmark. Heart Rhythm. 2015, 12, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Molokhia, M.; Pathak, A.; Lapeyre-Mestre, M.; Caturla, L.; Montastruc, J.L.; L’Association Française des Centres Régionaux de Pharmacovigilance (CRPV); McKeigue, P. Case ascertainment and estimated incidence of drug-induced long-QT syndrome: Study in Southwest France. Br. J. Clin. Pharmacol. 2008, 66, 386–395. [Google Scholar] [CrossRef]
- Roden, D.M. Predicting drug-induced QT prolongation and torsades de pointes. J. Physiol. 2016, 594, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Prenner, S.B.; Shah, S.J.; Goldberger, J.J.; Sauer, A.J. Repolarization Heterogeneity: Beyond the QT Interval. J. Am. Heart Assoc. 2016, 5, e003607. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Karle, C.A.; Kiehn, J. The Cardiac hERG/IKr Potassium Channel as Pharmacological Target: Structure, Function, Regulation, and Clinical Applications. Curr. Pharm. Des. 2006, 12, 2271–2283. [Google Scholar] [CrossRef]
- Cubeddu, L. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias. Curr. Cardiol. Rev. 2016, 12, 141–154. [Google Scholar] [CrossRef]
- Weiss, J.N.; Garfinkel, A.; Karagueuzian, H.S.; Chen, P.-S.; Qu, Z. Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm. 2010, 7, 1891–1899. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, S.; Bhat, M.; Gill, K.; Zaid, M.; Kumar, S.; Shakya, A.; Tantray, J.; Jose, D.; Gupta, R.; et al. New drug discovery of cardiac anti-arrhythmic drugs: Insights in animal models. Sci. Rep. 2023, 13, 16420. [Google Scholar] [CrossRef]
- Albert, R.K.; Schuller, J.L. Macrolide Antibiotics and the Risk of Cardiac Arrhythmias. Am. J. Respir. Crit. Care Med. 2014, 189, 1173–1180. [Google Scholar] [CrossRef]
- Yang, T.; Chun, Y.W.; Stroud, D.M.; Mosley, J.D.; Knollmann, B.C.; Hong, C.; Roden, D.M. Screening for Acute IKr Block Is Insufficient to Detect Torsades de Pointes Liability: Role of Late Sodium Current. Circulation 2014, 130, 224–234. [Google Scholar] [CrossRef]
- Shaffer, D.; Singer, S.; Korvick, J.; Honig, P. Concomitant Risk Factors in Reports of Torsades de Pointes Associated with Macrolide Use: Review of the United States Food and Drug Administration Adverse Event Reporting System. Clin. Infect. Dis. 2002, 35, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zeltser, D.; Justo, D.; Halkin, A.; Prokhorov, V.; Heller, K.; Viskin, S. Torsade de Pointes Due to Noncardiac Drugs: Most Patients Have Easily Identifiable Risk Factors. Medicine 2003, 82, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Pickham, D.; Helfenbein, E.; Shinn, J.A.; Chan, G.; Funk, M.; Drew, B.J. How many patients need QT interval monitoring in critical care units? Preliminary report of the QT in Practice study. J. Electrocardiol. 2010, 43, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, E.P.; Poole, J.E.; Albert, C.M.; Al-Khatib, S.M.; Ali-Ahmed, F.; Birgersdotter-Green, U.; Cha, Y.-M.; Chung, M.K.; Curtis, A.B.; Hurwitz, J.L.; et al. Arrhythmias in Female Patients: Incidence, Presentation and Management. Circ. Res. 2022, 130, 474–495. [Google Scholar] [CrossRef]
- Nass, R.D.; Aiba, T.; Tomaselli, G.F.; Akar, F.G. Mechanisms of Disease: Ion channel remodeling in the failing ventricle. Nat. Rev. Cardiol. 2008, 5, 196–207. [Google Scholar] [CrossRef]
- Abbott, G.W.; Sesti, F.; Splawski, I.; Buck, M.E.; Lehmann, M.H.; Timothy, K.W.; Keating, M.T.; Goldstein, S.A.N. MiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac Arrhythmia. Cell 1999, 97, 175–187. [Google Scholar] [CrossRef]
- Sesti, F.; Abbott, G.W.; Wei, J.; Murray, K.T.; Saksena, S.; Schwartz, P.J.; Priori, S.G.; Roden, D.M.; George, A.L.; Goldstein, S.A.N. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 2000, 97, 10613–10618. [Google Scholar] [CrossRef]
- Chevalier, P. Non-invasive testing of acquired long QT syndrome Evidence for multiple arrhythmogenic substrates. Cardiovasc. Res. 2001, 50, 386–398. [Google Scholar] [CrossRef]
- Kääb, S.; Crawford, D.C.; Sinner, M.F.; Behr, E.R.; Kannankeril, P.J.; Wilde, A.A.M.; Bezzina, C.R.; Schulze-Bahr, E.; Guicheney, P.; Bishopric, N.H.; et al. A Large Candidate Gene Survey Identifies the KCNE1 D85N Polymorphism as a Possible Modulator of Drug-Induced Torsades de Pointes. Circ. Cardiovasc. Genet. 2012, 5, 91–99. [Google Scholar] [CrossRef]
- Paulussen, A.D.C.; Gilissen, R.A.H.J.; Armstrong, M.; Doevendans, P.A.; Verhasselt, P.; Smeets, H.J.M.; Schulze-Bahr, E.; Haverkamp, W.; Breithardt, G.; Cohen, N.; et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. 2004, 82, 182–188. [Google Scholar] [CrossRef]
- Wada, Y.; Yang, T.; Shaffer, C.M.; Daniel, L.L.; Glazer, A.M.; Davogustto, G.E.; Lowery, B.D.; Farber-Eger, E.H.; Wells, Q.S.; Roden, D.M. Common Ancestry-Specific Ion Channel Variants Predispose to Drug-Induced Arrhythmias. Circulation 2022, 145, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R. Pharmacogenetic Aspects of Drug-Induced Torsade de Pointes. Drug Saf. 2004, 27, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; LaPointe, N.M.A.; Kramer, J.M.; Califf, R.M. What Clinicians Should Know About the QT Interval. JAMA 2003, 289, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Khatib, R.; Sabir, F.R.N.; Omari, C.; Pepper, C.; Tayebjee, M.H. Managing drug-induced QT prolongation in clinical practice. Postgrad. Med. J. 2021, 97, 452–458. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Jaynes, H.A.; Kingery, J.R.; Overholser, B.R.; Mourad, N.A.; Trujillo, T.N.; Kovacs, R.J. Effectiveness of a Clinical Decision Support System for Reducing the Risk of QT Interval Prolongation in Hospitalized Patients. Circ. Cardiovasc. Qual. Outcomes 2014, 7, 381–390. [Google Scholar] [CrossRef]
- Lopez-Medina, A.I.; Chahal, C.A.A.; Luzum, J.A. The genetics of drug-induced QT prolongation: Evaluating the evidence for pharmacodynamic variants. Pharmacogenomics 2022, 23, 543–557. [Google Scholar] [CrossRef]
- Strauss, D.G.; Vicente, J.; Johannesen, L.; Blinova, K.; Mason, J.W.; Weeke, P.; Behr, E.R.; Roden, D.M.; Woosley, R.; Kosova, G.; et al. Common Genetic Variant Risk Score Is Associated With Drug-Induced QT Prolongation and Torsade de Pointes Risk. Circulation 2017, 135, 1300–1310. [Google Scholar] [CrossRef]
Author | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|
Mishra et al., 1999 [6] | A single-institution prospective analysis of patients undergoing treatment for community-acquired pneumonia comparing ECG measurements in groups treated with 500 mg IV erythromycin vs. 500 mg IV erythromycin and 750 mg IV cefuroxime. | IV erythromycin caused increased heart rate and QTc interval prolongation that was most prominent at 15 min into the infusion. | One standard dose of erythromycin is enough to produce QTc interval prolongation. |
Raschi et al., 2013 [7] | A pharmacovigilance analysis of the FDA Adverse Drug Reporting Database (FAERS) was carried out from 2004 to 2011 to evaluate the association of macrolides with arrhythmias. | The reporting odds ratio (ROR), 95% CI, for azithromycin and TdP + QT abnormalities was 5.69 (4.43–7.31), for clarithromycin 6.23 (5.01–7.74) and for erythromycin 5.28 (3.35–8.32). | Azithromycin, clarithromycin and erythromycin are associated with increased risk of QT abnormalities and TdP. |
Rao et al., 2014 [8] | A cohort study of United States Veterans that compared the risk of arrhythmia with Azithromycin use compared to amoxicillin use. | Azithromycin was associated with increased risk of serious arrhythmia when compared to amoxicillin during first five days of treatment, [hazard ratio = 1.77, 95% CI, 1.20–2.62]. | Azithromycin was associated with a statistically significant increased risk of serious arrhythmias for the first five days of treatment when compared to amoxicillin. |
Cheng et al., 2015 [9] | A meta-analysis of thirty-three studies, involving population-based cohorts, case–control studies and randomized controlled trials was performed to evaluate the relative risk for sudden cardiac death (SCD) and VTA | When compared to no macrolide use, macrolide use resulted in increased risk of SCD or VTA (RR: 2.42; 95% CI: 1.60 to 3.63; p < 0.001). | Use of macrolides resulted in increased risk of SCD or VTA. |
Chou et al., 2015 [10] | A Taiwanese nationwide, cohort study involving 10 648 100 patients evaluated the risk of ventricular arrhythmia with use of azithromycin and clarithromycin compared to amoxicillin-clavulanate, following 7 days of antibiotic initiation. | Compared to amoxicillin-clavulanate, azithromycin was associated with an increased risk of ventricular arrhythmia, adjusted ORs 4.32 (95% CI, 2.95–6.33). No association was noted with clarithromycin. | Compared to amoxicillin-clavulanate, azithromycin was associated with a significantly increased risk of ventricular arrhythmias. |
Wong et al., 2016 [33] | A population-based study that compared short-term and long-term cardiovascular outcomes (myocardial infarction, arrhythmia, stroke) in clarithromycin and amoxicillin use | Compared to amoxicillin, clarithromycin was associated with increased short-term (14 days) risk of arrhythmia, 2.22 95% CI (1.22 to 4.06). | Clarithromycin carries a higher risk of short-term but not long-term risk of arrhythmia compared to amoxicillin. |
Trac et al., 2016 [12] | A Canadian cohort study that compared the risk of ventricular arrhythmia within 30 days of prescription of macrolide antibiotics compared to non-macrolide antibiotics in adults over >65 years. | Macrolide antibiotics were not associated with an increased risk of ventricular arrythmia compared to non-macrolide antibiotics (0.3% in both groups with relative risk (RR) of 1.06, 95% CI 0.83–1.36). | Warnings from the US Food and Drug Administration (FDA) regarding macrolide use and QT interval prolongation and fatal ventricular arrhythmias may be overstated. |
Berni et al., 2017 [13] | A UK-based cohort study that compared the risk of arrhythmias with use of clarithromycin as compared to other antibiotics. | clarithromycin did not result in an increased risk of arrhythmia compared to all antibiotics, for upper or lower respiratory tract infections, [adjusted hazards ratio, aHR 0.88, 95% CI 0.76–1.01) and, [aHR 1.39, 95% CI 0.80–2.41]. | Clarithromycin did not result in an increased risk of arrhythmias when used for either upper or lower respiratory tract infections. |
Trifiro et al., 2017 [14] | A nested case–control study evaluating the risk of ventricular arrhythmia associated with azithromycin used compared to amoxicillin or nonuse of antibiotic from 1997 to 2010. | Compared to nonuse of antibiotics, azithromycin use was associated with increased risk of ventricular arrhythmia, [adjusted odds ratio, aOR, 1.97, 95% CI 1.35–2.86]. Compared to amoxicillin use, there was no significant increased risk, [aOR 0.90, 95% CI 0.48–1.71]. | Confounding due to underlying comorbidities may explain the association of azithromycin with ventricular arrhythmias. |
Gorelik et al., 2018 [15] | A meta-analysis of thirty-three studies, involving 22,601,032 subjects was carried out. The odds ratio for arrhythmia, cardiovascular death and myocardial infarction (MI) was calculated. | Using a random-effects model, macrolide use was not associated with an increased risk for short-term arrhythmia (OR, 1.20 [95% CI, 0.91 to 1.57]). | Macrolide antibiotics as a group were not associated with a significant risk for arrhythmia or cardiovascular mortality. |
Polgreen et al., 2018 [16] | A retrospective analysis of Medicare beneficiaries that compared outcomes such as ventricular arrhythmia, acute myocardial infarction and death between azithromycin, clarithromycin, levofloxacin, moxifloxacin, doxycycline and amoxicillin-clavulanate. | The unadjusted odds ratio (OR), 95% CI, for ventricular arrhythmias were 1.41 (1.14–1.73) and 1.63 (0.85–3.13) for azithromycin and erythromycin, respectively. The adjusted odds ratio, 95% CI, for ventricular arrhythmias were 1.13 (0.92–1.42) and 1.19 (0.62–2.28) for azithromycin and erythromycin, respectively. | Adjusting for comorbidities and patient demographics eliminates the statistically significant association of azithromycin and erythromycin with ventricular arrhythmias. |
Postma et al., 2019 [17] | A multicenter trial involving seven teaching hospitals in the Netherlands from February 2011 to October 2013, comparing three empiric antibiotic courses (beta-lactam monotherapy, beta-lactam/macrolide therapy, and fluoroquinolone monotherapy) in the treatment of CAP. | In the sub-distribution hazard ratios, azithromycin, clarithromycin and erythromycin were not significantly associated with new or worsening arrhythmia. | No association was found between erythromycin, azithromycin and clarithromycin and arrhythmias. |
Rao et al., 2014 [8] | Inverse probability weights (IPTW) for assignment into 3 exposure groups using covariates, including (race, age, sex), indication for antibiotics, comorbidities including cardiac morbidities, laboratory findings, and medication. |
Chou et al., 2015 [10] | Multiple propensity scores, then included in a multivariable logistical regression analysis, were calculated by considering covariates such as indications of antibiotic use, comorbidities, concomitant medication, and health resource utilization |
Wong et al., 2016 [33] | Propensity scores were calculated based on covariates and then used for subgroup analysis. |
Polgreen et al., 2018 [16] | Adjusted regression logistic regression models were generated using patient comorbidities, medications, procedures, demographics, insurance status, number of visits and the influenza rate. |
Postma et al., 2019 [17] | Adjusted hazards ratio were calculated based on confounders such as number of cardiac comorbidities and smoking history. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, F.; Derouen, A.; Ren, R.; Kaye, A.M.; Ahmadzadeh, S.; Shekoohi, S.; Kaye, A.D. Macrolide Antibiotic Mediated Cardiac Arrhythmias: Emerging Concepts and Clinical Implications. Biomedicines 2025, 13, 1478. https://doi.org/10.3390/biomedicines13061478
Iqbal F, Derouen A, Ren R, Kaye AM, Ahmadzadeh S, Shekoohi S, Kaye AD. Macrolide Antibiotic Mediated Cardiac Arrhythmias: Emerging Concepts and Clinical Implications. Biomedicines. 2025; 13(6):1478. https://doi.org/10.3390/biomedicines13061478
Chicago/Turabian StyleIqbal, Fatima, Alyssa Derouen, Robin Ren, Adam M. Kaye, Shahab Ahmadzadeh, Sahar Shekoohi, and Alan D. Kaye. 2025. "Macrolide Antibiotic Mediated Cardiac Arrhythmias: Emerging Concepts and Clinical Implications" Biomedicines 13, no. 6: 1478. https://doi.org/10.3390/biomedicines13061478
APA StyleIqbal, F., Derouen, A., Ren, R., Kaye, A. M., Ahmadzadeh, S., Shekoohi, S., & Kaye, A. D. (2025). Macrolide Antibiotic Mediated Cardiac Arrhythmias: Emerging Concepts and Clinical Implications. Biomedicines, 13(6), 1478. https://doi.org/10.3390/biomedicines13061478