Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Comparison with Existing Literature
4.3. Implications for Clinical Practice
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complica-tions in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352, 837–853. [CrossRef]
- Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic neuropathy. Diabet. Med. 2005, 22, 1462–1480. [Google Scholar]
- Lu, Y.; Xing, P.; Cai, X.; Luo, D.; Li, R.; Lloyd, C.; Sartorius, N.; Li, M. Prevalence and Risk Factors for Diabetic Peripheral Neuropathy in Type 2 Diabetic Patients From 14 Countries: Estimates of the INTERPRET-DD Study. Front. Public Health 2020, 8, 534372. [Google Scholar] [CrossRef]
- Bondar, A.; Popa, A.R.; Papanas, N.; Popoviciu, M.; Vesa, C.M.; Sabau, M.; Daina, C.; Stoica, R.A.; Katsiki, N.; Stoian, A.P. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options (Review). Exp. Ther. Med. 2021, 22, 690. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2016, 40, 136–154. [Google Scholar] [CrossRef]
- Hsieh, R.-Y.; Huang, I.-C.; Chen, C.; Sung, J.-Y. Effects of Oral Alpha-Lipoic Acid Treatment on Diabetic Polyneuropathy: A Meta-Analysis and Systematic Review. Nutrients 2023, 15, 3634. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar]
- Ziegler, D.; Tesfaye, S.; Spallone, V.; Gurieva, I.; Al Kaabi, J.; Mankovsky, B.; Martinka, E.; Radulian, G.; Nguyen, K.T.; O Stirban, A.; et al. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res. Clin. Pract. 2022, 186, 109063. [Google Scholar] [CrossRef]
- Tang, J.; Wingerchuk, D.M.; Crum, B.A.; Rubin, D.I.; Demaerschalk, B.M. Alpha-lipoic acid may improve symptomatic diabetic polyneuropathy. Neurologist 2007, 13, 164–167. [Google Scholar] [CrossRef]
- Ziegler, D.; Hanefeld, M.; Ruhnau, K.J.; Meissner, H.P.; Lobisch, M.; Schütte, K.; Gries, F.A. Treatment of symptomatic diabetic pe-ripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 1995, 38, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kim, A.; Young, A.; Nguyen, D.; Monroe, C.L.; Ding, T.; Gray, D.; Venketaraman, V. The Mechanism and Inflammatory Markers Involved in the Potential Use of N-acetylcysteine in Chronic Pain Management. Life 2024, 14, 1361. [Google Scholar] [CrossRef]
- Spallone, V.; Morganti, R.; D’amato, C.; Greco, C.; Cacciotti, L.; Marfia, G.A. Validation of DN4 as a screening tool for neuropathic pain in painful diabetic polyneuropathy. Diabet. Med. 2011, 29, 578–585. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. PAIN® 2016, 157, 1599–1606. [Google Scholar] [CrossRef]
- Spallone, V. Management of painful diabetic neuropathy: Guideline guidance or jungle? Curr. Diabetes Rep. 2012, 12, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.T.; Young, J.P., Jr.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- Poquet, N.; Lin, C. The Brief Pain Inventory (BPI). J. Physiother. 2016, 62, 52. [Google Scholar] [CrossRef] [PubMed]
- McGuire, B.E.; Morrison, T.G.; Hermanns, N.; Skovlund, S.; Eldrup, E.; Gagliardino, J.; Kokoszka, A.; Matthews, D.; Pibernik-Okanović, M.; Rodríguez-Saldaña, J.; et al. Short-form measures of diabetes-related emotional distress: The Problem Areas in Diabetes Scale (PAID)-5 and PAID-1. Diabetologia 2010, 53, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Cosma, A.; Költő, A.; Chzhen, Y.; Kleszczewska, D.; Kalman, M.; Martin, G. Measurement Invariance of the WHO-5 Well-Being Index: Evidence from 15 European Countries. Int. J. Environ. Res. Public Health 2022, 19, 9798. [Google Scholar] [CrossRef]
- Nicolucci, A.; Rossi, M.C.; Pellegrini, F.; Lucisano, G.; Pintaudi, B.; Gentile, S.; Marra, G.; E Skovlund, S.; Vespasiani, G. Benchmarking network for clinical and humanistic outcomes in diabetes (BENCH-D) study: Protocol, tools, and population. SpringerPlus 2014, 3, 83. [Google Scholar] [CrossRef]
- Baicus, C.; Purcarea, A.; von Elm, E.; Delcea, C.; Furtunescu, F.L. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst. Rev. 2024, 1, CD012967. [Google Scholar] [CrossRef] [PubMed]
- Uchigata, Y.; Hirata, Y.; Iwamoto, Y. Insulin autoimmune syndrome (Hirata disease): Epidemiology in Asia, including Japan. Diabetol. Int. 2010, 1, 21–25. [Google Scholar] [CrossRef]
- Gullo, D.; Evans, J.L.; Sortino, G.; Goldfine, I.D.; Vigneri, R. Insulin autoimmune syndrome (Hirata Disease) in European Caucasians taking α-lipoic acid. Clin. Endocrinol. 2014, 81, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Emara, S.M.; Fahmy, S.F.; AbdelSalam, M.M.; El Wakeel, L.M. Effect of high-dose N-acetyl cysteine on the clinical outcome of patients with diabetic peripheral neuropathy: A randomized controlled study. Diabetol. Metab. Syndr. 2025, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lu, Z.; Chen, W.-M.; Lv, S.; Fu, N.; Yang, Y.; Wang, Y.; Miao, M.; Wu, S.-Y.; Zhang, J. N-acetylcysteine therapy reduces major adverse cardiovascular events in patients with type 2 diabetes mellitus. Atherosclerosis 2025, 402, 119117. [Google Scholar] [CrossRef]
- Dang, A. Real-World Evidence: A Primer. Pharm. Med. 2023, 37, 25–36. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 | Group 4 | p | |
---|---|---|---|---|---|
N | 20 | 23 | 35 | 20 | |
Males (%) | 40.0 | 69.6 | 57.1 | 75.0 | 0.10 |
Age (years) | 61.8 ± 7.4 | 62.7 ± 8.5 | 67.7 ± 7.1 | 66.5 ± 5.1 | 0.60 |
Diabetes duration (years) | 14.6 ± 5.5 | 10 ± 3.7 | 13.4 ± 5.9 | 10.8 ± 8.7 | 0.11 |
Smokers (%) | 25.0 | 17.4 | 14.3 | 25.0 | 0.001 |
Alcohol intake (%) | 25.0 | 8.7 | 14.3 | 0.0 | 0.006 |
Physical activity (%) | 37.0 | 21.7 | 14.3 | 50.0 | 0.03 |
Family history of diabetes (%) | 57.1 | 43.5 | 57.1 | 50.0 | 0.77 |
Heart disease (%) | 54.5 | 21.7 | 28.6 | 50.0 | 0.10 |
Hypertension (%) | 63.6 | 39.1 | 85.7 | 75.0 | 0.002 |
Dyslipidemia (%) | 50.0 | 43.5 | 71.4 | 75.0 | 0.07 |
Weight (kg) | 74.5 ± 21.3 | 85.4 ± 16.0 | 70.6 ± 7.1 | 65.3 ± 14.9 | <0.001 |
Height (cm) | 160.6 ± 9.2 | 167.5 ± 7.5 | 169.4 ± 7.8 | 166.7 ± 6.4 | 0.02 |
Systolic blood pressure (mmHg) | 125 ± 10 | 127 ± 11 | 126 ± 9 | 131 ± 14 | 0.38 |
Diastolic blood pressure (mmHg) | 75 ± 6 | 75 ± 6 | 77 ± 5 | 77 ± 8 | 0.60 |
Serum creatinine (mg/dL) | 1.0 ± 0.3 | 0.9 ± 0.2 | 1.0 ± 0.3 | 0.9 ± 0.1 | 0.77 |
Urinary albumin (mg/L) | 47.1 ± 87.6 | 8.4 ± 15.3 | 2.9 ± 4.5 | 0.9 ± 0.1 | <0.001 |
Glycated Hemoglobin (%) | 7.7 ± 1.1 | 8.2 ± 1.0 | 8.4 ± 2.0 | 7.6 ± 1.0 | 0.14 |
Fasting blood glucose (mg/dL) | 163.6 ± 57.0 | 164.8 ± 40.2 | 169.4 ± 42.0 | 142.0 ± 31.8 | 0.13 |
Serum total cholesterol (mg/dL) | 151.2 ± 28.6 | 160.2 ± 38.5 | 155.7 ± 40.6 | 161.7 ± 30.8 | 0.91 |
Serum LDL cholesterol (mg/dL) | 92.5 ± 17.7 | 81.2 ± 28.9 | 79.9 ± 26.9 | 78.4 ± 30.0 | 0.92 |
Serum HDL cholesterol (mg/dL) | 38.3 ± 5.5 | 54.2 ± 10.8 | 50.9 ± 10.0 | 60.0 ± 10.0 | 0.01 |
Triglycerides (mg/dL) | 147.7 ± 71.8 | 124.8 ± 51.6 | 128.1 ± 37.9 | 113.2 ± 68.5 | 0.59 |
AST (mg/dL) | 24.0 ± 4.2 | 21.8 ± 7.2 | 23.7 ± 7.5 | 18.0 ± 5.0 | 0.03 |
ALT (mg/dL) | 26.0 ± 1.4 | 24.5 ± 16.1 | 28.3 ± 19.0 | 17.5 ± 5.6 | 0.12 |
Carotid Artery Stenosis (%) | 10.0 | 29.4 | 42.9 | 25.0 | 0.16 |
Retinopathy (%) | 18.2 | 5.9 | 14.3 | 25.0 | 0.45 |
Diabetic Foot (%) | 9.1 | 5.9 | 0.0 | 25.0 | 0.01 |
Metformin (%) | 40.0 | 60.9 | 71.4 | 50.0 | 0.12 |
Pioglitazone (%) | 0 | 0.0 | 0.0 | 0.0 | NA |
Sulfonylurea (%) | 25.0 | 0.0 | 0.0 | 0.0 | 0.001 |
Acarbose (%) | 15.0 | 0.0 | 0.0 | 0.0 | 0.007 |
DPP4-i (%) | 10.0 | 21.7 | 28.6 | 0.0 | 0.04 |
SGLT2-i (%) | 35.0 | 43.5 | 57.1 | 50.0 | 0.43 |
GLP1-RA (%) | 35.0 | 30.4 | 14.3 | 50.0 | 0.04 |
Insulin (%) | 35.0 | 47.6 | 57.1 | 25.0 | 0.10 |
Group 1 | Group 2 | Group 3 | Group 4 | p Group 1 vs. Group 2 | p Group 1 vs. Group 3 | p Group 1 vs. Group 4 | |
---|---|---|---|---|---|---|---|
N | 20 | 23 | 35 | 20 | |||
Baseline DN4 | 6.1 ± 1.4 | 6.0 ± 1.5 | 6.3 ± 1.8 | 5.7 ± 0.4 | 0.82 | 0.69 | 0.0 |
Follow-up DN4 | 3.9 ± 2.3 | 3.8 ± 2.3 | 4.1 ± 2.4 | 3.5 ± 2.1 | 0.96 | 0.71 | 0.63 |
Baseline BPI severity score | 17.6 ± 6.4 | 18.2 ± 6.1 | 19.1 ± 6.9 | 16.2 ± 3.9 | 0.78 | 0.43 | 0.41 |
Follow-up BPI severity score | 12.5 ± 8.0 | 13.0 ± 8.2 | 15.3 ± 7.4 | 8.2 ± 7.6 | 0.83 | 0.20 | 0.09 |
Baseline BPI interference score | 27.8 ± 12.8 | 28.5 ± 12.1 | 32.4 ± 11.5 | 21.0 ± 9.8 | 0.87 | 0.18 | 0.06 |
Follow-up BPI interference score | 15.3 ± 11.3 | 16.3 ± 12.2 | 20.3 ± 11.1 | 8.2 ± 10.1 | 0.79 | 0.12 | 0.04 |
Baseline NRS | 3.3 ± 2.9 | 3.6 ± 3.3 | 3.6 ± 3.7 | 3.5 ± 3.1 | 0.71 | 0.78 | 0.95 |
Follow-up NRS | 5.5 ± 1.8 | 2.0 ± 2.5 | 1.3 ± 1.8 | 1.5 ± 2.1 | <0.0001 | <0.0001 | <0.0001 |
Baseline WHO-5 | 13.6 ± 5.5 | 14.1 ± 5.4 | 12.4 ± 5.5 | 17.2 ± 3.9 | 0.77 | 0.45 | 0.02 |
Follow-up WHO-5 | 14.8 ± 6.3 | 13.6 ± 6.1 | 12.1 ± 6.1 | 17.2 ± 4.0 | 0.53 | 0.12 | 0.16 |
Baseline PAID-5 | 4.1 ± 2.8 | 4.6 ± 3.4 | 3.4 ± 2.5 | 5.7 ± 3.7 | 0.67 | 0.33 | 0.13 |
Follow-up PAID-5 | 5.4 ± 4.3 | 5.3 ± 3.7 | 5.0 ± 3.6 | 5.5 ± 4.0 | 0.88 | 0.68 | 0.97 |
SDSCA-6 | |||||||
Baseline nutrition | 4.4 ± 2.2 | 7.4 ± 2.3 | 4.9 ± 1.5 | 3.5 ± 3.1 | 0.99 | 0.36 | 0.30 |
Follow-up nutrition | 5.5 ± 1.3 | 5.5 ± 1.1 | 5.0 ± 1.1 | 6.2 ± 0.4 | 0.95 | 0.50 | 0.02 |
Baseline physical activity | 4.5 ± 2.6 | 4.7 ± 2.6 | 3.4 ± 2.5 | 7.0 ± 0.0 | 0.82 | 0.13 | <0.0001 |
Follow-up physical activity | 4.6 ± 2.7 | 4.8 ± 2.6 | 3.6 ± 2.7 | 6.7 ± 0.4 | 0.87 | 0.99 | 0.002 |
Baseline SMBG | 4.1 ± 3.2 | 4.1 ± 3.0 | 3.7 ± 3.3 | 5.0 ± 2.2 | 0.95 | 0.64 | 0.04 |
Follow-up SMBG | 4.9 ± 2.7 | 6.4 ± 1.5 | 4.1 ± 2.6 | 4.7 ± 2.9 | 0.98 | 0.31 | 0.87 |
Baseline SMBG adherence | 4.1 ± 3.2 | 4.1 ± 3.0 | 3.1 ± 3.3 | 7.0 ± 0.0 | 0.87 | 0.25 | 0.16 |
Follow-up SMBG adherence | 4.9 ± 2.7 | 6.4 ± 1.5 | 6.7 ± 0.7 | 5.7 ± 2.0 | 0.98 | 0.31 | 0.29 |
Baseline diabetic foot care | 3.0 ± 2.9 | 3.7 ± 3.0 | 2.3 ± 2.8 | 6.2 ± 0.8 | 0.41 | 0.37 | <0.0001 |
Follow-up diabetic foot care | 6.4 ± 1.1 | 6.3 ± 1.2 | 6.3 ± 1.2 | 6.2 ± 1.3 | 0.69 | 0.62 | 0.61 |
Baseline treatment adherence | 6.4 ± 1.9 | 6.0 ± 2.4 | 6.3 ± 1.8 | 5.2 ± 3.1 | 0.50 | 0.82 | 0.16 |
Follow-up treatment adherence | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 0.98 | 0.31 | 0.33 |
Group 1 | Group 2 | Group 3 | Group 4 | p Group 1 vs. Group 2 | p Group 1 vs. Group 3 | p Group 1 vs. Group 4 | |
---|---|---|---|---|---|---|---|
BPI severity | −5.1 ± 9.7 | −5.1 ± 8.1 | −3.8 ± 8.0 | −8.0 ± 7.7 | 0.99 | 0.60 | 0.31 |
BPI interference | −12.5 ± 19.1 | −12.2 ± 17.4 | −12.1 ± 14.0 | −12.7 ± 10.4 | 0.95 | 0.94 | 0.96 |
NRS | 2.2 ± 3.7 | −1.6 ± 3.4 | −2.3 ± 3.3 | −1.7 ± 2.1 | 0.01 | <0.001 | <0.001 |
WHO-5 | 1.2 ± 7.0 | −0.4 ± 7.2 | 0.3 ± 5.4 | 0.0 ± 1.2 | 0.44 | 0.37 | 0.44 |
PAID-5 | 1.3 ± 4.8 | 0.7 ± 4.3 | 1.6 ± 2.6 | −0.2 ± 4.0 | 0.67 | 0.79 | 0.27 |
SDSCA Nutrition | 1.1 ± 2.0 | 1.1 ± 2.2 | 0.1 ± 1.7 | 2.7 ± 3.4 | 0.98 | 0.07 | 0.07 |
SDSCA Physical activity | 0.1 ± 3.7 | 0.1 ± 3.8 | 0.1 ± 0.8 | −0.2 ± 0.4 | 0.96 | 0.95 | 0.68 |
SDSCA SMBG | 0.7 ± 4.2 | 0.3 ± 3.9 | 0.4 ± 3.8 | −0.2 ± 1.1 | 0.72 | 0.77 | 0.31 |
SDSCA SMBG adherence | 1.6 ± 3.4 | 1.4 ± 2.7 | 3.0 ± 3.7 | −1.2 ± 2.2 | 0.86 | 0.17 | 0.001 |
SDSCA Diabetic foot care | 3.4 ± 2.8 | 2.6 ± 2.7 | 4.0 ± 3.2 | 0.0 ± 0.7 | 0.30 | 0.52 | <0.001 |
SDSCA Treatment adherence | 0.6 ± 1.9 | 1.0 ± 2.4 | 0.7 ± 1.8 | 1.7 ± 3.1 | 0.50 | 0.82 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armeli Grigio, L.; Boci, D.; Di Vieste, G.; Cassanelli, G.; Epis, O.M.; Viadana, A.; Bertuzzi, F.; Pintaudi, B. Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study. Biomedicines 2025, 13, 1407. https://doi.org/10.3390/biomedicines13061407
Armeli Grigio L, Boci D, Di Vieste G, Cassanelli G, Epis OM, Viadana A, Bertuzzi F, Pintaudi B. Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study. Biomedicines. 2025; 13(6):1407. https://doi.org/10.3390/biomedicines13061407
Chicago/Turabian StyleArmeli Grigio, Laura, Denisa Boci, Giacoma Di Vieste, Gianluca Cassanelli, Oscar Massimiano Epis, Alessandro Viadana, Federico Bertuzzi, and Basilio Pintaudi. 2025. "Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study" Biomedicines 13, no. 6: 1407. https://doi.org/10.3390/biomedicines13061407
APA StyleArmeli Grigio, L., Boci, D., Di Vieste, G., Cassanelli, G., Epis, O. M., Viadana, A., Bertuzzi, F., & Pintaudi, B. (2025). Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study. Biomedicines, 13(6), 1407. https://doi.org/10.3390/biomedicines13061407