Association Between Gut Microbiota and Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study in a Chinese Population
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Two-Sample MR Analysis of Gut Microbiota on CKD
2.3. Mediating Effects of Serum Protein on the Relationship Between the Gut Microbiota and CKD
3. Results
3.1. Instrument Variables
3.2. MR Analysis of Gut Microbiota on CKD
3.3. Mediating Effect of CKD-Related Serum Protein
4. Discussions
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. (2011) 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, A6–A7. [Google Scholar] [CrossRef] [PubMed]
- GBD 2013 Mortality and Causes of Death Collaborators. Global, Regional, and National Age–Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Rhee, C.M.; Kovesdy, C.P. Spotlight on CKD Deaths—Increasing Mortality Worldwide. Nat. Rev. Nephrol. 2015, 11, 199–200. [Google Scholar] [CrossRef]
- Wilmanski, T.; Diener, C.; Rappaport, N.; Patwardhan, S.; Wiedrick, J.; Lapidus, J.; Earls, J.C.; Zimmer, A.; Glusman, G.; Robinson, M.; et al. Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nat. Metab. 2021, 3, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Granato, A.; Xie, Q.Y.; Wong, A.; Yau, C.; Noseworthy, R.; Chen, T.; Gianetto-Hill, C.; Allen-Vercoe, E.; Guidos, C.J.; Hamilton, J.K.; et al. Metabolic Dysfunction Associated With Alterations in Gut Microbiota in Adolescents With Obesity. Diabetes 2025, 74, 720–733. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Li, J.; Wu, Q.; Qian, L.; He, J.; Ni, Y.; Kovatcheva-Datchary, P.; Yuan, R.; Liu, S.; et al. Resistant Starch Intake Facilitates Weight Loss in Humans by Reshaping the Gut Microbiota. Nat. Metab. 2024, 6, 578–597. [Google Scholar] [CrossRef]
- Hoops, S.L.; Knights, D.; Bantle, A. 607-P: Associations of Gut Microbiome with Glycemic Control in a Carbohydrate-Restricted, High-Protein Diet for Type 2 Diabetes Mellitus. Diabetes 2024, 73, 607-P. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef]
- Yang, Y.-N.; Wang, Q.-C.; Xu, W.; Yu, J.; Zhang, H.; Wu, C. The Berberine-Enriched Gut Commensal Blautia Producta Ameliorates High-Fat Diet (HFD)-Induced Hyperlipidemia and Stimulates Liver LDLR Expression. Biomed. Pharmacother. 2022, 155, 113749. [Google Scholar] [CrossRef] [PubMed]
- Miranda Alatriste, P.V.; Arronte, R.U.; Gómez Espin, C.O.; Espinosa Cuevas, M.d.l.Á. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr. Hosp. 2014, 29, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, N.; Ranganathan, P.; Friedman, E.A.; Joseph, A.; Delano, B.; Goldfarb, D.S.; Tam, P.; Venketeshwer Rao, A.; Anteyi, E.; Guido Musso, C. Pilot Study of Probiotic Dietary Supplementation for Promoting Healthy Kidney Function in Patients with Chronic Kidney Disease. Adv. Ther. 2010, 27, 634–647. [Google Scholar] [CrossRef]
- Ranganathan, N.; Friedman, E.A.; Tam, P.; Rao, V.; Ranganathan, P.; Dheer, R. Probiotic Dietary Supplementation in Patients with Stage 3 and 4 Chronic Kidney Disease: A 6-Month Pilot Scale Trial in Canada. Curr. Med. Res. Opin. 2009, 25, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R.; Pechenyak, B.; Vyas, U.; Ranganathan, P.; Weinberg, A.; Liang, P.; Mallappallil, M.C.; Norin, A.J.; Friedman, E.A.; Saggi, S.J. Randomized Controlled Trial of Strain-Specific Probiotic Formulation (Renadyl) in Dialysis Patients. BioMed Res. Int. 2014, 2014, 568571. [Google Scholar] [CrossRef]
- Wang, I.-K.; Wu, Y.-Y.; Yang, Y.-F.; Ting, I.-W.; Lin, C.-C.; Yen, T.-H.; Chen, J.-H.; Wang, C.-H.; Huang, C.-C.; Lin, H.-C. The Effect of Probiotics on Serum Levels of Cytokine and Endotoxin in Peritoneal Dialysis Patients: A Randomised, Double-Blind, Placebo-Controlled Trial. Benef. Microbes 2015, 6, 423–430. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, S.; Zhao, L.; Hao, Y.; Qin, J.; Zhang, L.; Zhang, C.; Bian, W.; Zuo, L.; et al. Aberrant Gut Microbiota Alters Host Metabolome and Impacts Renal Failure in Humans and Rodents. Gut 2020, 69, 2131–2142. [Google Scholar] [CrossRef]
- Ren, Z.; Fan, Y.; Li, A.; Shen, Q.; Wu, J.; Ren, L.; Lu, H.; Ding, S.; Ren, H.; Liu, C.; et al. Alterations of the Human Gut Microbiome in Chronic Kidney Disease. Adv. Sci. 2020, 7, 2001936. [Google Scholar] [CrossRef]
- Li, F.; Wang, M.; Wang, J.; Li, R.; Zhang, Y. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease. Front. Cell. Infect. Microbiol. 2019, 9, 206. [Google Scholar] [CrossRef]
- Hu, X.; Ouyang, S.; Xie, Y.; Gong, Z.; Du, J. Characterizing the Gut Microbiota in Patients with Chronic Kidney Disease. Postgrad. Med. 2020, 132, 495–505. [Google Scholar] [CrossRef]
- Wu, I.-W.; Gao, S.-S.; Chou, H.-C.; Yang, H.-Y.; Chang, L.-C.; Kuo, Y.-L.; Dinh, M.C.V.; Chung, W.-H.; Yang, C.-W.; Lai, H.-C.; et al. Integrative Metagenomic and Metabolomic Analyses Reveal Severity-Specific Signatures of Gut Microbiota in Chronic Kidney Disease. Theranostics 2020, 10, 5398–5411. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, W.-H.; Si, Z.-L.; Liu, H.-L.; Wang, H.; Jiang, H.; Liu, Y.-F.; Alolga, R.N.; Chen, C.; Liu, S.-J.; et al. The Gut Microbe Bacteroides Fragilis Ameliorates Renal Fibrosis in Mice. Nat. Commun. 2022, 13, 6081. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, X.; Kwan, T.K.; Loh, Y.W.; Singer, J.; Liu, Y.; Ma, J.; Tan, J.; Macia, L.; Mackay, C.R.; et al. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020, 31, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Zhu, C.; Li, H.; Yin, M.; Pan, C.; Huang, L.; Kong, C.; Wang, X.; Zhang, Y.; Qu, S.; et al. Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity 2018, 26, 351–361. [Google Scholar] [CrossRef]
- Yang, G.; Wei, J.; Liu, P.; Zhang, Q.; Tian, Y.; Hou, G.; Meng, L.; Xin, Y.; Jiang, X. Role of the Gut Microbiota in Type 2 Diabetes and Related Diseases. Metabolism 2021, 117, 154712. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Katz, R.; Ix, J.H.; Kimmel, P.L.; Bonventre, J.V.; Schelling, J.; Cushman, M.; Vasan, R.S.; Waikar, S.S.; Greenberg, J.H.; et al. Plasma Biomarkers as Risk Factors for Incident CKD. Kidney Int. Rep. 2022, 7, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, I.M.; Sarvode Mothi, S.; Wilson, P.C.; Palsson, R.; Srivastava, A.; Onul, I.F.; Kibbelaar, Z.A.; Zhuo, M.; Amodu, A.; Stillman, I.E.; et al. Circulating Plasma Biomarkers in Biopsy-Confirmed Kidney Disease. Clin. J. Am. Soc. Nephrol. 2022, 17, 27. [Google Scholar] [CrossRef]
- Zhernakova, D.V.; Le, T.H.; Kurilshikov, A.; Atanasovska, B.; Bonder, M.J.; Sanna, S.; Claringbould, A.; Võsa, U.; Deelen, P.; Franke, L.; et al. Individual Variations in Cardiovascular-Disease-Related Protein Levels Are Driven by Genetics and Gut Microbiome. Nat. Genet. 2018, 50, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.A.; Sharapov, S.Z.; Shagam, L.; Nostaeva, A.V.; Pezer, M.; Li, D.; Hanić, M.; McGovern, D.; Louis, E.; Rahmouni, S.; et al. Association Between Human Gut Microbiome and N-Glycan Composition of Total Plasma Proteome. Front. Microbiol. 2022, 13, 811922. [Google Scholar] [CrossRef]
- Zhang, B.; He, W.; Pei, Z.; Guo, Q.; Wang, J.; Sun, M.; Yang, X.; Ariben, J.; Li, S.; Feng, W.; et al. Plasma Proteins, Circulating Metabolites Mediate Causal Inference Studies on the Effect of Gut Bacteria on the Risk of Osteoporosis Development. Ageing Res. Rev. 2024, 101, 102479. [Google Scholar] [CrossRef]
- Hughes, D.A.; Bacigalupe, R.; Wang, J.; Rühlemann, M.C.; Tito, R.Y.; Falony, G.; Joossens, M.; Vieira-Silva, S.; Henckaerts, L.; Rymenans, L.; et al. Genome-Wide Associations of Human Gut Microbiome Variation and Implications for Causal Inference Analyses. Nat. Microbiol. 2020, 5, 1079–1087. [Google Scholar] [CrossRef]
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; et al. Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef]
- Syromyatnikov, M.; Nesterova, E.; Gladkikh, M.; Smirnova, Y.; Gryaznova, M.; Popov, V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms 2022, 10, 1866. [Google Scholar] [CrossRef]
- Deschasaux, M.; Bouter, K.E.; Prodan, A.; Levin, E.; Groen, A.K.; Herrema, H.; Tremaroli, V.; Bakker, G.J.; Attaye, I.; Pinto-Sietsma, S.-J.; et al. Depicting the Composition of Gut Microbiota in a Population with Varied Ethnic Origins but Shared Geography. Nat. Med. 2018, 24, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Stearns, J.C.; Zulyniak, M.A.; de Souza, R.J.; Campbell, N.C.; Fontes, M.; Shaikh, M.; Sears, M.R.; Becker, A.B.; Mandhane, P.J.; Subbarao, P.; et al. Ethnic and Diet-Related Differences in the Healthy Infant Microbiome. Genome Med. 2017, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Gaulke, C.A.; Sharpton, T.J. The Influence of Ethnicity and Geography on Human Gut Microbiome Composition. Nat. Med. 2018, 24, 1495–1496. [Google Scholar] [CrossRef]
- Luo, M.; Cai, J.; Luo, S.; Hong, X.; Xu, L.; Lin, H.; Chen, X.; Fu, W. Causal Effects of Gut Microbiota on the Risk of Chronic Kidney Disease: A Mendelian Randomization Study. Front. Cell. Infect. Microbiol. 2023, 13, 1142140. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, Y.; Lai, Y.; Jia, C.; Wu, F.; Chen, D. Causal Relationship between Gut Microbiota and Kidney Diseases: A Two-Sample Mendelian Randomization Study. Front. Immunol. 2024, 14, 1277554. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Wei, P.; Min, Y.; Yu, M.; Zhou, G.; Yuan, G.; Sun, J.; Dai, H.; Zhou, E.; et al. Causal Effects of Specific Gut Microbiota on Chronic Kidney Diseases and Renal Function—A Two-Sample Mendelian Randomization Study. Nutrients 2023, 15, 360. [Google Scholar] [CrossRef]
- Liu, X.; Mo, J.; Yang, X.; Peng, L.; Zeng, Y.; Zheng, Y.; Song, G. Causal Relationship between Gut Microbiota and Chronic Renal Failure: A Two-Sample Mendelian Randomization Study. Front. Microbiol. 2024, 15, 1356478. [Google Scholar] [CrossRef]
- Ren, F.; Jin, Q.; Jin, Q.; Qian, Y.; Ren, X.; Liu, T.; Zhan, Y. Genetic Evidence Supporting the Causal Role of Gut Microbiota in Chronic Kidney Disease and Chronic Systemic Inflammation in CKD: A Bilateral Two-Sample Mendelian Randomization Study. Front. Immunol. 2023, 14, 1287698. [Google Scholar] [CrossRef]
- Kachuri, L.; Saarela, O.; Bojesen, S.E.; Davey Smith, G.; Liu, G.; Landi, M.T.; Caporaso, N.E.; Christiani, D.C.; Johansson, M.; Panico, S.; et al. Mendelian Randomization and Mediation Analysis of Leukocyte Telomere Length and Risk of Lung and Head and Neck Cancers. Int. J. Epidemiol. 2019, 48, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Marini, S.; Merino, J.; Montgomery, B.E.; Malik, R.; Sudlow, C.L.; Dichgans, M.; Florez, J.C.; Rosand, J.; Gill, D.; Anderson, C.D.; et al. Mendelian Randomization Study of Obesity and Cerebrovascular Disease. Ann. Neurol. 2020, 87, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, Z.; Georgakis, M.K.; Wang, Z.; Lin, H.; Zheng, L. Smoking and Heart Failure: A Mendelian Randomization and Mediation Analysis. ESC Heart Fail. 2021, 8, 1954–1965. [Google Scholar] [CrossRef]
- Feng, Q.; Hu, S.; Zhang, X.; Huang, J. The Upregulation of the FBLN1 and HS3ST4 Genes May Represent a Potential Mechanism Driving the Fibrotic Progression in Primary Myelofibrosis and Leading to Adverse Prognosis. Blood 2023, 142, 6348. [Google Scholar] [CrossRef]
- Scholze, A.; Bladbjerg, E.-M.; Sidelmann, J.J.; Diederichsen, A.C.; Mickley, H.; Nybo, M.; Argraves, W.S.; Marckmann, P.; Rasmussen, L.M. Plasma Concentrations of Extracellular Matrix Protein Fibulin-1 Are Related to Cardiovascular Risk Markers in Chronic Kidney Disease and Diabetes. Cardiovasc. Diabetol. 2013, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liao, J.; Yuan, Q.; Hong, X.; Li, J.; Peng, Y.; He, M.; Zhu, H.; Zhu, M.; Hou, F.F.; et al. Fibrillin-1-Enriched Microenvironment Drives Endothelial Injury and Vascular Rarefaction in Chronic Kidney Disease. Sci. Adv. 2021, 7, eabc7170. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Liu, X.; Tong, X.; Zou, Y.; Lin, X.; Zhao, H.; Tian, L.; Jie, Z.; Wang, Q.; Zhang, Z.; Lu, H.; et al. Mendelian Randomization Analyses Support Causal Relationships between Blood Metabolites and the Gut Microbiome. Nat. Genet. 2022, 54, 52–61. [Google Scholar] [CrossRef]
- Dai, H.; Hou, T.; Wang, Q.; Hou, Y.; Zhu, Z.; Zhu, Y.; Zhao, Z.; Li, M.; Lin, H.; Wang, S.; et al. Roles of Gut Microbiota in Atrial Fibrillation: Insights from Mendelian Randomization Analysis and Genetic Data from over 430,000 Cohort Study Participants. Cardiovasc. Diabetol. 2023, 22, 306. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G.; CRP CHD Genetics Collaboration. Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef]
- Walters, R.G.; Millwood, I.Y.; Lin, K.; Valle, D.S.; McDonnell, P.; Hacker, A.; Avery, D.; Edris, A.; Fry, H.; Cai, N.; et al. Genotyping and Population Characteristics of the China Kadoorie Biobank. Cell Genom. 2023, 3, 100361. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Sugawara, Y.; Hirakawa, Y.; Nagasu, H.; Narita, A.; Katayama, A.; Wada, J.; Shimizu, M.; Wada, T.; Kitamura, H.; Nakano, T.; et al. Genome-Wide Association Study of the Risk of Chronic Kidney Disease and Kidney-Related Traits in the Japanese Population: J-Kidney-Biobank. J. Hum. Genet. 2023, 68, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Chiang, H.-Y.; Chang, D.R.; Cheng, C.-F.; Wang, C.C.N.; Lu, T.-P.; Lee, C.-Y.; Chattopadhyay, A.; Lin, Y.-T.; Lin, C.-C.; et al. Discovery and Prioritization of Genetic Determinants of Kidney Function in 297,355 Individuals from Taiwan and Japan. Nat. Commun. 2024, 15, 9317. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yu, E.Y.-W.; Cai, X.; Yue, L.; Jing, L.; Liang, X.; Fu, Y.; Miao, Z.; Yang, M.; Shuai, M.; et al. Genome-Wide Genotype-Serum Proteome Mapping Provides Insights into the Cross-Ancestry Differences in Cardiometabolic Disease Susceptibility. Nat. Commun. 2023, 14, 896. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.R.; Sanderson, E.; Hammerton, G.; Richmond, R.C.; Davey Smith, G.; Heron, J.; Taylor, A.E.; Davies, N.M.; Howe, L.D. Mendelian Randomisation for Mediation Analysis: Current Methods and Challenges for Implementation. Eur. J. Epidemiol. 2021, 36, 465–478. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Liu, F.; Xu, X.; Chao, L.; Chen, K.; Shao, A.; Sun, D.; Hong, Y.; Hu, R.; Jiang, P.; Zhang, N.; et al. Alteration of the Gut Microbiome in Chronic Kidney Disease Patients and Its Association With Serum Free Immunoglobulin Light Chains. Front. Immunol. 2021, 12, 609700. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, H.-E.; Park, J.I.; Cho, H.; Kwak, M.-J.; Kim, B.-Y.; Yang, S.H.; Lee, J.P.; Kim, D.K.; Joo, K.W.; et al. The Association between Gut Microbiota and Uremia of Chronic Kidney Disease. Microorganisms 2020, 8, 907. [Google Scholar] [CrossRef]
- Wu, I.-W.; Lin, C.-Y.; Chang, L.-C.; Lee, C.-C.; Chiu, C.-Y.; Hsu, H.-J.; Sun, C.-Y.; Chen, Y.-C.; Kuo, Y.-L.; Yang, C.-W.; et al. Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. Int. J. Biol. Sci. 2020, 16, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Kaesler, N.; Cheng, M.; Nagai, J.; O’Sullivan, J.; Peisker, F.; Bindels, E.M.J.; Babler, A.; Moellmann, J.; Droste, P.; Franciosa, G.; et al. Mapping Cardiac Remodeling in Chronic Kidney Disease. Sci. Adv. 2023, 9, eadj4846. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-C.; Hung, W.-W.; Chang, W.-A.; Wu, P.-H.; Wu, L.-Y.; Lee, S.-C.; Kuo, M.-C.; Hsu, Y.-L. Autocrine Exosomal Fibulin-1 as a Target of MiR-1269b Induces Epithelial–Mesenchymal Transition in Proximal Tubule in Diabetic Nephropathy. Front. Cell Dev. Biol. 2021, 9, 789716. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, R.A.B.; Soder, T.F.; Grokoski, K.C.; Benetti, F.; Mendes, R.H. Probiotics in the Treatment of Chronic Kidney Disease: A Systematic Review. J. Bras. Nefrol. 2018, 40, 278–286. [Google Scholar] [CrossRef]
- Wackett, L.P. Microbial Strain Collections and Information. Microb. Biotechnol. 2014, 7, 371–372. [Google Scholar] [CrossRef]
- Viasus, D.; Garcia-Vidal, C.; Cruzado, J.M.; Adamuz, J.; Verdaguer, R.; Manresa, F.; Dorca, J.; Gudiol, F.; Carratalà, J. Epidemiology, Clinical Features and Outcomes of Pneumonia in Patients with Chronic Kidney Disease. Nephrol. Dial. Transplant. 2011, 26, 2899–2906. [Google Scholar] [CrossRef]
- Huang, S.-T.; Lin, C.-L.; Chang, Y.-J.; Sher, Y.-P.; Wu, M.-J.; Shu, K.-H.; Sung, F.-C.; Kao, C.-H. Pneumococcal Pneumonia Infection Is Associated with End-Stage Renal Disease in Adult Hospitalized Patients. Kidney Int. 2014, 86, 1023–1030. [Google Scholar] [CrossRef]
- Zheng, G.; Cao, J.; Wang, X.H.; He, W.; Wang, B. The Gut Microbiome, Chronic Kidney Disease, and Sarcopenia. Cell Commun. Signal. 2024, 22, 558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Liang, Z.; Fang, J.; Liu, Y.; Lei, L.; Lin, J.; Xia, B.; Zheng, Z.; Yuan, J.; Tang, C. Association Between Gut Microbiota and Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study in a Chinese Population. Biomedicines 2025, 13, 1397. https://doi.org/10.3390/biomedicines13061397
Lin W, Liang Z, Fang J, Liu Y, Lei L, Lin J, Xia B, Zheng Z, Yuan J, Tang C. Association Between Gut Microbiota and Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study in a Chinese Population. Biomedicines. 2025; 13(6):1397. https://doi.org/10.3390/biomedicines13061397
Chicago/Turabian StyleLin, Wenjian, Zixin Liang, Junxuan Fang, Yu Liu, Lei Lei, Jiawen Lin, Bin Xia, Zhihua Zheng, Jingqiu Yuan, and Chun Tang. 2025. "Association Between Gut Microbiota and Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study in a Chinese Population" Biomedicines 13, no. 6: 1397. https://doi.org/10.3390/biomedicines13061397
APA StyleLin, W., Liang, Z., Fang, J., Liu, Y., Lei, L., Lin, J., Xia, B., Zheng, Z., Yuan, J., & Tang, C. (2025). Association Between Gut Microbiota and Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study in a Chinese Population. Biomedicines, 13(6), 1397. https://doi.org/10.3390/biomedicines13061397