High-Frequency Ultrasonography Imaging: Anatomical Measuring Site as Potential Clinical Marker for Early Identification of Breast Cancer-Related Lymphedema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Measurements and Data Collection
2.4. Lymphedema Assessment and Classification
2.4.1. International Society of Lymphology (ISL) Classification
2.4.2. Limb Circumference Measurement
2.4.3. Derived Limb Volume Measurements
2.4.4. Patient Self-Perceived Lymphedema
2.4.5. Ultrasound Examination of Upper Limbs
2.5. Sample Size
2.6. Statistical Analysis
3. Results
3.1. Participants’ Demographics and Disease-Related Characteristics
3.2. Participants’ Lymphedema Characteristics
3.3. Factors Associated with Lymphedema Classified According to the International Society of Lymphology Classification
3.4. Factors Associated with Lymphedema Classified According to Relative Volume Change ≥ 10%
3.5. Factors Associated with Lymphedema Classified According to Relative Volume Change ≥ 5%
4. Discussion
4.1. Limitations of the Study
4.2. Strengths of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LE | Lymphedema |
BCRL | Breast cancer-related lymphedema |
ISL | International Society of Lymphology |
US | Ultrasonography |
RVC | Relative volume change |
ICC | Interclass correlation coefficient |
SD | Standard deviation |
IQR | Interquartile range |
CI | Confidence intervals |
UaLC | Upper arm lateral cutis |
UaLSc | Upper arm lateral subcutis |
UaMC | Upper arm medial cutis |
UaMSc | Upper arm medial subcutis |
FaLC | Forearm lateral cutis |
FaLSc | Forearm lateral subcutis |
FaMC | Forearm medial cutis |
FaMSc | Forearm medial subcutis |
HC | Hand cutis |
HSc | Hand subcutis |
ALND | Axillary lymph node dissection |
MHz | Megahertz |
Appendix A
Measuring Site | ICC (95% C.I.) | ICC (95% C.I.) |
---|---|---|
Inter-Rater Reliability Researcher 1 and Researcher 2 | Inter-Rater Reliability Researcher 1 and Researcher 2 | |
UaLC 1 | 0.890 (0.75, 0.96) | 0.859 (0.68, 0.94) |
UaLSc 2 | 0.870 (0.49, 0.97) | 0.91 (0.79, 0.96) |
UaMC 3 | 0.848 (0.66, 0.93) | 0.910 (0.79, 0.96) |
UaMSc 4 | 0.997 (0.99, 0.99) | 0.889 (0.746, 0.954) |
FaLC 5 | 0.963 (0.91, 0.99) | 0.935 (0.85, 0,97) |
FaLSc 6 | 0.830 (0.63, 0.93) | 0.814 (0.60, 0.92) |
FaMC 7 | 0.935 (0.85, 0.97) | 0.954 (0.89, 0.98) |
FaMSc 8 | 0.978 (0.95, 0.99) | 0.978 (0.95, 0.99) |
HC 9 | 0.979 (0.95, 0.99) | 0.964 (0.91, 0.99) |
HSc 10 | 0.88 (0.73, 0.95) | 0.725 (0.43, 0.88) |
<0.5 poor 0.5–0.75 good 0.75–0.9 good >0.9 excellent |
Measuring Site | ICC (95% C.I.) | ICC (95% C.I.) |
---|---|---|
Inter-Rater Reliability Researcher 1 and Researcher 1 | Inter-Rater Reliability Researcher 1 and Researcher 1 | |
Measuring point 0 | 0.999 (0.99, 0.99) | 0.999 (0.99, 0.99) |
Measuring point 1 | 1.00 (0.99, 1.00) | 0.999 (0.99, 1.00) |
Measuring point 2 | 1.00 (0.99, 1.00) | 0.651 (0.41,0.81) |
Measuring point 3 | 1.00 (0.99,1.00) | 1.00 (0.99, 1.00) |
References
- Földi, M. On the pathophysiology of arm lymphedema after treatment for breast cancer. Lymphology 1995, 28, 151–158. [Google Scholar] [PubMed]
- Ricci, V.; Ricci, C.; Gervasoni, F.; Andreoli, A.; Özçakar, L. From histo-anatomy to sonography in lymphedema: EURO-MUSCULUS/USPRM approach. Eur. J. Phys. Rehabil. Med. 2022, 58, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Mander, A.; Venosi, S.; Menegatti, E.; Byung-Boong, L.; Neuhardt, D.; Maietti, E.; Gianesini, S. Upper limb secondary lymphedema ultrasound mapping and characterization. Int. Angiol. 2019, 38, 334–342. [Google Scholar] [CrossRef]
- Bok, S.K.; Jeon, Y.; Hwang, P.S. Ultrasonographic Evaluation of the Effects of Progressive Resistive Exercise in Breast Cancer-Related Lymphedema. Lymphat. Res. Biol. 2016, 14, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Paskett, E.D.; Dean, J.A.; Oliveri, J.M.; Harrop, J.P. Cancer-related lymphedema risk factors, diagnosis, treatment, and impact: A review. J. Clin. Oncol. 2012, 30, 3726–3733. [Google Scholar] [CrossRef]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef]
- Torgbenu, E.; Luckett, T.; Buhagiar, M.A.; Chang, S.; Phillips, J.L. Prevalence and incidence of cancer related lymphedema in low and middle-income countries: A systematic review and meta-analysis. BMC Cancer 2020, 20, 604. [Google Scholar] [CrossRef]
- Skjødt Rafn, B.; Jensen, S.; Bjerre, E.D.; Wittenkamp, M.C.; Benjaminsen, K.; Christensen, L.P.; Flyger, H.; Christiansen, P.; Johansen, C. Prospective surveillance for breast cancer-related lymphedema (PROTECT). Acta Oncol. 2023, 62, 808–813. [Google Scholar] [CrossRef]
- Stout, N.L.; Binkley, J.M.; Schmitz, K.H.; Andrews, K.; Hayes, S.C.; Campbell, K.L.; McNeely, M.L.; Soballe, P.W.; Berger, A.M.; Cheville, A.L.; et al. A prospective surveillance model for rehabilitation for women with breast cancer. Cancer 2012, 118, 2191–2200. [Google Scholar] [CrossRef]
- Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology 2020, 53, 3–19. [Google Scholar]
- Hayes, S.; Cornish, B.; Newman, B. Preoperative assessment enables the early detection and successful treatment of lymphedema. Cancer 2010, 116, 260. [Google Scholar] [CrossRef] [PubMed]
- Stanton, A.W.; Badger, C.; Sitzia, J. Non-invasive assessment of the lymphedematous limb. Lymphology 2000, 33, 122–135. [Google Scholar] [PubMed]
- Smoot, B.J.; Wong, J.F.; Dodd, M.J. Comparison of diagnostic accuracy of clinical measures of breast cancer-related lymphedema: Area under the curve. Arch. Phys. Med. Rehabil. 2011, 92, 603–610. [Google Scholar] [CrossRef]
- Stout, N.L.; Pfalzer, L.A.; Levy, E.; McGarvey, C.; Springer, B.; Gerber, L.H.; Soballe, P. Segmental limb volume change as a predictor of the onset of lymphedema in women with early breast cancer. PM R 2011, 3, 1098–1105. [Google Scholar] [CrossRef]
- Tassenoy, A.; De Mey, J.; De Ridder, F.; Van Schuerbeeck, P.; Vanderhasselt, T.; Lamote, J.; Lievens, P. Postmastectomy lymphoedema: Different patterns of fluid distribution visualised by ultrasound imaging compared with magnetic resonance imaging. Physiotherapy 2011, 97, 234–243. [Google Scholar] [CrossRef]
- Ridner, S.H.; Montgomery, L.D.; Hepworth, J.T.; Stewart, B.R.; Armer, J.M. Comparison of upper limb volume measurement techniques and arm symptoms between healthy volunteers and individuals with known lymphedema. Lymphology 2007, 40, 35–46. [Google Scholar] [PubMed]
- Specht, M.C.; Miller, C.L.; Russell, T.A.; Horick, N.; Skolny, M.N.; O’Toole, J.A.; Jammallo, L.S.; Niemierko, A.; Sadek, B.T.; Shenouda, M.N.; et al. Defining a threshold for intervention in breast cancer-related lymphedema: What level of arm volume increase predicts progression? Breast Cancer Res. Treat. 2013, 140, 485–494. [Google Scholar] [CrossRef]
- Yanardağ, C.H.; Çürük, G.N.; Karayurt, Ö. Effects of selfcare and selected factors on the quality of life in women with breast cancer-related lymphedema. Support. Care Cancer 2022, 31, 22. [Google Scholar] [CrossRef]
- Levenhagen, K.; Davies, C.; Perdomo, M.; Ryans, K.; Gilchrist, L. Diagnosis of Upper Quadrant Lymphedema Secondary to Cancer: Clinical Practice Guideline from the Oncology Section of the American Physical Therapy Association. Phys. Ther. 2017, 97, 729–745. [Google Scholar] [CrossRef]
- Boyages, J.; Vicini, F.A.; Shah, C.; Koelmeyer, L.A.; Nelms, J.A.; Ridner, S.H. The Risk of Subclinical Breast Cancer-Related Lymphedema by the Extent of Axillary Surgery and Regional Node Irradiation: A Randomized Controlled Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 987–997. [Google Scholar] [CrossRef]
- Fu, M.R.; Axelrod, D.; Cleland, C.M.; Qiu, Z.; Guth, A.A.; Kleinman, R.; Scagliola, J.; Haber, J. Symptom report in detecting breast cancer-related lymphedema. Breast Cancer 2015, 7, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Gençay Can, A.; Ekşioğlu, E.; Çakçı, F.A. Early Detection and Treatment of Subclinical Lymphedema in Patients with Breast Cancer. Lymphat. Res. Biol. 2019, 17, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Czerniec, S.A.; Ward, L.C.; Refshauge, K.M.; Beith, J.; Lee, M.J.; York, S.; Kilbreath, S.L. Assessment of breast cancer-related arm lymphedema—Comparison of physical measurement methods and self-report. Cancer Investig. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Michelotti, A.; Invernizzi, M.; Lopez, G.; Lorenzini, D.; Nesa, F.; De Sire, A.; Fusco, N. Tackling the diversity of breast cancer related lymphedema: Perspectives on diagnosis, risk assessment, and clinical management. Breast 2019, 44, 15–23. [Google Scholar] [CrossRef]
- Hayes, S.; Cornish, B.; Newman, B. Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up. Breast Cancer Res. Treat. 2005, 89, 221–226. [Google Scholar] [CrossRef]
- Ancukiewicz, M.; Russell, T.A.; Otoole, J.; Specht, M.; Singer, M.; Kelada, A.; Murphy, C.D.; Pogachar, J.; Gioioso, V.; Patel, M.; et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1436–1443. [Google Scholar] [CrossRef]
- Armer, J.M.; Stewart, B.R. A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphat. Res. Biol. 2005, 3, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Armer, J.M. The problem of post-breast cancer lymphedema: Impact and measurement issues. Cancer Investig. 2005, 23, 76–83. [Google Scholar] [CrossRef]
- Choi, Y.H.; Seo, K.S. Correlation among bioimpedance analysis, sonographic and circumferential measurement in assessment of breast cancer-related arm lymphedema. Lymphology 2014, 47, 123–133. [Google Scholar]
- Özçakar, L.; Kara, M.; Chang, K.V.; Çarl, A.B.; Akkaya, N.; Tok, F.; Chen, W.S.; Wang, T.G.; Tekin, L.; Ulaşl, A.M.; et al. Nineteen reasons why physiatrists should do musculoskeletal ultrasound: EURO-MUSCULUS/USPRM recommendations. Am. J. Phys. Med. Rehabil. 2015, 94, e45–e49. [Google Scholar] [CrossRef]
- Suehiro, K.; Morikage, N.; Murakami, M.; Yamashita, O.; Samura, M.; Hamano, K. Significance of ultrasound examination of skin and subcutaneous tissue in secondary lower extremity lymphedema. Ann. Vasc. Dis. 2013, 6, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, K.; Morikage, N.; Yamashita, O.; Harada, T.; Samura, M.; Takeuchi, Y.; Mizoguchi, T.; Nakamura, K.; Hamano, K. Skin and Subcutaneous Tissue Ultrasonography Features in Breast Cancer-Related Lymphedema. Ann. Vasc. Dis. 2016, 9, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, K.; Yamamoto, S.; Honda, S.; Morikage, N.; Harada, E.; Takemoto, Y.; Nagano, H.; Hamano, K. Perioperative variations in indices derived from noninvasive assessments to detect postmastectomy lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Giray, E.; Yagci, I. Diagnostic accuracy of interlimb differences of ultrasonographic subcutaneous tissue thickness measurements in breast cancer-related arm lymphedema. Lymphology 2019, 52, 1–10. [Google Scholar] [CrossRef]
- Mellor, R.H.; Bush, N.L.; Stanton, A.W.; Bamber, J.C.; Levick, J.R.; Mortimer, P.S. Dual-frequency ultrasound examination of skin and subcutis thickness in breast cancer-related lymphedema. Breast J. 2004, 10, 496–503. [Google Scholar] [CrossRef]
- van der Veen, P.; Vermeiren, K.; Von Kemp, K.; Lamote, J.; Sacre, R.; Lievens, P. A key to understanding postoperative lymphoedema: A study on the evolution and consistency of oedema of the arm using ultrasound imaging. Breast 2001, 10, 225–230. [Google Scholar] [CrossRef]
- Yang, E.J.; Kim, S.Y.; Lee, W.H.; Lim, J.Y.; Lee, J. Diagnostic Accuracy of Clinical Measures Considering Segmental Tissue Composition and Volume Changes of Breast Cancer-Related Lymphedema. Lymphat. Res. Biol. 2018, 16, 368–376. [Google Scholar] [CrossRef]
- Johnson, K.C.; DeSarno, M.; Ashikaga, T.; Dee, J.; Henry, S.M. Ultrasound and Clinical Measures for Lymphedema. Lymphat. Res. Biol. 2016, 14, 8–17. [Google Scholar] [CrossRef]
- Sanderson, J.; Tuttle, N.; Box, R.; Reul-Hirche, H.; Laakso, E.L. Localised Objective Characterisation Assessment of Lymphoedema (LOCAL): Using High-Frequency Ultrasound, Bioelectrical Impedance Spectroscopy and Volume to Evaluate Superficial Tissue Composition. Diagnostics 2024, 14, 1616. [Google Scholar] [CrossRef]
- Vargo, M.; Aldrich, M.; Donahue, P.; Iker, E.; Koelmeyer, L.; Crescenzi, R.; Cheville, A. Current diagnostic and quantitative techniques in the field of lymphedema management: A critical review. Med. Oncol. 2024, 41, 241. [Google Scholar] [CrossRef]
- Mayrovitz, H.N. Medical Applications of Skin Tissue Dielectric Constant Measurements. Cureus 2023, 15, e50531. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Beom, J.; Ahn, S.; Bok, S.K. Ultrasonographic Evaluation of Breast Cancer-related Lymphedema. J. Vis. Exp. 2017, 42, e54996. [Google Scholar] [CrossRef]
- Park, J.Y.; Jeon, J.Y.; Cha, S. Ultrasonographic features of the skin and subcutis: Correlations with the severity of breast cancer-related lymphedema. Ultrasonography 2024, 43, 284–293. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, L.; Liu, Y.; Zhang, Y.; Zheng, W.; Yu, X.; Liu, H.; Li, Z.; Peng, Z.; Li, X. Neuralgic amyotrophy: Sensitivity and specificity of magnetic resonance neurography in diagnosis: A retrospective study. Medicine 2023, 102, e35527. [Google Scholar] [CrossRef] [PubMed]
- Forte, A.J.; Huayllani, M.T.; Boczar, D.; Cinotto, G.; McLaughlin, S.A. Ultrasound Elastography Use in Lower Extremity Lymphedema: A Systematic Review of the Literature. Cureus 2019, 11, e5578. [Google Scholar] [CrossRef]
- Devoogdt, N.; Pans, S.; De Groef, A.; Geraerts, I.; Christiaens, M.R.; Neven, P.; Vergote, I.; Van Kampen, M. Postoperative evolution of thickness and echogenicity of cutis and subcutis of patients with and without breast cancer-related lymphedema. Lymphat. Res. Biol. 2014, 12, 23–31. [Google Scholar] [CrossRef]
- de Rezende, L.F.; Piloni, J.P.M.; Kempa, V.L.; Silva, J.F.R.; Vilas Boas, V.F.; Carvalho, R.L.; Marx, Â.G. Ultrasonography as an instrument to evaluate lymphedema secondary to breast cancer: Systematic review. J. Vasc. Bras. 2023, 22, e20220144. [Google Scholar] [CrossRef] [PubMed]
- Polat, A.V.; Ozturk, M.; Polat, A.K.; Karabacak, U.; Bekci, T.; Murat, N. Efficacy of Ultrasound and Shear Wave Elastography for the Diagnosis of Breast Cancer-Related Lymphedema. J. Ultrasound Med. 2020, 39, 795–803. [Google Scholar] [CrossRef]
- Giray, E.; Yağcı, İ. Interrater and Intrarater Reliability of Subcutaneous Echogenicity Grade and Subcutaneous Echo-Free Space Grade in Breast Cancer-Related Lymphedema. Lymphat. Res. Biol. 2019, 17, 518–524. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, C.H.; Heo, S.J.; Moon, M.H. The Clinical Usefulness of Lymphedema Measurement Technique Using Ultrasound. Lymphat. Res. Biol. 2021, 19, 340–346. [Google Scholar] [CrossRef]
- Duyur Çakıt, B.; Ayhan, F.F.; Gümrük Aslan, S.; Genç, H. The role of ultrasonography in follow-up of effectiveness of Complex Decongestive Therapy (CDT) in different subgroups of patients with breast cancer-related lymphoedema. Eur. J. Cancer Care 2021, 30, e13376. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, C.L.; Barrio, A.V.; Shaitelman, S.F.; Singhal, D.; Sayegh, H.E.; Taghian, A.G. On “Diagnosis of Upper Quadrant Lymphedema Secondary to Cancer: Clinical Practice Guideline from the Oncology Section of the American Physical Therapy Association.” Levenhagen K, Davies C, Perdomo M, Ryans K, Gilchrist L. Phys Ther. 2017;97:729–745. Phys. Ther. 2018, 98, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Jayasinghe, U.W.; Koelmeyer, L.; Ung, O.; Boyages, J. Reliability and validity of arm volume measurements for assessment of lymphedema. Phys. Ther. 2006, 86, 205–214. [Google Scholar] [CrossRef]
- Deltombe, T.; Jamart, J.; Recloux, S.; Legrand, C.; Vandenbroeck, N.; Theys, S.; Hanson, P. Reliability and limits of agreement of circumferential, water displacement, and optoelectronic volumetry in the measurement of upper limb lymphedema. Lymphology 2007, 40, 26–34. [Google Scholar]
- Soran, A.; Ozmen, T.; McGuire, K.P.; Diego, E.J.; McAuliffe, P.F.; Bonaventura, M.; Ahrendt, G.M.; DeGore, L.; Johnson, R. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphat. Res. Biol. 2014, 12, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Bundred, N.; Foden, P.; Todd, C.; Morris, J.; Watterson, D.; Purushotham, A.; Bramley, M.; Riches, K.; Hodgkiss, T.; Evans, A.; et al. Increases in arm volume predict lymphoedema and quality of life deficits after axillary surgery: A prospective cohort study. Br. J. Cancer 2020, 123, 17–25. [Google Scholar] [CrossRef]
- Stout Gergich, N.L.; Pfalzer, L.A.; McGarvey, C.; Springer, B.; Gerber, L.H.; Soballe, P. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer 2008, 112, 2809–2819. [Google Scholar] [CrossRef]
- Togawa, K.; Ma, H.; Smith, A.W.; Neuhouser, M.L.; George, S.M.; Baumgartner, K.B.; McTiernan, A.; Baumgartner, R.; Ballard, R.M.; Bernstein, L. Self-reported symptoms of arm lymphedema and health-related quality of life among female breast cancer survivors. Sci. Rep. 2021, 11, 10701. [Google Scholar] [CrossRef]
- Bosompra, K.; Ashikaga, T.; O’Brien, P.J.; Nelson, L.; Skelly, J. Swelling, numbness, pain, and their relationship to arm function among breast cancer survivors: A disablement process model perspective. Breast J. 2002, 8, 338–348. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, J.E.; Zhu, Y.; Mak, Y.W.; Qiu, H.; Liu, L.H.; Yang, S.S.; Chen, S.H. Development and validation of a nomogram to predict the risk of breast cancer-related lymphedema among Chinese breast cancer survivors. Support. Care Cancer 2021, 29, 5435–5445. [Google Scholar] [CrossRef]
- Zhang, X.; Oliveri, J.M.; Paskett, E.D. Features, Predictors, and Treatment of Breast Cancer–Related Lymphedema. Curr. Breast Cancer Rep. 2020, 12, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, C.L.; Roberts, S.A.; Horick, N.K.; Gillespie, T.C.; Jacobs, J.M.; Daniell, K.M.; Naoum, G.E.; Taghian, A.G. Integrating Symptoms Into the Diagnostic Criteria for Breast Cancer-Related Lymphedema: Applying Results From a Prospective Surveillance Program. Phys. Ther. 2020, 100, 2186–2197. [Google Scholar] [CrossRef]
- Johnson, A.R.; Bravo, M.G.; James, T.A.; Suami, H.; Lee, B.T.; Singhal, D. The All but Forgotten Mascagni-Sappey Pathway: Learning from Immediate Lymphatic Reconstruction. J. Reconstr. Microsurg. 2020, 36, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.; Lee, C.; Kinney, J.R.; Salehi, B.P.; Kim, G.; Singhal, D.; Tsai, L.L. Fluid Distribution Patterns in Early-Stage Upper Extremity Lymphedema. Ann. Plast. Surg. 2023, 90, S622–S625. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Blom, K.; Nilsson-Wikmar, L.; Brogårdh, C. Early Intervention with a Compression Sleeve in Mild Breast Cancer-Related Arm Lymphedema: A 12-Month Prospective Observational Study. Cancers 2023, 15, 2674. [Google Scholar] [CrossRef]
- Dylke, E.S.; Yee, J.; Ward, L.C.; Foroughi, N.; Kilbreath, S.L. Normative volume difference between the dominant and nondominant upper limbs in healthy older women. Lymphat. Res. Biol. 2012, 10, 182–188. [Google Scholar] [CrossRef]
- Davies, C.; Levenhagen, K.; Ryans, K.; Perdomo, M.; Gilchrist, L. Interventions for Breast Cancer-Related Lymphedema: Clinical Practice Guideline From the Academy of Oncologic Physical Therapy of APTA. Phys. Ther. 2020, 100, 1163–1179. [Google Scholar] [CrossRef]
- Lijmer, J.G.; Mol, B.W.; Heisterkamp, S.; Bonsel, G.J.; Prins, M.H.; van der Meulen, J.H.; Bossuyt, P.M. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999, 282, 1061–1066. [Google Scholar] [CrossRef]
- McLaughlin, S.A.; Brunelle, C.L.; Taghian, A. Breast Cancer-Related Lymphedema: Risk Factors, Screening, Management, and the Impact of Locoregional Treatment. J. Clin. Oncol. 2020, 38, 2341–2350. [Google Scholar] [CrossRef]
Variable | Lymphedema Stage | p-Value | Lymphedema RVC 6 | p-Value | ||
---|---|---|---|---|---|---|
ISL 5 0 (n = 36) | ISL 5 2 (n = 32) | RVC 6 < 5% (n = 30) | RVC 6 ≥ 5% (n = 38) | |||
Age, mean (SD) | 54.64 ± 8.15 | 61.63 ± 7.13 | <0.001 | 54.77 ± 7.8 | 60.7 ± 8.2 | 0.003 |
BMI 1, median (IQR) | 26.35 (8.03) | 27.1 (4.5) | 0.551 | 26.9 (7.3) | 27.1 (5.5) | 0.780 |
Dominant is affected limb, n (%) | 22 (61.1%) | 20 (62.5%) | 0.906 | 17 (56.7%) | 25 (65.8%) | 0.442 |
Time since BC 2 surgery, median (IQR) | 4.5 (6.0) | 5.0 (9.0) | 0.558 | 4.0 (5.0) | 5.0 (7.8) | 0.857 |
Type of surgery, n (%) | 0.167 | 0.081 | ||||
Mastectomy | 25 (69.4%) | 17 (53.1%) | 22 (73.3%) | 20 (52.6%) | ||
Breast-conserving surgery | 11 (30.6%) | 15 (46.9%) | 8 (26.7%) | 18 (47.4%) | ||
Type of lymph node removal, n (%) | 0.058 | 0.988 | ||||
SLND 3 | 17 (47.2%) | 8 (25.0%) | 11 (36.7%) | 14 (36.8%) | ||
ALND 4 | 19 (52.7%) | 24 (75.0%) | 19 (63.3%) | 26 (68.4%) | ||
Post-surgery complications, n (%) | 26 (72.2%) | 22 (68.8%) | 0.754 | 20 (66.7%) | 28 (73.7%) | 0.528 |
Axillary web syndrome n (%) | 9 (25%) | 6 (18.8%) | 0.535 | 8 (26.7%) | 7 (18.4%) | 0.416 |
Radiotherapy application, n (%) | 23 (63.9%) | 26 (81.3%) | 0.111 | 21 (70%) | 28 (73.7%) | 0.737 |
Chemotherapy application, n (%) | 19 (52.8%) | 19 (59.4%) | 0.584 | 14 (46.7%) | 24 (63.2%) | 0.174 |
Type of chemotherapy application, n (%) | 0.935 | 0.950 | ||||
Adjuvant | 16 (44.4%) | 15 (46.9%) | 12 (40%) | 19 (50.0%) | ||
Neoadjuvant | 4 (11.1%) | 4 (12.5%) | 1 (3.3%) | 3 (7.9%) | ||
Anti HER2 application, n (%) | 7 (19.4%) | 5 (15.6%) | 0.771 | 6 (20.0%) | 6 (15.8%) | 0.383 |
Endocrine treatment, n (%) | 27 (8%) | 23 (71.9%) | 0.771 | 25 (83.3%) | 25 (65.8%) | 0.103 |
Variable | ISL 1 0 (n = 36) | ISL 1 II (n = 32) | p-Value |
---|---|---|---|
Increase of interlimb edema volume ratio, n (%) | <0.001 | ||
0–5% | 27 (75%) | 3 (9.4%) | |
>5% | 9 (25%) | 29 (90.6%) | |
Increase of interlimb edema volume ratio, n (%) | <0.001 | ||
0–10% | 35 (97.2%) | 14 (43.8%) | |
>10% | 1 | 18 | |
Interlimb circumference difference, n (%) | <0.001 | ||
<2cm | 33 (91.6%) | 6 (18.8%) | |
≥2 cm | 3 (8.3%) | 26 (81.3%) | |
Self-reported swelling, n (%) | 13 (36.1%) | 25 (78.1%) | <0.001 |
Self-reported LE symptoms, n (%) | 20 (55.6%) | 28 (87.5%) | 0.004 |
Lymphedema complications, n (%): | |||
Pain in the LE 2 affected arm | 15 (41.7%) | 15 (46.9%) | 0.666 |
Erysipelas episodes | 1 (2.8%) | 7 (21.9%) | 0.015 |
Variable | RVC2 < 5% (n = 30) | RVC2 ≥ 5% (n = 38) | p-Value |
---|---|---|---|
ISL stage | <0.001 | ||
1 ISL 0 | 27 (90%) | 9 (23.7%) | |
ISL II | 3 (10%) | 29 (76.3%) | |
Interlimb circumference difference, n (%) | <0.001 | ||
<2 cm | 28 (93.3%) | 11 (29%) | |
≥2 cm | 2 (6.7%) | 27 (71.1%) | |
Self-reported swelling, n (%) | 12 (40%) | 26 (68.4%) | 0.019 |
2 RVC | <0.001 | ||
<10% | 30 (100%) | 19 (50%) | |
≥10% | 0 (0%) | 19 (50%) | |
Self-reported 3 LE symptoms, n (%) | 18 (60%) | 30 (78.9%) | 0.055 |
Lymphedema complications, n (%) | |||
Pain in LE LE-affected arm | 13 (43.3%) | 17 (44.7%) | 0.908 |
Erysipelas episodes | 1 (3.3%) | 7 (18.4%) | 0.055 |
ISL Classification 11 | Univariate Model | Multivariable Model | |||
---|---|---|---|---|---|
Variable | ISL = 0 12 | ISL = II 13 | p-Value | OR 14 (95% C.I) | p-Value |
UaLC 1, median (IQR) | 2.0 (2.5) | 3.0 (4.0) | 0.061 | ||
UaLSc 2, median (IQR) | 11.5 (16.25) | 10.5 (19.25) | 0.535 | ||
UaMC 3, median (IQR) | 1.5 (1.5) | 3.0 (5.0) | 0.011 | 1.32 (0.90, 1.95) | 0.158 |
UaMSc 4, median (IQR) | 14.0 (14.25) | 27.0 (32.25) | 0.002 | 1.05 (1.002, 1.1) | 0.041 |
FaLC 5, median (IQR) | 2.0 (1.0) | 1.5 (3.0) | 0.342 | ||
FaLSc 6, median (IQR) | 6.0 (7.25) | 6.5 (9.5) | 0.805 | ||
FaMC 7, median (IQR) | 1.0 (1.0) | 2.5(6.25) | 0.001 | 1.71 (1.02, 2.86) | 0.041 |
FaMSc 8, median (IQR) | 5.5 (7.5) | 10.0 (22.25) | 0.001 | 0.98 (0.93, 1.03) | 0.431 |
HC 9, median (IQR) | 12.5 (7.0) | 12.5 (9.0) | 0.961 | ||
HSc 10, median (IQR) | 2.0 (2.25) | 2.0 (3.5) | 0.737 | ||
Arm echogenity n (%) | <0.001 | 0.272 | |||
Increased echogenicity | 5 (22.7%) | 17 (77.3%) | reference | ||
Normal echogenity | 31 (67.4%) | 15 (32.6%) | 0.40 (0.08, 2.06) |
RVC % 11 | Univariate Model | Multivariable Model | |||
---|---|---|---|---|---|
Variable | <10% | ≥10% | p-Value | OR (95% C.I) | p-Value |
UaLC 1, median (IQR) | 2.0 (3.0) | 3.0 (10.0) | 0.028 | 1.01 (0.93, 1.09) | 0.909 |
UaLSc 2, median (IQR) | 9.0 (17.0) | 13.0 (22.0) | 0.083 | ||
UaMC 3, median (IQR) | 2.0 (2.0) | 4.0 (4.0) | <0.001 | 1.14 (0.88, 1.48) | 0.316 |
UaMSc 4, median (IQR) | 18.0 (19.0) | 24.0 (44.0) | 0.211 | ||
FaLC 5, median (IQR) | 1.0 (1.0) | 2.0 (4.0) | 0.009 | 1.42 (0.86, 2.34) | 0.175 |
FaLSc 6, median (IQR) | 6.0 (8.0) | 7.0 (15.0) | 0.215 | ||
FaMC 7, median (IQR) | 1.0 (1.0) | 7.0 (8.0) | <0.001 | 1.3 (0.99, 1.71) | 0.064 |
FaMSc 8, median (IQR) | 6.0 (9.0) | 13.0 (45.0) | 0.007 | 1.02 (0.97, 1.07) | 0.383 |
HC 9, median (IQR) | 13.0 (7.0) | 12.0 (9.0) | 0.158 | ||
HSc 10, median (IQR) | 2.0 (3.0) | 3.0 (8.0) | 0.534 | ||
Arm echogenicity category n (%) | <0.001 | 0.856 | |||
Increased echogenicity | 10 (20.4%) | 14 (66.7%) | reference | ||
Normal echogenitechogenicity | 39 (79.6%) | 7 (33.3%) | 0.851 (0.15, 4.84) |
RVC % 11 | Univariate Model | Multivariable Model | |||
---|---|---|---|---|---|
Variable | <5% | ≥5% | p-Value | OR (95% C.I) | p-Value |
UaLC 1, median (IQR) | 2.0 (2.75) | 3.0 (4.0) | 0.174 | ||
UaLSc 2, median (IQR) | 11.5 (16.75) | 11.0 (19.0) | 0.409 | ||
UaMC 3, median (IQR) | 1.5 (1.0) | 3.0 (4.25) | 0.014 | 1.49 (1.01, 2.21) | 0.047 |
UaMSc 4, median (IQR) | 14.0 (14.75) | 22.0 (36.25) | 0.032 | 1.01 (0.98, 1.05) | 0.408 |
FaLC 5, median (IQR) | 2.0 (1.0) | 1.5 (3.0) | 0.578 | ||
FaLSc 6, median (IQR) | 5.0 (7.75) | 7.0 (12.0) | 0.029 | 1.09 (0.99, 1.21) | 0.087 |
FaMC 7, median (IQR) | 1.0(1.0) | 2.0 (6.25) | 0.007 | 1.23 (0.87, 1.73) | 0.238 |
FaMSc 8, median (IQR) | 5.0 (5.75) | 12.5 (31.0) | 0.006 | 1.03 (0.97, 1.19) | 0.329 |
HC 9, median (IQR) | 12.0 (7.0) | 13.0 (9.0) | 0.934 | ||
HSc 10, median (IQR) | 2.0 (2.0) | 2.0 (3.75) | 1 | ||
Arm echogenicity category n (%) | 0.007 | 0.673 | |||
Increased echogenicity | 5 (20.8%) | 19 (79.2%) | Reference | ||
Normal echogenicity | 25 (54.3%) | 21 (45.7%) | 0.71 (0.15, 3.48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klarić-Kukuz, I.; Mršić, D.B.; Matana, A.; Barun, B.; Aljinović, J.; Marinović-Guić, M.; Poljičanin, A. High-Frequency Ultrasonography Imaging: Anatomical Measuring Site as Potential Clinical Marker for Early Identification of Breast Cancer-Related Lymphedema. Biomedicines 2025, 13, 1396. https://doi.org/10.3390/biomedicines13061396
Klarić-Kukuz I, Mršić DB, Matana A, Barun B, Aljinović J, Marinović-Guić M, Poljičanin A. High-Frequency Ultrasonography Imaging: Anatomical Measuring Site as Potential Clinical Marker for Early Identification of Breast Cancer-Related Lymphedema. Biomedicines. 2025; 13(6):1396. https://doi.org/10.3390/biomedicines13061396
Chicago/Turabian StyleKlarić-Kukuz, Ivana, Danijela Budimir Mršić, Antonela Matana, Blaž Barun, Jure Aljinović, Maja Marinović-Guić, and Ana Poljičanin. 2025. "High-Frequency Ultrasonography Imaging: Anatomical Measuring Site as Potential Clinical Marker for Early Identification of Breast Cancer-Related Lymphedema" Biomedicines 13, no. 6: 1396. https://doi.org/10.3390/biomedicines13061396
APA StyleKlarić-Kukuz, I., Mršić, D. B., Matana, A., Barun, B., Aljinović, J., Marinović-Guić, M., & Poljičanin, A. (2025). High-Frequency Ultrasonography Imaging: Anatomical Measuring Site as Potential Clinical Marker for Early Identification of Breast Cancer-Related Lymphedema. Biomedicines, 13(6), 1396. https://doi.org/10.3390/biomedicines13061396