Quantitative Measures of Pure Ground-Glass Nodules from an Artificial Intelligence Software for Predicting Invasiveness of Pulmonary Adenocarcinoma on Low-Dose CT: A Multicenter Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Acquisition Parameters
2.3. Pathological Evaluation
2.4. Measure of Radiologists
2.5. Measures of AI
2.6. Statistical Analysis
3. Results
3.1. Demographic and Radiological Characteristics
3.2. Agreement of Diameter Between AI and Radiologists
3.3. Diagnostic Performances of Quantitative Measures
3.4. Complementary Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
AI | Artificial intelligence |
AUC | Area under curve |
CSR | Chinese Radiology Society |
FDA | Food and Drug Administration |
ICC | Intra-class correlation coefficient |
LDCT | Low-dose CT |
LOA | Limits of agreement |
Lung-RADS | Lung CT Screening Reporting & Data System |
NMPA | National Medical Products Administration |
OR | Odds ratio |
PACS | Picture archiving and communication system |
pGGN | Pure ground-glass nodule |
ROC | Receiver operating characteristic |
WHO | World Health Organization |
References
- Kobayashi, Y.; Ambrogio, C.; Mitsudomi, T. Ground-glass nodules of the lung in never-smokers and smokers: Clinical and genetic insights. Transl. Lung Cancer Res. 2018, 7, 487–497. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kwon, B.S.; Lim, S.Y.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Lee, K.W.; Lee, J.H.; Chung, J.H.; et al. Lung cancer probability and clinical outcomes of baseline and new subsolid nodules detected on low-dose CT screening. Thorax 2021, 76, 980–988. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, C.; Ye, X. Overdiagnosis and overtreatment of ground-glass nodule-like lung cancer. Asia-Pac. J. Clin. Oncol. 2025, 21, 108–114. [Google Scholar] [CrossRef]
- Azour, L.; Oh, A.S.; Prosper, A.E.; Toussie, D.; Villasana-Gomez, G.; Pourzand, L. Subsolid Nodules: Significance and Current Understanding. Clin. Chest Med. 2024, 45, 263–277. [Google Scholar] [CrossRef]
- Raad, R.A.; Garrana, S.; Moreira, A.L.; Moore, W.H.; Ko, J.P. Imaging and Management of Subsolid Lung Nodules. Radiol. Clin. N. Am. 2025, 63, 517–535. [Google Scholar] [CrossRef]
- Yang, W.; Sun, Y.; Fang, W.; Qian, F.; Ye, J.; Chen, Q.; Jiang, Y.; Yu, K.; Han, B. High-resolution Computed Tomography Features Distinguishing Benign and Malignant Lesions Manifesting as Persistent Solitary Subsolid Nodules. Clin. Lung Cancer 2018, 19, e75–e83. [Google Scholar] [CrossRef]
- Zhang, Y.; Jheon, S.; Li, H.; Zhang, H.; Xie, Y.; Qian, B.; Lin, K.; Wang, S.; Fu, C.; Hu, H.; et al. Results of low-dose computed tomography as a regular health examination among Chinese hospital employees. J. Thorac. Cardiovasc. Surg. 2020, 160, 824–831.e824. [Google Scholar] [CrossRef]
- Lam, D.C.; Liam, C.K.; Andarini, S.; Park, S.; Tan, D.S.W.; Singh, N.; Jang, S.H.; Vardhanabhuti, V.; Ramos, A.B.; Nakayama, T.; et al. Lung Cancer Screening in Asia: An Expert Consensus Report. J. Thorac. Oncol. 2023, 18, 1303–1322. [Google Scholar] [CrossRef]
- Wang, L.; Maolan, A.; Luo, Y.; Li, Y.; Liu, R. Knowledge mapping analysis of ground glass nodules: A bibliometric analysis from 2013 to 2023. Front. Oncol. 2024, 14, 1469354. [Google Scholar] [CrossRef]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.; et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef]
- Travis, W.D.; Asamura, H.; Bankier, A.A.; Beasley, M.B.; Detterbeck, F.; Flieder, D.B.; Goo, J.M.; MacMahon, H.; Naidich, D.; Nicholson, A.G.; et al. The IASLC Lung Cancer Staging Project: Proposals for Coding T Categories for Subsolid Nodules and Assessment of Tumor Size in Part-Solid Tumors in the Forthcoming Eighth Edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol. 2016, 11, 1204–1223. [Google Scholar] [CrossRef]
- Lim, H.J.; Ahn, S.; Lee, K.S.; Han, J.; Shim, Y.M.; Woo, S.; Kim, J.H.; Yie, M.; Lee, H.Y.; Yi, C.A. Persistent pure ground-glass opacity lung nodules ≥ 10 mm in diameter at CT scan: Histopathologic comparisons and prognostic implications. Chest 2013, 144, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.P.; Park, C.M.; Park, S.J.; Lee, S.M.; McAdams, H.P.; Jeon, Y.K.; Goo, J.M. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Investig. Radiol. 2015, 50, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhang, P.; Wang, Y.; Gao, Z.; Wang, H.; Li, X.; Ye, Z. CT quantitative parameters to predict the invasiveness of lung pure ground-glass nodules (pGGNs). Clin. Radiol. 2018, 73, 504.e1–504.e7. [Google Scholar] [CrossRef]
- Kim, H.; Goo, J.M.; Park, C.M. Evaluation of T categories for pure ground-glass nodules with semi-automatic volumetry: Is mass a better predictor of invasive part size than other volumetric parameters? Eur. Radiol. 2018, 28, 4288–4295. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Che, S.; Ma, S.; Liu, X.; Guo, Y.; Liu, A.; Li, G.; Li, Z. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Cancer Imaging 2021, 21, 1. [Google Scholar] [CrossRef]
- Kodama, K.; Higashiyama, M.; Yokouchi, H.; Takami, K.; Kuriyama, K.; Kusunoki, Y.; Nakayama, T.; Imamura, F. Natural history of pure ground-glass opacity after long-term follow-up of more than 2 years. Ann. Thorac. Surg. 2002, 73, 386–392; discussion 383–392. [Google Scholar] [CrossRef]
- Eguchi, T.; Kondo, R.; Kawakami, S.; Matsushita, M.; Yoshizawa, A.; Hara, D.; Matsuoka, S.; Takeda, T.; Miura, K.; Agatsuma, H.; et al. Computed tomography attenuation predicts the growth of pure ground-glass nodules. Lung Cancer 2014, 84, 242–247. [Google Scholar] [CrossRef]
- Yotsukura, M.; Asamura, H.; Motoi, N.; Kashima, J.; Yoshida, Y.; Nakagawa, K.; Shiraishi, K.; Kohno, T.; Yatabe, Y.; Watanabe, S.I. Long-Term Prognosis of Patients With Resected Adenocarcinoma In Situ and Minimally Invasive Adenocarcinoma of the Lung. J. Thorac. Oncol. 2021, 16, 1312–1320. [Google Scholar] [CrossRef]
- Jiang, L.; Yin, W.; Peng, G.; Wang, W.; Zhang, J.; Liu, Y.; Zhong, S.; He, Q.; Liang, W.; He, J. Prognosis and status of lymph node involvement in patients with adenocarcinoma in situ and minimally invasive adenocarcinoma-a systematic literature review and pooled-data analysis. J. Thorac. Dis. 2015, 7, 2003–2009. [Google Scholar] [CrossRef]
- Deng, C.; Zheng, Q.; Zhang, Y.; Jin, Y.; Shen, X.; Nie, X.; Fu, F.; Ma, X.; Ma, Z.; Wen, Z.; et al. Validation of the Novel International Association for the Study of Lung Cancer Grading System for Invasive Pulmonary Adenocarcinoma and Association With Common Driver Mutations. J. Thorac. Oncol. 2021, 16, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Wang, T.; Chen, D.; She, Y.; Deng, J.; Yang, M.; Zhang, Y.; Zhao, M.; Zhong, Y.; Ma, M.; et al. Prognostic and predictive value of the newly proposed grading system of invasive pulmonary adenocarcinoma in Chinese patients: A retrospective multicohort study. Mod. Pathol. 2022, 35, 749–756. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines Oncology. Non-Small Cell Lung Cancer. Version 4.2025. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 10 June 2025).
- Yang, Y.; Xu, J.; Wang, W.; Zhao, J.; Yang, Y.; Wang, B.; Ye, L. Meta-analysis of the correlation between CT-based features and invasive properties of pure ground-glass nodules. Asian J. Surg. 2023, 46, 3405–3416. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, X.; Li, Y.; Xu, H.; He, C.; Zhou, P.; Qing, H. Predicting the Invasiveness of Pulmonary Adenocarcinomas in Pure Ground-Glass Nodules Using the Nodule Diameter: A Systematic Review, Meta-Analysis, and Validation in an Independent Cohort. Diagnostics 2024, 14, 147. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Wang, H.; Zhao, J.; Liu, J.; Chen, Y.; Lu, J.; Duan, Y.; Hu, H.; Peng, H.; et al. Development and validation of a risk prediction model for invasiveness of pure ground-glass nodules based on a systematic review and meta-analysis. BMC Med. Imaging 2024, 24, 149. [Google Scholar] [CrossRef] [PubMed]
- van Riel, S.J.; Sanchez, C.I.; Bankier, A.A.; Naidich, D.P.; Verschakelen, J.; Scholten, E.T.; de Jong, P.A.; Jacobs, C.; van Rikxoort, E.; Peters-Bax, L.; et al. Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management. Radiology 2015, 277, 863–871. [Google Scholar] [CrossRef]
- Gu, D.; Liu, G.; Xue, Z. On the performance of lung nodule detection, segmentation and classification. Comput. Med. Imaging Graph. 2021, 89, 101886. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef]
- Mu, G.; Chen, Y.; Wu, D.; Zhan, Y.; Zhou, X.; Gao, Y. Relu Cascade of Feature Pyramid Networks for CT Pulmonary Nodule Detection; Springer International Publishing: Cham, Switzerland, 2019; pp. 444–452. [Google Scholar]
- Xiao, Y.; Wang, X.; Li, Q.; Fan, R.; Chen, R.; Shao, Y.; Chen, Y.; Gao, Y.; Liu, A.; Chen, L.; et al. A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Comput. Med. Imaging Graph. 2021, 90, 101889. [Google Scholar] [CrossRef]
- Chen, L.; Gu, D.; Chen, Y.; Shao, Y.; Cao, X.; Liu, G.; Gao, Y.; Wang, Q.; Shen, D. An artificial-intelligence lung imaging analysis system (ALIAS) for population-based nodule computing in CT scans. Comput. Med. Imaging Graph. 2021, 89, 101899. [Google Scholar] [CrossRef]
- Mull, R.T. Mass estimates by computed tomography: Physical density from CT numbers. AJR Am. J. Roentgenol. 1984, 143, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, S.M.; Noh, H.N.; Kim, W.; Choe, J.; Do, K.H.; Seo, J.B. Use of a Commercially Available Deep Learning Algorithm to Measure the Solid Portions of Lung Cancer Manifesting as Subsolid Lesions at CT: Comparisons with Radiologists and Invasive Component Size at Pathologic Examination. Radiology 2021, 299, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Wang, P.; Zeng, W.; Qi, W.; Zhang, W. Measuring pure ground-glass nodules on computed tomography: Assessing agreement between a commercially available deep learning algorithm and radiologists’ readings. Acta Radiol. 2023, 64, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. Lung CT Screening Reporting and Data System (Lung-RADS, v2022). Available online: https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Reporting-and-Data-Systems/Lung-RADS (accessed on 30 April 2025).
- Meng, F.; Zhan, L.; Liu, S.; Zhang, H. The Growing Problem of Radiologist Shortage: China’s Perspective. Korean J. Radiol. 2023, 24, 1046–1048. [Google Scholar] [CrossRef]
- Benjamens, S.; Dhunnoo, P.; Mesko, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. npj Digit. Med. 2020, 3, 118. [Google Scholar] [CrossRef]
- de Hoop, B.; Gietema, H.; van de Vorst, S.; Murphy, K.; van Klaveren, R.J.; Prokop, M. Pulmonary ground-glass nodules: Increase in mass as an early indicator of growth. Radiology 2010, 255, 199–206. [Google Scholar] [CrossRef]
- Wang, X.W.; Chen, W.F.; He, W.J.; Yang, Z.M.; Li, M.; Xiao, L.; Hua, Y.Q. CT features differentiating pre- and minimally invasive from invasive adenocarcinoma appearing as mixed ground-glass nodules: Mass is a potential imaging biomarker. Clin. Radiol. 2018, 73, 549–554. [Google Scholar] [CrossRef]
- Achenbach, S.; Boehmer, K.; Pflederer, T.; Ropers, D.; Seltmann, M.; Lell, M.; Anders, K.; Kuettner, A.; Uder, M.; Daniel, W.G.; et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J. Cardiovasc. Comput. Tomogr. 2010, 4, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Gierada, D.S.; Bierhals, A.J.; Choong, C.K.; Bartel, S.T.; Ritter, J.H.; Das, N.A.; Hong, C.; Pilgram, T.K.; Bae, K.T.; Whiting, B.R.; et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad. Radiol. 2010, 17, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.; Mileto, A.; Nelson, R.C.; Roy Choudhury, K.; Samei, E. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm. Radiology 2016, 279, 185–194. [Google Scholar] [CrossRef]
- Gao, F.; Sun, Y.; Zhang, G.; Zheng, X.; Li, M.; Hua, Y. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions. Br. J. Radiol. 2019, 92, 20180204. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, X.; Li, Y.; Xu, H.; He, C.; Qing, H.; Ren, J.; Zhou, P. Development and validation of qualitative and quantitative models to predict invasiveness of lung adenocarcinomas manifesting as pure ground-glass nodules based on low-dose computed tomography during lung cancer screening. Quant. Imaging Med. Surg. 2022, 12, 2917–2931. [Google Scholar] [CrossRef]
- Jung, J.; Hong, H.; Goo, J.M. Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal. Comput. Biol. Med. 2018, 92, 128–138. [Google Scholar] [CrossRef]
- Charbonnier, J.P.; Chung, K.; Scholten, E.T.; van Rikxoort, E.M.; Jacobs, C.; Sverzellati, N.; Silva, M.; Pastorino, U.; van Ginneken, B.; Ciompi, F. Automatic segmentation of the solid core and enclosed vessels in subsolid pulmonary nodules. Sci. Rep. 2018, 8, 646. [Google Scholar] [CrossRef]
Characteristics | Training Cohort (n = 198) | Testing Cohort (n = 99) | External Validation Cohort (n = 91) | ||||||
---|---|---|---|---|---|---|---|---|---|
Non-Invasive (n = 120) | Invasive (n = 78) | p a | Non-Invasive (n = 60) | Invasive (n = 39) | p b | Non-Invasive (n = 62) | Invasive (n = 29) | p b | |
Gender | 0.347 | 0.792 | >0.999 | ||||||
Female | 79 | 57 | 43 | 23 | 43 | 19 | |||
Male | 41 | 21 | 17 | 16 | 19 | 10 | |||
Age (years) | 49.8 (12.0) | 58.1 (10.4) | <0.001 | 50.2 (11.8) | 58.0 (9.3) | 0.757 | 50.3 (11.7) | 59.0 (12.9) | 0.830 |
Diameter of radiologists (mm) | 8.9 (2.6) | 13.2 (3.8) | <0.001 | 8.7 (2.4) | 13.9 (4.0) | 0.867 | 8.3 (2.6) | 12.1 (3.4) | 0.023 |
Diameter of AI (mm) | 8.6 (2.4) | 12.9 (3.5) | <0.001 | 8.5 (2.2) | 13.6 (3.8) | >0.999 | 8.0 (2.6) | 12.2 (3.4) | 0.016 |
Volume (mm3) | 375.0 (404.3) | 1213.1 (874.0) | <0.001 | 350.3 (348.6) | 1425.7 (1266.8) | 0.936 | 410.4 (461.4) | 1314.0 (1432.5) | 0.724 |
Attenuation (HU) | −652.1 (76.5) | −592.4 (90.6) | <0.001 | −645.8 (76.6) | −622.2 (92.2) | 0.379 | −658.3 (76.2) | −591.4 (75.6) | 0.484 |
Mass (mg) | 118.9 (104.6) | 485.7 (376.2) | <0.001 | 119.3 (105.0) | 489.0 (388.1) | 0.997 | 131.3 (127.4) | 528.0 (511.2) | 0.570 |
Characteristics | AUC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | Optimal Cut-Off |
---|---|---|---|---|
Training cohort | ||||
Diameter of radiologists | 0.844 (0.785–0.891) | 0.667 (0.551–0.769) | 0.858 (0.783–0.915) | >11.1 mm |
Diameter of AI | 0.861 (0.805–0.906) | 0.846 (0.747–0.918) | 0.733 (0.645–0.810) | >9.4 mm |
Volume | 0.877 (0.823–0.919) | 0.859 (0.726–0.927) | 0.767 (0.681–0.839) | >410.1 mm3 |
Attenuation | 0.690 (0.620–0.754) | 0.500 (0.385–0.615) | 0.837 (0.736–0.881) | >−590.6 HU |
Mass | 0.915 (0.867–0.950) | 0.936 (0.857–0.979) | 0.775 (0.690–0.846) | >144.5 mg |
Testing cohort | ||||
Diameter of radiologists | 0.865 (0.781–0.925) | 0.692 (0.524–0.830) | 0.867 (0.754–0.941) | NA |
Diameter of AI | 0.882 (0.802–0.938) | 0.795 (0.635–0.907) | 0.750 (0.621–0.853) | NA |
Volume | 0.890 (0.811–0.944) | 0.821 (0.665–0.925) | 0.733 (0.603–0.839) | NA |
Attenuation | 0.572 (0.469–0.671) | 0.256 (0.130–0.421) | 0.767 (0.640–0.866) | NA |
Mass | 0.913 (0.840–0.960) | 0.897 (0.758–0.971) | 0.750 (0.621–0.853) | NA |
External validation cohort | ||||
Diameter of radiologists | 0.831 (0.739–0.902) | 0.621 (0.423–0.793) | 0.806 (0.686–0.896) | NA |
Diameter of AI | 0.847 (0.756–0.914) | 0.828 (0.642–0.942) | 0.758 (0.633–0.858) | NA |
Volume | 0.860 (0.772–0.924) | 0.862 (0.683–0.961) | 0.742 (0.615–0.845) | NA |
Attenuation | 0.745 (0.643–0.831) | 0.448 (0.264–0.643) | 0.790 (0.668–0.883) | NA |
Mass | 0.893 (0.810–0.948) | 0.897 (0.726–0.978) | 0.823 (0.705–0.908) | NA |
Characteristics | Training Cohort | Testing Cohort | External Validation Cohort | |||
---|---|---|---|---|---|---|
Z | p | Z | p | Z | p | |
Diameter of radiologists | 4.710 | <0.001 | 2.212 | 0.027 | 3.017 | 0.003 |
Diameter of AI | 4.387 | <0.001 | 1.998 | 0.046 | 3.177 | 0.002 |
Volume | 4.636 | <0.001 | 2.060 | 0.039 | 2.709 | 0.007 |
Attenuation | 5.062 | <0.001 | 5.009 | <0.001 | 2.430 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Li, Y.; Zheng, Y.; Lin, W.; Qing, H.; Zhou, P.; Liu, J. Quantitative Measures of Pure Ground-Glass Nodules from an Artificial Intelligence Software for Predicting Invasiveness of Pulmonary Adenocarcinoma on Low-Dose CT: A Multicenter Study. Biomedicines 2025, 13, 1600. https://doi.org/10.3390/biomedicines13071600
Long Y, Li Y, Zheng Y, Lin W, Qing H, Zhou P, Liu J. Quantitative Measures of Pure Ground-Glass Nodules from an Artificial Intelligence Software for Predicting Invasiveness of Pulmonary Adenocarcinoma on Low-Dose CT: A Multicenter Study. Biomedicines. 2025; 13(7):1600. https://doi.org/10.3390/biomedicines13071600
Chicago/Turabian StyleLong, Yu, Yong Li, Yongji Zheng, Wei Lin, Haomiao Qing, Peng Zhou, and Jieke Liu. 2025. "Quantitative Measures of Pure Ground-Glass Nodules from an Artificial Intelligence Software for Predicting Invasiveness of Pulmonary Adenocarcinoma on Low-Dose CT: A Multicenter Study" Biomedicines 13, no. 7: 1600. https://doi.org/10.3390/biomedicines13071600
APA StyleLong, Y., Li, Y., Zheng, Y., Lin, W., Qing, H., Zhou, P., & Liu, J. (2025). Quantitative Measures of Pure Ground-Glass Nodules from an Artificial Intelligence Software for Predicting Invasiveness of Pulmonary Adenocarcinoma on Low-Dose CT: A Multicenter Study. Biomedicines, 13(7), 1600. https://doi.org/10.3390/biomedicines13071600