The Role of Chemerin in Neutrophil Activation and Diseases of the Lung
Abstract
:1. Introduction
2. Biochemistry of Chemerin
3. Effects of Chemerin on Neutrophil Activation
4. Chemerin as a Regulator in Lung Infection
5. Role of Chemerin in Airway Diseases—Asthma and Chronic Obstructive Pulmonary Disease
6. Elucidation of the Role of Chemerin in Lung Cancer
7. Emerging Role of Chemerin in Interstitial Lung Disease
8. Preliminary Findings in Other Lung Diseases
9. Conclusions
Funding
Conflicts of Interest
References
- Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 2003, 198, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Acewicz, M.; Kasacka, I. Chemerin activity in selected pathological states of human body—A systematic review. Adv. Med. Sci. 2021, 66, 270–278. [Google Scholar] [CrossRef]
- Bondue, B.; Wittamer, V.; Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 2011, 22, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Zabel, B.A.; Allen, S.J.; Kulig, P.; Allen, J.A.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 2005, 280, 34661–34666. [Google Scholar] [CrossRef]
- Wittamer, V.; Bondue, B.; Guillabert, A.; Vassart, G.; Parmentier, M.; Communi, D. Neutrophil-mediated maturation of chemerin: A link between innate and adaptive immunity. J. Immunol. 2005, 175, 487–493. [Google Scholar] [CrossRef]
- Du, X.-Y.; Zabel, B.A.; Myles, T.; Allen, S.J.; Handel, T.M.; Lee, P.P.; Butcher, E.C.; Leung, L.L. Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 2009, 284, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Du, X.-Y.; Leung, L.L. Proteolytic regulatory mechanism of chemerin bioactivity. Acta Biochim. Biophys. Sin. 2009, 41, 973–979. [Google Scholar] [CrossRef]
- Ge, X.; Yamaguchi, Y.; Zhao, L.; Bury, L.; Gresele, P.; Berube, C.; Leung, L.L.; Morser, J. Prochemerin cleavage by factor XIa links coagulation and inflammation. Blood 2018, 131, 353–364. [Google Scholar] [CrossRef]
- Kulig, P.; Zabel, B.A.; Dubin, G.; Allen, S.J.; Ohyama, T.; Potempa, J.; Handel, T.M.; Butcher, E.C.; Cichy, J. Staphylococcus aureua-derived staphopain B, a potent cysteine proteas activator of plasma chemerin. J. Immunol. 2007, 178, 3713–3729. [Google Scholar] [CrossRef]
- Guillabert, A.; Wittamer, V.; Bondue, B.; Godot, V.; Imbault, V.; Parmentier, M.; Communi, D. Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 2008, 84, 1530–1538. [Google Scholar] [CrossRef]
- Cash, J.L.; Hart, R.; Russ, A.; Dixon, J.P.; Colledge, W.H.; Doran, J.; Hendrick, A.G.; Carlton, M.B.; Greaves, D.R. Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 2008, 205, 767–775. [Google Scholar] [CrossRef]
- Barnea, G.; Strapps, W.; Herrada, G.; Berman, Y.; Ong, J.; Kloss, B.; Axel, R.; Lee, K.J. From the cover: The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 2008, 105, 64–69. [Google Scholar] [CrossRef]
- Zabel, B.A.; Nakae, S.; Zúñiga, L.; Kim, J.-Y.; Ohyama, T.; Alt, C.; Pan, J.; Suto, H.; Soler, D.; Allen, S.J.; et al. Mast cell–expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 2008, 205, 2207–2220. [Google Scholar] [CrossRef] [PubMed]
- Regan-Komito, D.; Valaris, S.; Kapellos, T.S.; Recio, C.; Taylor, L.; Greaves, D.R.; Iqbal, A.J. Absence of the non-signalling chemerin receptor CCRL2 exacerbates acute inflammatory responses in vivo. Front. Immunol. 2017, 8, 1621. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhong, H.; Wang, Y.; Liu, J.; Tang, J.; Liu, Z. Chemerin attracts neutrophil reverse migration by interacting with C–C motif chemokine receptor-like 2. Cell Death Dis. 2024, 16, 425–434. [Google Scholar] [CrossRef]
- Cash, J.L.; Bena, S.; Headland, S.E.; McArthur, S.; Brancaleone, V.; Perretti, M. Chemerin15 inhibits neutrophil mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23. EMBO Rep. 2013, 14, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Auer, J.; Bläss, M.; Schulze-Koops, H.; Russwurm, S.; Nagel, T.; Kalden, J.R.; Röllinghoff, M.; Beuscher, H.U. Expression and regulation of CCL18 in synovial fluid neutrophils of patients with rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R94. [Google Scholar] [CrossRef]
- Del Prete, A.; Martínez-Muñoz, L.; Mazzon, C.; Toffali, L.; Sozio, F.; Za, L.; Bosisio, D.; Gazzurelli, L.; Salvi, V.; Tiberio, L.; et al. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood 2017, 130, 1223–1234. [Google Scholar] [CrossRef]
- Bondue, B.; Vosters, O.; de Nadai, P.; Glineur, S.; De Henau, O.; Luangsay, S.; Van Gool, F.; Communi, D.; De Vuyst, P.; Desmecht, D.; et al. ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog. 2011, 7, e1002358. [Google Scholar] [CrossRef]
- Luangsay, S.; Wittamer, V.; Bondue, B.; De Henau, O.; Rouger, L.; Brait, M.; Franssen, J.-D.; de Nadai, P.; Huaux, F.; Parmentier, M. Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol. 2009, 183, 6489–6499. [Google Scholar] [CrossRef]
- Karampela, I.; Christodoulatos, G.S.; Vallianou, N.; Tsilingiris, D.; Chrysanthopoulou, E.; Skyllas, G.; Antonakos, G.; Marinou, I.; Vogiatzakis, E.; Armaganidis, A.; et al. Circulating chemerin and its kinetics may be a useful diagnostic and prognostic biomarker in critically ill patients with sepsis: A prospective study. Biomolecules 2022, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Horn, P.; Metzing, U.B.; Steidl, R.; Romeike, B.; Rauchfuß, F.; Sponholz, C.; Thomas-Rüddel, D.; Ludewig, K.; Birkenfeld, A.L.; Settmacher, U.; et al. Chemerin in peritoneal sepsis and its associations with glucose metabolism and prognosis: A translational cross-sectional study. Crit. Care 2016, 20, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Amend, P.; Mester, P.; Schmid, S.; Müller, M.; Buechler, C.; Pavel, V. Plasma chemerin is induced in critically ill patients with gram-positive infections. Biomedicines 2023, 11, 1779. [Google Scholar] [CrossRef]
- Boyuk, B.; Guzel, E.C.; Atalay, H.; Guzel, S.; Mutlu, L.C.; Kucukyalçin, V. Relationship between plasma chemerin levels and disease severity in COPD patients. Clin. Respir. J. 2015, 9, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Goktepe, M.; Korkmaz, C.; Zamani, A.; Demirbas, S.; Kilinc, I. Evaluation of serum resistin, visfatin and chemerin levels in patients with lung cancer and chronic obstructive pulmonary disease. Turk. Thorac. J. 2020, 21, 169–173. [Google Scholar] [CrossRef]
- Gałecka, E.; Kumor-Kisielewska, A.; Górski, P. Association of serum deiodinase type 2 level with chronic obstructive pulmonary disease in the Polish population. Acta Biochim. Pol. 2019, 66, 177–182. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Li, N.; Li, P.; Wang, Z.; Ting, W.; Liu, X.; Wu, W. Chemerin: A potential regulator of inflammation and metabolism for chronic obstructive pulmonary disease and pulmonary rehabilitation. BioMed. Res. Int. 2020, 2020, 4574509. [Google Scholar] [CrossRef]
- Li, C.; Yan, L.; Song, J. Plasma level of chemerin in COPD patients and the relationship between chemerin and lipid metabolism. J. Cent. South Univ. Med. Sci. 2016, 41, 676–683. [Google Scholar]
- Fu, D.; Gu, Y.; Ding, T.; Rao, X.; Ouyang, Y. The role of chemerin in the pathogenesis of COPD. J Zunyi Med. Univ. 2014, 37, 431–433. [Google Scholar]
- Fang, N.; Li, Y.; Liu, G.; Tan, X. Effect of salmeterol proprionate fluticasone combined with lip shrinkage respiration on chemerin level and lipid metabolism in patients with chronic obstructive disease. Chin. J. Lung Dis. 2017, 10, 569–571. [Google Scholar]
- Demoor, T.; Bracke, K.R.; Dupont, L.L.; Plantinga, M.; Bondue, B.; Roy, M.-O.; Lannoy, V.; Lambrecht, B.N.; Brusselle, G.G.; Joos, G.F. The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation. J. Immunol. 2011, 186, 5457–5467. [Google Scholar] [CrossRef] [PubMed]
- Provoost, S.; De Grove, K.C.; Fraser, G.L.; Lannoy, V.J.; Tournoy, K.G.; Brusselle, G.G.; Maes, T.; Joos, G.F. Pro- and anti-inflammatory role of ChemR23 signaling in pollutant-induced inflammatory lung responses. J. Immunol. 2016, 196, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Fu, Y.; Hu, L.; Li, Q.; Jin, M.; Jiang, E. Relationship of circulating chemerin and omentin levels with Th17 and Th9 cell immune responses in patients with asthma. J. Asthma 2018, 55, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, W.; Yang, X.; Lin, Y.; Lv, J.; Dou, X.; Luo, Q.; Dong, J.; Chen, Z.; Chu, Y.; et al. Chemerin suppresses murine allergic asthma by inhibiting CCL2 production and subsequent airway recruitment of inflammatory dendritic cells. Allergy 2014, 69, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.R.; Krishnaji, S.T.; Zhu, G.; Xu, Z.-Z.; Heller, D.; Ji, R.-R.; Levy, B.D.; Kumar, K.; Kopin, A.S. Development of a Membrane-anchored chemerin receptor agonist as a novel modulator of allergic airway inflammation and neuropathic pain. J. Biol. Chem. 2014, 289, 13385–13396. [Google Scholar] [CrossRef]
- Pilkington, A.; Takahashi, M.; Takahashi, Y.; Johnston, R. Effect of chemerin deficiency on ozone-induced lung injury and lung inflammation. J. Allergy Clin. Immunol. 2022, 149, AB138. [Google Scholar] [CrossRef]
- Dubois-Vedrenne, I.; Al Delbany, D.; De Henau, O.; Robert, V.; Vernimmen, M.; Langa, F.; Lefort, A.; Libert, F.; Wittamer, V.; Parmentier, M. The antitumoral effects of chemerin are independent from leukocyte recruitment and mediated by inhibition of neoangiogenesis. Oncotarget 2021, 12, 1903–1919. [Google Scholar] [CrossRef]
- Goralski, K.B.; Jackson, A.E.; McKeown, B.T.; Sinal, C.J. More than an adipokine: The complex roles of chemerin signaling in cancer. Int. J. Mol. Sci. 2020, 20, 4778. [Google Scholar] [CrossRef]
- Xu, C.-H.; Yang, Y.; Wang, Y.-C.; Yan, J.; Qian, L.-H. Prognostic significance of serum chemerin levels in patients with non-small cell lung cancer. Oncotarget 2017, 8, 22483–22489. [Google Scholar] [CrossRef]
- Qu, X.; Han, L.; Wang, S.; Zhang, Q.; Yang, C.; Xu, S.; Zhang, L. Detection of chemerin and it’s clinical significance in peripheral blood of patients with lung cancer. Zhongguo Fei Ai Za Zhi 2009, 12, 1174–1177. [Google Scholar] [CrossRef]
- Sotiropoulos, G.P.; Dalamaga, M.; Antonakos, G.; Marinou, I.; Vogiatzakis, E.; Kotopouli, M.; Karampela, I.; Christodoulatos, G.S.; Lekka, A.; Papavassiliou, A.G. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer. Lung Cancer 2018, 125, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Huang, Z.; Qi, L.; Wang, T.; Shen, Y.; Huang, J. Tazarotene-induced gene 2 is associated with poor survival in non-small cell lung cancer. Oncol. Lett. 2016, 12, 2680–2685. [Google Scholar] [CrossRef]
- Zhao, S.; Li, C.; Ye, Y.-B.; Peng, F.; Chen, Q. Expression of chemerin correlates with a favorable prognosis in patients with non-small cell lung cancer. Lab. Med. 2011, 42, 553–557. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Guo, L.; Shi, S.; Lu, C. A robust seven-gene signature associated with tumor microenvironment to predict survival outcomes of patients with stage III–IV lung adenocarcinoma. Front. Genet. 2021, 12, 684281. [Google Scholar] [CrossRef] [PubMed]
- Kiczmer, P.; Terenowicz, M.; Katra, M.; Mielcarska, S.; Ziora, P.; Rydel, M.; Czyżewski, D.; Drozdzowska, B. Expression of chemerin and B7 family proteins in lung adenocarcinoma—Pilot study. Med. Res. J. 2024, 9, 148–152. [Google Scholar] [CrossRef]
- Lavy, M.; Gauttier, V.; Dumont, A.; Chocteau, F.; Deshayes, S.; Fresquet, J.; Dehame, V.; Girault, I.; Trilleaud, C.; Neyton, S.; et al. ChemR23 activation reprograms macrophages toward a less inflammatory phenotype and dampens carcinoma progression. Front. Immunol. 2023, 14, 1196731. [Google Scholar] [CrossRef]
- Del Prete, A.; Sozio, F.; Schioppa, T.; Ponzetta, A.; Vermi, W.; Calza, S.; Bugatti, M.; Salvi, V.; Bernardini, G.; Benvenuti, F.; et al. The atypical receptor CCRL2 is essential for lung cancer immune surveillance. Cancer Immunol. Res. 2019, 7, 1775–1778. [Google Scholar] [CrossRef]
- Mohr, S.; Bottin, M.-C.; Lannes, B.; Neuville, A.; Bellocq, J.-P.; Keith, G.; Rihn, B.H. Microdissection, mRNA amplification and microarray: A study of pleural mesothelial and malignant mesothelioma cells. Biochimie 2004, 86, 13–19. [Google Scholar] [CrossRef]
- Maher, T. Interstitial lung disease: A review. JAMA 2024, 331, 1655–1665. [Google Scholar] [CrossRef]
- Wijensbeek, M.; Cottin, V. Spectrum of fibrotic lung disease. N. Engl. J. Med. 2020, 383, 958–968. [Google Scholar]
- Sawicka, K.; Michalska-Jakubus, M.; Potembska, E.; Kowal, M.; Pietrzak, A.; Krasowska, D. Visfatin and chemerin levels correspond with inflammation and might reflect the bridge between metabolism, inflammation and fibrosis in patients with systemic sclerosis. Adv. Dermatol. Allergol. 2019, 36, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Chighizola, C.B.; Raschi, E.; Privitera, D.; Luppino, A.F.; Artusi, C.; Schioppo, T.; Mastaglio, C.; Ingegnoli, F.; Borghi, M.O.; Meroni, P.L. Serum chemerin in systemic sclerosis: A novel marker of early diffuse disease? Clin. Exp. Rheumatol. 2017, 35, 223–224. [Google Scholar] [PubMed]
- Sanges, S.; Rice, L.; Tu, L.; Valenzi, E.; Cracowski, J.L.; Montani, D.; Mantero, J.C.; Ternynck, C.; Marot, G.; Bujor, A.M.; et al. Biomarkers of hemodynamic severity of systemic sclerosis-associated pulmonary arterial hypertension by serum proteome analysis. Ann. Rheum. Dis. 2023, 82, 365–373. [Google Scholar] [CrossRef]
- Zielinski, M.; Chwalba, A.; Jastrzebski, D.; Ziora, D. Adipokines in interstitial lung disease. Respir. Physiol. Neurobiol. 2023, 315, 104109. [Google Scholar] [CrossRef]
- Lavis, P.; Garabet, A.; Parmentier, M.; Cardozo, A.; Bondue, B. Chemerin: A novel player in pulmonary fibrosis. Am. J. Respir. Crit. Med. 2024, 209, A5189. [Google Scholar]
- Monnier, J.; Lewen, S.; Carlson, J.; Zabel, B. Pathogenic role for chemerin receptor CMKLR1 in experimental pulmonary fibrosis. J. Immunol. 2013, 190 (Suppl. 1), 58.23. [Google Scholar] [CrossRef]
- Mannes, P.Z.; Adams, T.S.; Farsijani, S.; Barnes, C.E.; Latoche, J.D.; Day, K.E.; Nedrow, J.R.; Ahangari, F.; Kaminski, N.; Lee, J.S.; et al. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. Sci. Adv. 2024, 10, eadm9817. [Google Scholar] [CrossRef]
- Iqbal, N.T.; Fatima, S.S.; Hussain, R.; Rao, N.A.; Virji, N.; Jamil, B.; Irfan, M. Interplay of chemo attractant peptides (Cathelicidin and chemerin) with vitamin D in patients with pulmonary tuberculosis. Br. J. Med. Health Res. 2015, 7, 611–622. [Google Scholar] [CrossRef]
- Sznurkowska, K.; Kaźmierska, K.; Śledziński, T.; Zagierski, M.; Liberek, A.; Szlagatys-Sidorkiewicz, A. Serum chemerin level, cytokine profile and nutritional status in children with cystic fibrosis. Acta Biochim. Pol. 2019, 66, 445–449. [Google Scholar] [CrossRef]
- Machra, E.; Ziora, K.; Szczepanska, M.; Swietochowska, E.; Halkiewicz, F.; Barć-Czarnecka, M.; Ziora, D. Serum levels of chemerin, omentin, and vaspin in children with cystic fibrosis. Paediatr. Endocrinol. 2017, 16, 255–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arndt, P. The Role of Chemerin in Neutrophil Activation and Diseases of the Lung. Biomedicines 2025, 13, 1354. https://doi.org/10.3390/biomedicines13061354
Arndt P. The Role of Chemerin in Neutrophil Activation and Diseases of the Lung. Biomedicines. 2025; 13(6):1354. https://doi.org/10.3390/biomedicines13061354
Chicago/Turabian StyleArndt, Patrick. 2025. "The Role of Chemerin in Neutrophil Activation and Diseases of the Lung" Biomedicines 13, no. 6: 1354. https://doi.org/10.3390/biomedicines13061354
APA StyleArndt, P. (2025). The Role of Chemerin in Neutrophil Activation and Diseases of the Lung. Biomedicines, 13(6), 1354. https://doi.org/10.3390/biomedicines13061354