Preimplantation Testing of Human Blastomeres for Aneuploidy Increases IVF Success in Couples Where Male Partners Had Abnormal Semen Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimulation and Transfer Protocol
2.3. PGT-A Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Anti-TPO | Anti-thyroid peroxidase antibodies |
AMH | Anti-Müllerian hormone |
ART | Assisted reproduction technology |
DNA | Deoxyribonucleic acid |
CMV | Cytomegalovirus |
E2 | Estradiol |
fT3 | Free triiodothyronine |
fT4 | Free thyroxine |
FISH | Fluorescent in situ hybridisation |
FSH | Follicle-stimulation hormone |
GnRH | Gonadotropin-releasing hormone |
hCG | Human chorionic gonadotrophin |
hMG | Human menopausal gonadotropin |
ICM | Inner cell mass |
ICSI | Intracytoplasmic sperm injection |
IVF | in vitro fertilisation |
K-S test | Kolmogorov–Smirnov test |
LB | Live birth |
LH | Luteinising hormone |
Pap test | Papanicolaou test |
PGT-A | Preimplantation genetic testing for aneuploidies |
SD | Standard deviation |
TORCH | Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections |
TSH | Thyroid-stimulating hormone |
WHO | World Health Organisation |
References
- Krausz, C.; Cioppi, F.; Riera-Escamilla, A. Testing for genetic contributions to infertility: Potential clinical impact. Expert. Rev. Mol. Diagn. 2018, 18, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Abdel Raheem, A.; Rees, R.; Ralph, D. Male Infertility. In Blandy’s Urology, 3rd ed.; Aboumarzouk, O.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 803–816. [Google Scholar]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Schatten, H.; Sun, Q.Y.; Prather, R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod. Biol. Endocrinol. 2014, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Durak Aras, B.; Aras, I.; Can, C.; Toprak, C.; Dikoglu, E.; Bademci, G.; Ozdemir, M.; Cilingir, O.; Artan, S. Exploring the relationship between the severity of oligozoospermia and the frequencies of sperm chromosome aneuploidies. Andrologia 2012, 44, 416–422. [Google Scholar] [CrossRef]
- Loutradi, K.E.; Tarlatzis, B.C.; Goulis, D.G.; Zepiridis, L.; Pagou, T.; Chatziioannou, E.; Grimbizis, G.F.; Papadimas, I.; Bontis, I. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2006, 23, 69–74. [Google Scholar] [CrossRef]
- Elsayed, G.M.; El Assiouty, L.; El Sobky, E.S. The importance of rapid aneuploidy screening and prenatal diagnosis in the detection of numerical chromosomal abnormalities. Springerplus 2013, 2, 490. [Google Scholar] [CrossRef]
- Semikhodskii, A.; Ismayilova, M. Detection of chromosomal aneuploidies in human blastomeres using FISH increases the success of IVF by improving the chances of embryo progress to delivery. Cytol. Genet. 2022, 56, 209–217. [Google Scholar] [CrossRef]
- Schmutzler, A.G.; Acar-Perk, B.; Weimer, J.; Salmassi, A.; Sievers, K.; Tobler, M.; Mettler, L.; Jonat, W.; Arnold, N. Oocyte morphology on day 0 correlates with aneuploidy as detected by polar body biopsy and FISH. Arch. Gynecol. Obstet. 2014, 289, 445–450. [Google Scholar] [CrossRef]
- Papler, T.B.; Bokal, E.V.; Maver, A.; Lovrečić, L. Specific gene expression differences in cumulus cells as potential biomarkers of pregnancy. Reprod. Biomed. Online 2015, 30, 426–433. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Andersen, K.V. Improving the luteal phase after ovarian stimulation: Reviewing new options. Reprod. Biomed. Online 2014, 28, 552–559. [Google Scholar] [CrossRef]
- Gianaroli, L.; Magli, M.C.; Ferraretti, A.P.; Fiorentino, A.; Garrisi, J.; Munné, S. Preimplantation genetic diagnosis increases the implantation rate in human in vitro fertilization by avoiding the transfer of chromosomally abnormal embryos. Fertil. Steril. 1997, 68, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/handle/10665/44261 (accessed on 1 December 2024).
- Leth-Moller, K.; Hammer Jagd, S.; Humaidan, P. The Luteal Phase after GnRHa Trigger—Understanding An Enigma. Int. J. Fertil. Steril. 2014, 8, 227–234. [Google Scholar] [PubMed]
- Baltaci, V.; Satiroglu, H.; Kabukçu, C.; Unsal, E.; Aydinuraz, B.; Uner, O.; Aktas, Y.; Cetinkaya, E.; Turhan, F.; Aktan, A. Relationship between embryo quality and aneuploidies. Reprod. Biomed. Online 2006, 12, 77–82. [Google Scholar] [CrossRef]
- Álvarez, C.; García-Garrido, C.; Taronger, R.; González de Merlo, G. In vitro maturation, fertilization, embryo development & clinical outcome of human metaphase-I oocytes retrieved from stimulated intracytoplasmic sperm injection cycles. Indian. J. Med. Res. 2013, 137, 331–338. [Google Scholar]
- Yang, X.; Huang, R.; Wang, Y.F.; Liang, X.Y. Pituitary suppression before frozen embryo transfer is beneficial for patients suffering from idiopathic repeated implantation failure. J. Huazhong Univ. Sci. Technol. Med. Sci. 2016, 36, 127–131. [Google Scholar] [CrossRef]
- Li, X.; Barringer, B.; Barbash, D. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity 2009, 102, 24–30. [Google Scholar] [CrossRef]
- Fu, W.; Lu, J.; Xu, L.; Zheng, L.; Zhang, Y.; Zhong, Y.; Wang, Y.; Jin, Y. Applied research of combined G-banding and array-CGH in the prenatal diagnosis of ultrasonographic abnormalities in fetuses. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2014, 31, 737–742. (In Chinese) [Google Scholar]
- Gregg, A.R.; Gross, S.J.; Best, R.G.; Monaghan, K.G.; Bajaj, K.; Skotko, B.G.; Thompson, B.H.; Watson, M.S. ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Genet. Med. 2013, 15, 395–398. [Google Scholar] [CrossRef]
- Sánchez-Castro, M.; Jiménez-Macedo, A.R.; Sandalinas, M.; Blanco, J. Prognostic value of sperm fluorescence in situ hybridization analysis over PGD. Hum. Reprod. 2009, 24, 1516–1521. [Google Scholar] [CrossRef]
- Mokánszki, A.; Molnár, Z.; Ujfalusi, A.; Balogh, E.; Bazsáné, Z.K.; Varga, A.; Jakab, A.; Oláh, É. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients. Reprod. Biomed. Online 2012, 25, 620–626. [Google Scholar] [CrossRef]
- Saei, P.; Bazrgar, M.; Gourabi, H.; Kariminejad, R.; Eftekhari-Yazdi, P.; Fakhri, M. Frequency of Sperm Aneuploidy in Oligoasthenoteratozoospermic (OAT) Patients by Comprehensive Chromosome Screening: A Proof of Concept. J. Reprod. Infertil. 2021, 22, 57–64. [Google Scholar] [CrossRef]
- Rodrigo, L.; Meseguer, M.; Mateu, E.; Mercader, A.; Peinado, V.; Bori, L.; Campos-Galindo, I.; Milán, M.; García-Herrero, S.; Simón, C.; et al. Sperm chromosomal abnormalities and their contribution to human embryo aneuploidy. Biol. Reprod. 2019, 101, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Scovell, J.M.; Kovac, J.R.; Cook, P.J.; Lamb, D.J.; Lipshultz, L.I. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil. Steril. 2015, 103, 906–909.e1. [Google Scholar] [CrossRef] [PubMed]
- Caseiro, A.L.; Regalo, A.; Pereira, E.; Esteves, T.; Fernandes, F.; Carvalho, J. Implication of sperm chromosomal abnormalities in recurrent abortion and multiple implantation failure. Reprod. Biomed. Online 2015, 31, 481–485. [Google Scholar] [CrossRef]
- Zidi-Jrah, I.; Hajlaoui, A.; Mougou-Zerelli, S.; Kammoun, M.; Meniaoui, I.; Sallem, A.; Brahem, S.; Fekih, M.; Bibi, M.; Saad, A.; et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil. Steril. 2016, 105, 58–64. [Google Scholar] [CrossRef]
- Hodes-Wertz, B.; Grifo, J.; Ghadir, S.; Kaplan, B.; Laskin, C.A.; Glassner, M.; Munné, S. Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil. Steril. 2012, 98, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Cimadomo, D.; Vaiarelli, A.; Capalbo, A.; Dovere, L.; Alviggi, E.; Dusi, L.; Foresta, C.; Lombardo, F.; Lenzi, A.; et al. Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: Observational longitudinal cohort study of 1,219 consecutive cycles. Fertil. Steril. 2017, 108, 961–972.e3. [Google Scholar] [CrossRef]
- Wang, W.; Lu, J.; Li, Z.; Zhou, W.; Zhang, Q.; Ni, T.; Yan, J. Preimplantation genetic testing for aneuploidy does not benefit couples with male factor infertility. Fertil. Steril. 2025; in press. [Google Scholar] [CrossRef]
Parameter | Group A | Group B | Group C | |||
---|---|---|---|---|---|---|
No. of couples | 110 | 110 | 105 | |||
♀ | ♂ | ♀ | ♂ | ♀ | ♂ | |
Average age, years (mean ± SD) | 30.4 ± 0.5 | 34.1 ± 0.5 | 31.1 ± 0.6 | 35.2 ± 0.6 | 32.0 ± 0.6 | 34.2 ± 0.6 |
Minimum age, years | 21 | 25 | 21 | 27 | 21 | 22 |
Maximum age, years | 43 | 50 | 43 | 52 | 43 | 50 |
Distribution of the number of participants of the study by age group | ||||||
Group A | Group B | Group C | ||||
Age group, years | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ |
20–24 | 19 | - | 17 | - | 18 | 1 |
25–29 | 35 | 28 | 33 | 27 | 23 | 29 |
30–34 | 28 | 28 | 30 | 30 | 24 | 20 |
35–39 | 20 | 33 | 17 | 21 | 22 | 31 |
40–44 | 8 | 13 | 13 | 19 | 18 | 15 |
45–49 | - | 7 | - | 8 | - | 8 |
50–55 | - | 1 | - | 5 | - | 1 |
Outcome of PGT-A embryo assessment | ||||||
Group A | Group B | Group C | ||||
No. of embryos subjected to PGT-A | 880 | - | 890 | |||
No. of euploid embryos identified by PGT-A | 760 | - | 838 | |||
No. of embryos transferred | 220 | 220 | 210 |
Type | Group A (n = 110) | Group B (n = 110) | p | ||
---|---|---|---|---|---|
Patients Observed | % of Total | Patients Observed | % of Total | ||
Oligozoospermia | 11 | 10.0% | 9 | 8.2% | 0.639 |
Asthenozoospermia | 14 | 12.7% | 12 | 10.9% | 0.676 |
Oligoastenozoospermia | 16 | 14.5% | 21 | 19.1% | 0.367 |
Teratozoospermia | 32 | 29.1% | 29 | 26.4% | 0.651 |
Oligoastenoteratozoospermia | 37 | 33.6% | 39 | 35.5% | 0.777 |
Type of Aneuploidy | Group A (n = 880) | Group C (n = 890) | p | ||
---|---|---|---|---|---|
Number Observed | % of Total per Group | Number Observed | % of Total per Group | ||
Monosomy 13 | 3 | 0.3% | 3 | 0.3% | 0.693 |
Trisomy 13 | 6 | 0.7% | 5 | 0.6% | 0.748 |
Monosomy 15 | 4 | 0.5% | 1 | 0.1% | 0.364 |
Trisomy 15 | 3 | 0.3% | - | - | - |
Monosomy 16 | 4 | 0.5% | 1 | 0.1% | 0.364 |
Trisomy 16 | 6 | 0.7% | 2 | 0.2% | 0.281 |
Monosomy 17 | 3 | 0.3% | - | - | - |
Trisomy 17 | 3 | 0.3% | 1 | 0.1% | 0.609 |
Monosomy 18 | 5 | 0.6% | 1 | 0.1% | 0.215 |
Trisomy 18 | 8 | 0.9% | 3 | 0.3% | 0.219 |
Trisomy 21 | 12 | 1.4% | 7 | 0.8% | 0.239 |
Monosomy 22 | 7 | 0.8% | 3 | 0.3% | 0.332 |
Trisomy 22 | 8 | 0.9% | 3 | 0.3% | 0.219 |
Monosomy X | 7 | 0.8% | 3 | 0.3% | 0.332 |
XXY | 5 | 0.6% | 1 | 0.1% | 0.215 |
XYY | 4 | 0.5% | 2 | 0.2% | 0.672 |
Multiple Monosomies | 11 | 1.3% | 6 | 0.7% | 0.214 |
Multiple Trisomies | 9 | 1.0% | 4 | 0.4% | 0.158 |
Complex Aneuploidies | 12 | 1.4% | 6 | 0.7% | 0.148 |
Total | 120 | 13.6% | 52 | 5.8% | <0.001 |
IVF Outcome | Group A n = 110 | Group B n = 110 | Group C n = 105 | p | |||||
---|---|---|---|---|---|---|---|---|---|
Number Observed | % | Number Observed | % | Number Observed | % | Group A vs. Group B | Group A vs. Group C | Group B vs. Group C | |
Clinical pregnancy per cycle | 52 | 47.3% | 31 | 28.2% | 59 | 56.2% | 0.008 | 0.191 | <0.001 |
Pregnancy did not occur | 58 | 52.7% | 79 | 71.8% | 46 | 43.8% | 0.001 | 0.191 | <0.001 |
Live birth per cycle | 39 | 35.5% | 11 | 10.0% | 52 | 49.5% | <0.001 | 0.038 | <0.001 |
Pregnancy loss (all causes) | 13 | 25.0% † 11.8% ‡ | 20 | 64.5% † 18.2% ‡ | 7 | 11.9% † 6.7% ‡ | 0.05 0.145 | 0.05 0.199 | <0.005 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismayilova, M.; Hasanova, A.; Semikhodskii, A. Preimplantation Testing of Human Blastomeres for Aneuploidy Increases IVF Success in Couples Where Male Partners Had Abnormal Semen Parameters. Biomedicines 2025, 13, 1191. https://doi.org/10.3390/biomedicines13051191
Ismayilova M, Hasanova A, Semikhodskii A. Preimplantation Testing of Human Blastomeres for Aneuploidy Increases IVF Success in Couples Where Male Partners Had Abnormal Semen Parameters. Biomedicines. 2025; 13(5):1191. https://doi.org/10.3390/biomedicines13051191
Chicago/Turabian StyleIsmayilova, Mahira, Aytakin Hasanova, and Andrei Semikhodskii. 2025. "Preimplantation Testing of Human Blastomeres for Aneuploidy Increases IVF Success in Couples Where Male Partners Had Abnormal Semen Parameters" Biomedicines 13, no. 5: 1191. https://doi.org/10.3390/biomedicines13051191
APA StyleIsmayilova, M., Hasanova, A., & Semikhodskii, A. (2025). Preimplantation Testing of Human Blastomeres for Aneuploidy Increases IVF Success in Couples Where Male Partners Had Abnormal Semen Parameters. Biomedicines, 13(5), 1191. https://doi.org/10.3390/biomedicines13051191