Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review
Abstract
:1. Introduction
2. Nuclear Medicine Approaches for the Diagnosis and Staging of PCa
3. Function of Radiotracers in PCa Imaging
3.1. Radiopharmaceuticals for Bone Imaging
3.1.1. Technetium-99m (Tc-99m) Bone Scintigraphy and SPECT/CT
3.1.2. PET/CT for Skeletal Images
F-18 NaF PET/CT
C-11 Choline PET/CT
3.2. Radiopharmaceuticals for Soft Tissue Imaging
3.2.1. F-18 FDG PET/CT
3.2.2. F-18 Fluorocholine (FCH) PET/CT
3.2.3. Fluciclovine (FACBC) PET/CT
3.2.4. PSMA
3.2.5. Monoclonal Antibodies
3.2.6. Small-Molecule Ligands
4. The Role of Target Therapy in Nuclear Medicine in PCa Management
4.1. Targeted RLT in PCa
4.2. Lu-177 PSMA-Targeted Therapy in PCa
5. Current Clinical Trials and Future Perspectives
Current and Ongoing Clinical Trials
6. Future Directions of Nuclear Medicine in the Clinical Setting of PCa
6.1. Combination Therapies in Radiotheranostics: Expanding the Therapeutic Horizons for Clinicians
6.2. Advancements in PSMA-Targeted RLT: Emerging Radionuclides and Chelator Technologies
6.3. Advancements in PSMA-Targeted Radioguided Surgery for PCa Metastases
6.4. Clinical Integration of Artificial Intelligence (AI) in PSMA Theranostics
6.5. Optimizing the Use of RLT Across the Treatment Lines
7. Limitations and Considerations in the Clinical Field of Nuclear Medicine
7.1. Reimbursement and Economic Considerations
7.2. Providing a Suitable Clinical Workforce and Environment
7.3. Management of Salivary Gland Toxicity and Emerging Radiotracers in PSMA-Targeted Theranostics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADT | Androgen deprivation therapy |
AI | Artificial intelligence |
ARPI | Androgen receptor pathway inhibitor |
BCR | Biochemical recurrence |
CT | Computed tomography |
DRE | Digital rectal examination |
HR | Hazard ratio |
HRQoL | Health-related quality of life |
LET | Linear energy transfer |
MRI | Magnetic resonance imaging |
MTD | Maximum tolerated dose |
NCCN | National Comprehensive Cancer Network |
OS | Overall survival |
PET | Positron emission tomography |
PFS | Progression-free survival |
PRRT | Peptide receptor radionuclide therapy |
PSA | Prostate-specific antigen |
PSMA | Prostate-specific membrane antigen |
RLT | Radioligand therapy |
SOC | Standard-of-care |
SPECT | Single-photon emission computed tomography |
TRUS | Transrectal ultrasound |
References
- Kim, T.J.; Koo, K.C. Current Status and Future Perspectives of Checkpoint Inhibitor Immunotherapy for Prostate Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2020, 21, 5484. [Google Scholar] [CrossRef] [PubMed]
- Volpe, F.; Nappi, C.; Piscopo, L.; Zampella, E.; Mainolfi, C.G.; Ponsiglione, A.; Imbriaco, M.; Cuocolo, A.; Klain, M. Emerging Role of Nuclear Medicine in Prostate Cancer: Current State and Future Perspectives. Cancers 2023, 15, 4746. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cuccurullo, V.; Di Stasio, G.D.; Mansi, L. Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers. World J. Nucl. Med. 2018, 17, 70–78. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Bitting, R.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; Desai, N.; Dorff, T.; et al. NCCN Guidelines® Insights: Prostate Cancer, Version 3. 2024. J. Natl. Compr. Canc Netw. 2024, 22, 140–150. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budaus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, P.; Verma, V.S. Study on anatomical and functional medical image registration methods. Neurocomputing 2021, 452, 534–548. [Google Scholar] [CrossRef]
- Popovtzer, R.; Agrawal, A.; Kotov, N.A.; Popovtzer, A.; Balter, J.; Carey, T.E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008, 8, 4593–4596. [Google Scholar] [CrossRef]
- Rusinek, H.; Naidich, D.P.; McGuinness, G.; Leitman, B.S.; McCauley, D.I.; Krinsky, G.A.; Clayton, K.; Cohen, H. Pulmonary nodule detection: Low-dose versus conventional CT. Radiology 1998, 209, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Pomykala, K.L.; Hadaschik, B.A.; Sartor, O.; Gillessen, S.; Sweeney, C.J.; Maughan, T.; Hofman, M.S.; Herrmann, K. Next generation radiotheranostics promoting precision medicine. Ann. Oncol. 2023, 34, 507–519. [Google Scholar] [CrossRef]
- Vyas, M.; Henderson, A.M.; Leslie, S.W. Nuclear Medicine Applications in Prostate Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Farolfi, A.; Mei, R.; Ali, S.; Castellucci, P. Theragnostics in prostate cancer. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Brunello, S.; Salvarese, N.; Carpanese, D.; Gobbi, C.; Melendez-Alafort, L.; Bolzati, C. A Review on the Current State and Future Perspectives of Tc-99m Housed PSMA-i in Prostate Cancer. Molecules 2022, 27, 2617. [Google Scholar] [CrossRef] [PubMed]
- Kanesvaran, R.; Castro, E.; Wong, A.; Fizazi, K.; Chua, M.L.K.; Zhu, Y.; Malhotra, H.; Miura, Y.; Lee, J.L.; Chong, F.L.T.; et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with prostate cancer. ESMO Open 2022, 7, 100518. [Google Scholar] [CrossRef]
- Michael, J.; Neuzil, K.; Altun, E.; Bjurlin, M.A. Current Opinion on the Use of Magnetic Resonance Imaging in Staging Prostate Cancer: A Narrative Review. Cancer Manag. Res. 2022, 14, 937–951. [Google Scholar] [CrossRef]
- Schillaci, O.; Calabria, F.; Tavolozza, M.; Ciccio, C.; Carlani, M.; Caracciolo, C.R.; Danieli, R.; Orlacchio, A.; Simonetti, G. F-18 choline PET/CT physiological distribution and pitfalls in image interpretation: Experience in 80 patients with prostate cancer. Nucl. Med. Commun. 2010, 31, 39–45. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Chang, C.Y.; Gill, C.M.; Joseph Simeone, F.; Taneja, A.K.; Huang, A.J.; Torriani, M.; Bredella, M.A. Comparison of the diagnostic accuracy of Tc-99 m MDP bone scintigraphy and F-18 FDG PET/CT for the detection of skeletal metastases. Acta Radiol. 2016, 57, 58–65. [Google Scholar] [CrossRef]
- Rowe, S.P.; Li, X.; Trock, B.J.; Werner, R.A.; Frey, S.; DiGianvittorio, M.; Bleiler, J.K.; Reyes, D.K.; Abdallah, R.; Pienta, K.J.; et al. Prospective Comparison of PET Imaging with PSMA-Targeted F-18 DCFPyL Versus F-18 NaF for Bone Lesion Detection in Patients with Metastatic Prostate Cancer. J. Nucl. Med. 2020, 61, 183–188. [Google Scholar] [CrossRef]
- Pelosi, E.; Arena, V.; Skanjeti, A.; Pirro, V.; Douroukas, A.; Pupi, A.; Mancini, M. Role of whole-body F-18 choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol. Med. 2008, 113, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Ackerstaff, E.; Pflug, B.R.; Nelson, J.B.; Bhujwalla, Z.M. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001, 61, 3599–3603. [Google Scholar] [PubMed]
- Feng, H.; Wang, X.; Chen, J.; Cui, J.; Gao, T.; Gao, Y.; Zeng, W. Nuclear Imaging of Glucose Metabolism: Beyond F-18 FDG. Contrast Media Mol. Imaging 2019, 2019, 7954854. [Google Scholar] [CrossRef] [PubMed]
- Cochran, B.J.; Ryder, W.J.; Parmar, A.; Klaeser, K.; Reilhac, A.; Angelis, G.I.; Meikle, S.R.; Barter, P.J.; Rye, K.A. Determining Glucose Metabolism Kinetics Using F-18 FDG Micro-PET/CT. J. Vis. Exp. 2017, 123, e55184. [Google Scholar] [CrossRef]
- Hoilund-Carlsen, P.F.; Poulsen, M.H.; Petersen, H.; Hess, S.; Lund, L. FDG in Urologic Malignancies. PET Clin. 2014, 9, 457–468. [Google Scholar] [CrossRef]
- O’Connor, E.; Teh, J.; Bolton, D. Pitfalls of FDG-PET in the prostate for the surgical oncologist. Urol. Case Rep. 2020, 33, 101262. [Google Scholar] [CrossRef]
- Lawrentschuk, N.; Davis, I.D.; Bolton, D.M.; Scott, A.M. Positron emission tomography and molecular imaging of the prostate: An update. BJU Int. 2006, 97, 923–931. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; He, Y.; Pang, L.; Yu, H.; Shi, H. Correlation among maximum standardized F-18 FDG uptake and pathological differentiation, tumor size, and Ki67 in patients with moderately and poorly differentiated intrahepatic cholangiocarcinoma. Hell. J. Nucl. Med. 2022, 25, 38–42. [Google Scholar] [CrossRef]
- Oyama, N.; Akino, H.; Suzuki, Y.; Kanamaru, H.; Miwa, Y.; Tsuka, H.; Sadato, N.; Yonekura, Y.; Okada, K. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol. Imaging Biol. 2002, 4, 99–104. [Google Scholar] [CrossRef]
- Jadvar, H. Is There Use for FDG-PET in Prostate Cancer? Semin. Nucl. Med. 2016, 46, 502–506. [Google Scholar] [CrossRef]
- Kitajima, K.; Murphy, R.C.; Nathan, M.A. Choline PET/CT for imaging prostate cancer: An update. Ann. Nucl. Med. 2013, 27, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Vali, R.; Waldenberger, P.; Fitz, F.; Nader, M.; Hammer, J.; Loidl, W.; Pirich, C.; Fogelman, I.; Langsteger, W. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: Correlation with morphological changes on CT. Mol. Imaging Biol. 2009, 11, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, Y.; Li, X.; Sun, P.; Wang, M.; Wang, R.; Jin, X. Imaging primary prostate cancer with C-11 Choline PET/CT: Relation to tumour stage, Gleason score and biomarkers of biologic aggressiveness. Radiol. Oncol. 2012, 46, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Ramirez de Molina, A.; Rodriguez-Gonzalez, A.; Gutierrez, R.; Martinez-Pineiro, L.; Sanchez, J.; Bonilla, F.; Rosell, R.; Lacal, J. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 2002, 296, 580–583. [Google Scholar] [CrossRef]
- Lee, J.; Sato, M.M.; Coel, M.N.; Lee, K.H.; Kwee, S.A. Prediction of PSA Progression in Castration-Resistant Prostate Cancer Based on Treatment-Associated Change in Tumor Burden Quantified by F-18 Fluorocholine PET/CT. J. Nucl. Med. 2016, 57, 1058–1064. [Google Scholar] [CrossRef]
- Price, D.T.; Coleman, R.E.; Liao, R.P.; Robertson, C.N.; Polascik, T.J.; DeGrado, T.R. Comparison of F-18 fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J. Urol. 2002, 168, 273–280. [Google Scholar] [CrossRef]
- Kim, J.K.; Song, Y.S.; Lee, W.W.; Lee, H.J.; Hwang, S.I.; Hong, S.K. Diagnostic accuracy of F-18 Fluorocholine PET/CT and multiparametric MRI for prostate cancer. Prostate Int. 2022, 10, 152–157. [Google Scholar] [CrossRef]
- Schilling, D.; Schlemmer, H.P.; Wagner, P.H.; Bottcher, P.; Merseburger, A.S.; Aschoff, P.; Bares, R.; Pfannenberg, C.; Ganswindt, U.; Corvin, S.; et al. Histological verification of C-11 choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int. 2008, 102, 446–451. [Google Scholar] [CrossRef]
- Kitajima, K.; Murphy, R.C.; Nathan, M.A.; Froemming, A.T.; Hagen, C.E.; Takahashi, N.; Kawashima, A. Detection of recurrent prostate cancer after radical prostatectomy: Comparison of C-11 choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J. Nucl. Med. 2014, 55, 223–232. [Google Scholar] [CrossRef]
- Vali, R.; Loidl, W.; Pirich, C.; Langesteger, W.; Beheshti, M. Imaging of prostate cancer with PET/CT using F-18 Fluorocholine. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 96–108. [Google Scholar]
- Donin, N.M.; Reiter, R.E. Why Targeting PSMA Is a Game Changer in the Management of Prostate Cancer. J. Nucl. Med. 2018, 59, 177–182. [Google Scholar] [CrossRef]
- Dietlein, F.; Kobe, C.; Hohberg, M.; Zlatopolskiy, B.D.; Krapf, P.; Endepols, H.; Tager, P.; Hammes, J.; Heidenreich, A.; Persigehl, T.; et al. Intraindividual Comparison of F-18 PSMA-1007 with Renally Excreted PSMA Ligands for PSMA PET Imaging in Patients with Relapsed Prostate Cancer. J. Nucl. Med. 2020, 61, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Nanus, D.M.; Milowsky, M.I.; Kostakoglu, L.; Smith-Jones, P.M.; Vallabahajosula, S.; Goldsmith, S.J.; Bander, N.H. Clinical use of monoclonal antibody HuJ591 therapy: Targeting prostate specific membrane antigen. J. Urol. 2003, 170, S84–S88; discussion S88–S89. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, Specificity, and Predictors of Positive Ga-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 926–937. [Google Scholar] [CrossRef]
- Eiber, M.; Weirich, G.; Holzapfel, K.; Souvatzoglou, M.; Haller, B.; Rauscher, I.; Beer, A.J.; Wester, H.J.; Gschwend, J.; Schwaiger, M.; et al. Simultaneous Ga-68 PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. Eur. Urol. 2016, 70, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Mannweiler, S.; Amersdorfer, P.; Trajanoski, S.; Terrett, J.A.; King, D.; Mehes, G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 2009, 15, 167–172. [Google Scholar] [CrossRef]
- Maurer, T.; Gschwend, J.E.; Rauscher, I.; Souvatzoglou, M.; Haller, B.; Weirich, G.; Wester, H.J.; Heck, M.; Kubler, H.; Beer, A.J.; et al. Diagnostic Efficacy of Gallium-68 PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J. Urol. 2016, 195, 1436–1443. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; O’Donoghue, J.A.; Ruan, S.; Lyashchenko, S.K.; Carrasquillo, J.A.; Heller, G.; Martinez, D.F.; Cheal, S.M.; Lewis, J.S.; Fleisher, M.; et al. First-in-Human Imaging with Zr-89 Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. J. Nucl. Med. 2016, 57, 1858–1864. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; Goffin, K.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1466–1486. [Google Scholar] [CrossRef] [PubMed]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F.; et al. Diagnostic Accuracy of Ga-68 PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol. 2021, 7, 1635–1642. [Google Scholar] [CrossRef]
- Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with F-18 DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Rowe, S.P.; Gorin, M.A.; Saperstein, L.; Pouliot, F.; Josephson, D.; Wong, J.Y.C.; Pantel, A.R.; Cho, S.Y.; Gage, K.L.; et al. Diagnostic Performance of F-18 DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin. Cancer Res. 2021, 27, 3674–3682. [Google Scholar] [CrossRef] [PubMed]
- Sheikhbahaei, S.; Bello Martinez, R.; Markowski, M.C.; Eisenberger, M.A.; Pienta, K.J.; Reyes, D.; Brosnan, M.K.; Spiro, E.; AbdAllah, R.; Holt, D.P.; et al. Multi-timepoint imaging with PSMA-targeted F-18 Florastamin PET/CT: Lesion detection and comparison to conventional imaging. Ann. Nucl. Med. 2023, 37, 246–254. [Google Scholar] [CrossRef]
- Olivier, P.; Giraudet, A.L.; Skanjeti, A.; Merlin, C.; Weinmann, P.; Rudolph, I.; Hoepping, A.; Gauthe, M. Phase III Study of F-18 PSMA-1007 Versus F-18 Fluorocholine PET/CT for Localization of Prostate Cancer Biochemical Recurrence: A Prospective, Randomized, Crossover Multicenter Study. J. Nucl. Med. 2023, 64, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Kesch, C.; Yun, M.; Cardinale, J.; Haberkorn, U.; Kopka, K.; Kratochwil, C.; Hadaschik, B.A. F-18 PSMA-1007 PET/CT Detects Micrometastases in a Patient With Biochemically Recurrent Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e497–e499. [Google Scholar] [CrossRef]
- Langbein, T.; Wang, H.; Rauscher, I.; Kroenke, M.; Knorr, K.; Wurzer, A.; Schwamborn, K.; Maurer, T.; Horn, T.; Haller, B.; et al. Utility of F-18 rhPSMA-7.3 PET for Imaging of Primary Prostate Cancer and Preoperative Efficacy in N-Staging of Unfavorable Intermediate- to Very High-Risk Patients Validated by Histopathology. J. Nucl. Med. 2022, 63, 1334–1342. [Google Scholar] [CrossRef]
- Werner, P.; Neumann, C.; Eiber, M.; Wester, H.J.; Schottelius, M. Tc-99m PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020, 10, 45. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. Ga-68 PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1014–1024. [Google Scholar] [CrossRef]
- Wang, Q.; Ketteler, S.; Bagheri, S.; Ebrahimifard, A.; Luster, M.; Librizzi, D.; Yousefi, B.H. Diagnostic efficacy of Tc-99m PSMA SPECT/CT for prostate cancer: A meta-analysis. BMC Cancer 2024, 24, 982. [Google Scholar] [CrossRef]
- Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T.I.; Sanders, J.C.; Schmidt, D.; Prante, O.; Bauerle, T.; Cavallaro, A.; et al. Tc-99m MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate 2018, 78, 54–63. [Google Scholar] [CrossRef]
- Rauscher, I.; Maurer, T.; Souvatzoglou, M.; Beer, A.J.; Vag, T.; Wirtz, M.; Weirich, G.; Wester, H.J.; Gschwend, J.E.; Schwaiger, M.; et al. Intrapatient Comparison of In-111 PSMA I&T SPECT/CT and Hybrid Ga-68 HBED-CC PSMA PET in Patients With Early Recurrent Prostate Cancer. Clin. Nucl. Med. 2016, 41, e397–e402. [Google Scholar] [CrossRef]
- Su, H.C.; Zhu, Y.; Ling, G.W.; Hu, S.L.; Xu, X.P.; Dai, B.; Ye, D.W. Evaluation of Tc-99m labeled PSMA-SPECT/CT imaging in prostate cancer patients who have undergone biochemical relapse. Asian J. Androl. 2017, 19, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Zhang, C.; Zhang, Z.; Kuo, H.T.; Colpo, N.; Benard, F.; Lin, K.S. Synthesis and Evaluation of Tc-99m Labeled PSMA-Targeted Tracers Based on the Lys-Urea-Aad Pharmacophore for Detecting Prostate Cancer with Single Photon Emission Computed Tomography. Molecules 2023, 28, 5120. [Google Scholar] [CrossRef]
- Nawar, M.F.; Turler, A. New strategies for a sustainable Tc-99m supply to meet increasing medical demands: Promising solutions for current problems. Front. Chem. 2022, 10, 926258. [Google Scholar] [CrossRef] [PubMed]
- Duatti, A. Review on Tc-99m radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol. 2021, 92, 202–216. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S.; Bansal, P.; Hooda, M.; Singh, H.; Parihar, A.S.; Kumar, A.; Watts, A.; Mohan, R.; Singh, S.K. Comparison of the diagnostic utility of Tc-99m PSMA scintigraphy versus Ga-68 PSMA-11 PET/CT in the detection of metastatic prostate cancer and dosimetry analysis: A gamma-camera-based alternate prostate-specific membrane antigen imaging modality. Nucl. Med. Commun. 2021, 42, 482–489. [Google Scholar] [CrossRef]
- Sergieva, S.; Fakirova, A.; Troyanova, P. Clinical Application of SPECT/CT imaging with 99mTc-Tektrotyd in the management of Merkel Cell Carcinoma (MCC). J. Nucl. Med. 2023, 64, P73. [Google Scholar]
- Tachatumvitoon, K.; Preuksarattanawut, C.; Tippayamontri, T.; Khomein, P. Tc-99m labeled PSMA-617 as a potential SPECT radiotracer for prostate cancer diagnostics: Complexation optimization and its in vitro/vivo evaluation. Bioorg. Med. Chem. 2025, 118, 118058. [Google Scholar] [CrossRef]
- Albalooshi, B.; Al Sharhan, M.; Bagheri, F.; Miyanath, S.; Ray, B.; Muhasin, M.; Zakavi, S.R. Direct comparison of Tc-99m PSMA SPECT/CT and Ga-68 PSMA PET/CT in patients with prostate cancer. Asia Ocean. J. Nucl. Med. Biol. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Shin, D.; Ha, S.; O, J.H.; Rhew, S.A.; Yoon, C.E.; Kwon, H.J.; Moon, H.W.; Park, Y.H.; Park, S.Y.; Park, C.; et al. A Single Dose of Novel PSMA-Targeting Radiopharmaceutical Agent Lu-177 Ludotadipep for Patients with Metastatic Castration-Resistant Prostate Cancer: Phase I Clinical Trial. Cancers 2022, 14, 6225. [Google Scholar] [CrossRef]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 2009, 6, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Sella, A.; Yarom, N.; Zisman, A.; Kovel, S. Paclitaxel, estramustine and carboplatin combination chemotherapy after initial docetaxel-based chemotherapy in castration-resistant prostate cancer. Oncology 2009, 76, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Hirst, C.; Crawford, E.D. Characterising the castration-resistant prostate cancer population: A systematic review. Int. J. Clin. Pract. 2011, 65, 1180–1192. [Google Scholar] [CrossRef]
- Mohler, J.L.; Armstrong, A.J.; Bahnson, R.R.; D’Amico, A.V.; Davis, B.J.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; Horwitz, E.M.; et al. Prostate Cancer, Version 1.2016. J. Natl. Compr. Canc Netw. 2016, 14, 19–30. [Google Scholar] [CrossRef]
- Jacene, H.; Gomella, L.; Yu, E.Y.; Rohren, E.M. Hematologic Toxicity From Radium-223 Therapy for Bone Metastases in Castration-Resistant Prostate Cancer: Risk Factors and Practical Considerations. Clin. Genitourin. Cancer 2018, 16, e919–e926. [Google Scholar] [CrossRef]
- Nilsson, S. Alpha-emitter radium-223 in the management of solid tumors: Current status and future directions. Am. Soc. Clin. Oncol. Educ. Book. 2014, 34, e132-9. [Google Scholar] [CrossRef]
- Hosono, M.; Ikebuchi, H.; Nakamura, Y.; Yanagida, S.; Kinuya, S. Introduction of the targeted alpha therapy (with Radium-223) into clinical practice in Japan: Learnings and implementation. Ann. Nucl. Med. 2019, 33, 211–221. [Google Scholar] [CrossRef]
- Allen, B.J.; Huang, C.Y.; Clarke, R.A. Targeted alpha anticancer therapies: Update and future prospects. Biologics 2014, 8, 255–267. [Google Scholar] [CrossRef]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fossa, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef]
- Sartor, O.; Coleman, R.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fossa, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: Results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014, 15, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.; Sartor, O.; O’Sullivan, J.M.; Johannessen, D.C.; Helle, S.I.; Logue, J.; Bottomley, D.; Nilsson, S.; Vogelzang, N.J.; Fang, F.; et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: A prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014, 15, 1397–1406. [Google Scholar] [CrossRef]
- Nilsson, S.; Cislo, P.; Sartor, O.; Vogelzang, N.J.; Coleman, R.E.; O’Sullivan, J.M.; Reuning-Scherer, J.; Shan, M.; Zhan, L.; Parker, C. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann. Oncol. 2016, 27, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Sathekge, M.M.; Lawal, I.O.; Bal, C.; Bruchertseifer, F.; Ballal, S.; Cardaci, G.; Davis, C.; Eiber, M.; Hekimsoy, T.; Knoesen, O.; et al. Actinium-225 PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): A multicentre, retrospective study. Lancet Oncol. 2024, 25, 175–183. [Google Scholar] [CrossRef]
- Parida, G.K.; Panda, R.A.; Bishnoi, K.; Agrawal, K. Efficacy and Safety of Actinium-225 Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Prostate Cancer: A Systematic Review and Metanalysis. Med. Princ. Pract. 2023, 32, 178–191. [Google Scholar] [CrossRef]
- Bidkar, A.P.; Zerefa, L.; Yadav, S.; VanBrocklin, H.F.; Flavell, R.R. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024, 14, 2969–2992. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.W.; de Blois, E.; Hooijman, E.; van der Veldt, A.; Brabander, T. Advances in Lu-177 PSMA and Ac-225 PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022, 14, 2166. [Google Scholar] [CrossRef]
- Ferdinandus, J.; Violet, J.; Sandhu, S.; Hofman, M.S. Prostate-specific membrane antigen theranostics: Therapy with lutetium-177. Curr. Opin. Urol. 2018, 28, 197–204. [Google Scholar] [CrossRef]
- Kabasakal, L.; Toklu, T.; Yeyin, N.; Demirci, E.; Abuqbeitah, M.; Ocak, M.; Aygun, A.; Karayel, E.; Pehlivanoglu, H.; Alan Selcuk, N. Lu-177 PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution and Dosimetry. Mol. Imaging Radionucl. Ther. 2017, 26, 62–68. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. Lu-177 PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef]
- Heynickx, N.; Herrmann, K.; Vermeulen, K.; Baatout, S.; Aerts, A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl. Med. Biol. 2021, 98–99, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Lisney, A.R.; Leitsmann, C.; Strauss, A.; Meller, B.; Bucerius, J.A.; Sahlmann, C.O. The Role of PSMA PET/CT in the Primary Diagnosis and Follow-Up of Prostate Cancer-A Practical Clinical Review. Cancers 2022, 14, 3638. [Google Scholar] [CrossRef]
- Oh, S.W.; Suh, M.; Cheon, G.J. Current Status of PSMA-Targeted Radioligand Therapy in the Era of Radiopharmaceutical Therapy Acquiring Marketing Authorization. Nucl. Med. Mol. Imaging 2022, 56, 263–281. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, Y.I. Therapeutic Responses and Survival Effects of Lu-177 PSMA-617 Radioligand Therapy in Metastatic Castrate-Resistant Prostate Cancer: A Meta-analysis. Clin. Nucl. Med. 2018, 43, 728–734. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177 PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Davis, I.D.; Francis, R.J.; et al. TheraP: Lu-177 PSMA-617 (LuPSMA) versus cabazitaxel in metastatic castration-resistant prostate cancer (mCRPC) progressing after docetaxel dOverall survival after median fol-low-up of 3 years (ANZUP 1603). J. Clin. Oncol. 2022, 40, 5000. [Google Scholar] [CrossRef]
- Fizazi, K.; Herrmann, K.; Krause, B.J.; Rahbar, K.; Chi, K.N.; Morris, M.J.; Sartor, O.; Tagawa, S.T.; Kendi, A.T.; Vogelzang, N.; et al. Health-related quality of life and pain outcomes with Lu-177 PSMA-617 plus standard of care versus standard of care in patients with metastatic castration-resistant prostate cancer (VISION): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Strang, P.; Aksnes, A.K.; Franzen, L.; Olivier, P.; Pecking, A.; Staffurth, J.; Vasanthan, S.; Andersson, C.; Bruland, O.S. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur. J. Cancer 2012, 48, 678–686. [Google Scholar] [CrossRef]
- Smith, M.; Parker, C.; Saad, F.; Miller, K.; Tombal, B.; Ng, Q.S.; Boegemann, M.; Matveev, V.; Piulats, J.M.; Zucca, L.E.; et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 408–419. [Google Scholar] [CrossRef]
- Herrmann, K.; Schwaiger, M.; Lewis, J.S.; Solomon, S.B.; McNeil, B.J.; Baumann, M.; Gambhir, S.S.; Hricak, H.; Weissleder, R. Radiotheranostics: A roadmap for future development. Lancet Oncol. 2020, 21, e146–e156. [Google Scholar] [CrossRef]
- Emmett, L.; Subramaniam, S.; Joshua, A.M.; Crumbaker, M.; Martin, A.; Zhang, A.Y.; Rana, N.; Langford, A.; Mitchell, J.; Yip, S.; et al. ENZA-p trial protocol: A randomized phase II trial using prostate-specific membrane antigen as a therapeutic target and prognostic indicator in men with metastatic castration-resistant prostate cancer treated with enzalutamide (ANZUP 1901). BJU Int. 2021, 128, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.; Joshua, A.M.; Emmett, L.; Crumbaker, M.; Bressel, M.; Huynh, R.; Banks, P.D.; Wallace, R.; Hamid, A.; Inderjeeth, A.J.; et al. LuPARP: Phase 1 trial of Lu-177 PSMA-617 and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41, 5005. [Google Scholar] [CrossRef]
- Pathmanandavel, S.; Crumbaker, M.; Yam, A.O.; Nguyen, A.; Rofe, C.; Hovey, E.; Gedye, C.; Kwan, E.M.; Hauser, C.; Azad, A.A.; et al. Lu-177 PSMA-617 and Idronoxil in Men with End-Stage Metastatic Castration-Resistant Prostate Cancer (LuPIN): Patient Outcomes and Predictors of Treatment Response in a Phase I/II Trial. J. Nucl. Med. 2022, 63, 560–566. [Google Scholar] [CrossRef]
- Sandhu, S.; Joshua, A.M.; Emmett, L.; Spain, L.A.; Horvath, L.; Crumbaker, M.; Anton, A.; Wallace, R.; Pasam, A.; Bressel, M.; et al. PRINCE: Phase I trial of Lu-177 PSMA-617 in combination with pembrolizumab in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40, 5017. [Google Scholar] [CrossRef]
- Batra, J.S.; Niaz, M.J.; Whang, Y.E.; Sheikh, A.; Thomas, C.; Christos, P.; Vallabhajosula, S.; Jhanwar, Y.S.; Molina, A.M.; Nanus, D.M.; et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (Lu-177 J591) for metastatic castration-resistant prostate cancer. Urol. Oncol. 2020, 38, 848.e9–848.e16. [Google Scholar] [CrossRef]
- Dhiantravan, N.; Emmett, L.; Joshua, A.M.; Pattison, D.A.; Francis, R.J.; Williams, S.; Sandhu, S.; Davis, I.D.; Vela, I.; Neha, N.; et al. UpFrontPSMA: A randomized phase 2 study of sequential Lu-177 PSMA-617 and docetaxel vs docetaxel in metastatic hormone-naive prostate cancer (clinical trial protocol). BJU Int. 2021, 128, 331–342. [Google Scholar] [CrossRef]
- Kostos, L.; Buteau, J.P.; Yeung, T.; Iulio, J.D.; Xie, J.; Cardin, A.; Chin, K.Y.; Emmerson, B.; Owen, K.L.; Parker, B.S.; et al. AlphaBet: Combination of Radium-223 and Lu-177 PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front. Med. 2022, 9, 1059122. [Google Scholar] [CrossRef]
- Morris, M.J.; De Wit, R.; Vogelzang, N.J.; Tagawa, S.T.; Higano, C.S.; Hamberg, P. A phase III trial of docetaxel versus docetaxel and radium-223 (Ra-223) in patients with metastatic castration-resistant prostate cancer (mCRPC): DO-RA. J. Clin. Oncol. 2021, 39, TPS5091. [Google Scholar] [CrossRef]
- Hoberuck, S.; Wunderlich, G.; Michler, E.; Holscher, T.; Walther, M.; Seppelt, D.; Platzek, I.; Zophel, K.; Kotzerke, J. Dual-time-point Cu-64 PSMA-617-PET/CT in patients suffering from prostate cancer. J. Labelled Comp. Radiopharm. 2019, 62, 523–532. [Google Scholar] [CrossRef]
- Umbricht, C.A.; Benesova, M.; Hasler, R.; Schibli, R.; van der Meulen, N.P.; Muller, C. Design and Preclinical Evaluation of an Albumin-Binding PSMA Ligand for Cu-64 Based PET Imaging. Mol. Pharm. 2018, 15, 5556–5564. [Google Scholar] [CrossRef]
- Kelly, J.M.; Ponnala, S.; Amor-Coarasa, A.; Zia, N.A.; Nikolopoulou, A.; Williams, C., Jr.; Schlyer, D.J.; DiMagno, S.G.; Donnelly, P.S.; Babich, J.W. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for Cu-64/Cu-67 Based Theranostics in Prostate Cancer. Mol. Pharm. 2020, 17, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Zia, N.A.; Cullinane, C.; Van Zuylekom, J.K.; Waldeck, K.; McInnes, L.E.; Buncic, G.; Haskali, M.B.; Roselt, P.D.; Hicks, R.J.; Donnelly, P.S. A Bivalent Inhibitor of Prostate Specific Membrane Antigen Radiolabeled with Copper-64 with High Tumor Uptake and Retention. Angew. Chem. Int. Ed. Engl. 2019, 58, 14991–14994. [Google Scholar] [CrossRef]
- McInnes, L.E.; Cullinane, C.; Roselt, P.D.; Jackson, S.; Blyth, B.J.; van Dam, E.M.; Zia, N.A.; Harris, M.J.; Hicks, R.J.; Donnelly, P.S. Therapeutic Efficacy of a Bivalent Inhibitor of Prostate-Specific Membrane Antigen Labeled with Cu-67. J. Nucl. Med. 2021, 62, 829–832. [Google Scholar] [CrossRef]
- Walczak, R.; Krajewski, S.; Szkliniarz, K.; Sitarz, M.; Abbas, K.; Choinski, J.; Jakubowski, A.; Jastrzebski, J.; Majkowska, A.; Simonelli, F.; et al. Cyclotron production of Sc-43 for PET imaging. EJNMMI Phys. 2015, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Umbricht, C.A.; Benesova, M.; Schmid, R.M.; Turler, A.; Schibli, R.; van der Meulen, N.P.; Muller, C. Sc-44 PSMA-617 for radiotheragnostics in tandem with Lu-177 PSMA-617-preclinical investigations in comparison with Ga-68 PSMA-11 and Ga-68 PSMA-617. EJNMMI Res. 2017, 7, 9. [Google Scholar] [CrossRef]
- Vaughn, B.A.; Loveless, C.S.; Cingoranelli, S.J.; Schlyer, D.; Lapi, S.E.; Boros, E. Evaluation of Lu-177 and Sc-47 Picaga-Linked, Prostate-Specific Membrane Antigen-Targeting Constructs for Their Radiotherapeutic Efficacy and Dosimetry. Mol. Pharm. 2021, 18, 4511–4519. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.J.; Jackson, P.; Kong, G.; Ware, R.E.; Hofman, M.S.; Pattison, D.A.; Akhurst, T.A.; Drummond, E.; Roselt, P.; Callahan, J.; et al. Cu-64 SARTATE PET Imaging of Patients with Neuroendocrine Tumors Demonstrates High Tumor Uptake and Retention, Potentially Allowing Prospective Dosimetry for Peptide Receptor Radionuclide Therapy. J. Nucl. Med. 2019, 60, 777–785. [Google Scholar] [CrossRef]
- Muller, C.; Umbricht, C.A.; Gracheva, N.; Tschan, V.J.; Pellegrini, G.; Bernhardt, P.; Zeevaart, J.R.; Koster, U.; Schibli, R.; van der Meulen, N.P. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1919–1930. [Google Scholar] [CrossRef]
- Umbricht, C.A.; Koster, U.; Bernhardt, P.; Gracheva, N.; Johnston, K.; Schibli, R.; van der Meulen, N.P.; Muller, C. Alpha-PET for Prostate Cancer: Preclinical investigation using Tb-149 PSMA-617. Sci. Rep. 2019, 9, 17800. [Google Scholar] [CrossRef]
- Stenberg, V.Y.; Larsen, R.H.; Ma, L.W.; Peng, Q.; Juzenas, P.; Bruland, O.S.; Juzeniene, A. Evaluation of the PSMA-Binding Ligand Pb-212 NG001 in Multicellular Tumour Spheroid and Mouse Models of Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 4815. [Google Scholar] [CrossRef]
- Hammer, S.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Larsen, A.; Ellingsen, C.; Geraudie, S.; Grant, D.; Indrevoll, B.; Smeets, R.; von Ahsen, O.; et al. Preclinical Efficacy of a PSMA-Targeted Thorium-227 Conjugate (PSMA-TTC), a Targeted Alpha Therapy for Prostate Cancer. Clin. Cancer Res. 2020, 26, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Thiele, N.A.; Woods, J.J.; Wilson, J.J. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg. Chem. 2019, 58, 10483–10500. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, C.; Yuan, Z.; Rodriguez-Rodriguez, C.; Robertson, A.; Radchenko, V.; Perron, R.; Gendron, D.; Causey, P.; Gao, F.; et al. Synthesis and Evaluation of a Macrocyclic Actinium-225 Chelator, Quality Control and In Vivo Evaluation of Ac-225 crown-alphaMSH Peptide. Chemistry 2020, 26, 11435–11440. [Google Scholar] [CrossRef]
- Hu, A.; Brown, V.; MacMillan, S.N.; Radchenko, V.; Yang, H.; Wharton, L.; Ramogida, C.F.; Wilson, J.J. Chelating the Alpha Therapy Radionuclides 225Ac3+ and 213Bi3+ with 18-Membered Macrocyclic Ligands Macrodipa and Py-Macrodipa. Inorg. Chem. 2022, 61, 801–806. [Google Scholar] [CrossRef]
- Reissig, F.; Bauer, D.; Zarschler, K.; Novy, Z.; Bendova, K.; Ludik, M.C.; Kopka, K.; Pietzsch, H.J.; Petrik, M.; Mamat, C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA-A Proof of Concept Study. Cancers 2021, 13, 1974. [Google Scholar] [CrossRef]
- Deblonde, G.J.; Lohrey, T.D.; Booth, C.H.; Carter, K.P.; Parker, B.F.; Larsen, A.; Smeets, R.; Ryan, O.B.; Cuthbertson, A.S.; Abergel, R.J. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. Inorg. Chem. 2018, 57, 14337–14346. [Google Scholar] [CrossRef]
- Rauscher, I.; Duwel, C.; Wirtz, M.; Schottelius, M.; Wester, H.J.; Schwamborn, K.; Haller, B.; Schwaiger, M.; Gschwend, J.E.; Eiber, M.; et al. Value of In-111 prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: Correlation with histopathology and clinical follow-up. BJU Int. 2017, 120, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Robu, S.; Schottelius, M.; Schwamborn, K.; Rauscher, I.; van den Berg, N.S.; van Leeuwen, F.W.B.; Haller, B.; Horn, T.; Heck, M.M.; et al. Technetium-99m based Prostate-specific Membrane Antigen-radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019, 75, 659–666. [Google Scholar] [CrossRef]
- Vo, A.H.; Van Vleet, T.R.; Gupta, R.R.; Liguori, M.J.; Rao, M.S. An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation. Chem. Res. Toxicol. 2020, 33, 20–37. [Google Scholar] [CrossRef]
- Gayvert, K.M.; Madhukar, N.S.; Elemento, O. A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. Cell Chem. Biol. 2016, 23, 1294–1301. [Google Scholar] [CrossRef]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Jimenez, J.; Sabbadin, D.; Cuzzolin, A.; Martinez-Rosell, G.; Gora, J.; Manchester, J.; Duca, J.; De Fabritiis, G. PathwayMap: Molecular Pathway Association with Self-Normalizing Neural Networks. J. Chem. Inf. Model. 2019, 59, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Santín, E.P.; Solana, R.R.; García, M.G.; Suárez, M.D.G.; Díaz, G.D.B.; Cabal, M.D.C.; Rojas, J.M.M.; Sánchez, J.I.L. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIREs Comput. Mol. Sci. 2021, 11, e1516. [Google Scholar] [CrossRef]
- Leung, K.H.; Rowe, S.P.; Leal, J.P.; Ashrafinia, S.; Sadaghiani, M.S.; Chung, H.W.; Dalaie, P.; Tulbah, R.; Yin, Y.; VanDenBerg, R.; et al. Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET. EJNMMI Res. 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Sartor, A.O.; Tagawa, S.T.; Saad, F.; De Bono, J.S.; Feng, F.Y.; Fizazi, K.; Sakharova, O.V.; Morris, M.J. PSMAddition: A phase 3 trial to compare treatment with Lu-177 PSMA-617 plus standard of care (SOC) versus SOC alone in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 2022, 40, TPS210. [Google Scholar] [CrossRef]
- Morris, M.J.; Castellano, D.; Herrmann, K.; de Bono, J.S.; Shore, N.D.; Chi, K.N.; Crosby, M.; Piulats, J.M.; Flechon, A.; Wei, X.X.; et al. Lu-177 PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): A phase 3, randomised, controlled trial. Lancet 2024, 404, 1227–1239. [Google Scholar] [CrossRef]
- Dhiantravan, N.; Violet, J.; Eapen, R.; Alghazo, O.; Scalzo, M.; Jackson, P.; Keam, S.P.; Mitchell, C.; Neeson, P.J.; Sandhu, S.; et al. Clinical Trial Protocol for LuTectomy: A Single-arm Study of the Dosimetry, Safety, and Potential Benefit of Lu-177 PSMA-617 Prior to Prostatectomy. Eur. Urol. Focus. 2021, 7, 234–237. [Google Scholar] [CrossRef]
- Krafft, U.; Hadaschik, B.A.; Luckerath, K.; Herrmann, K. A New Chapter in Neoadjuvant Therapy for High-risk Prostate Cancer? Eur. Urol. 2024, 85, 227–228. [Google Scholar] [CrossRef]
- Singh, S.; Halperin, D.M.; Myrehaug, S.; Herrmann, K.; Pavel, M.; Kunz, P.L.; Chasen, B.; Capdevila, J.; Tafuto, S.; Oh, D.-Y.; et al. Lu-177 DOTA-TATE in newly diagnosed patients with advanced grade 2 and grade 3, well-differentiated gastroenteropancreatic neuroendocrine tumors: Primary analysis of the phase 3 randomized NETTER-2 study. J. Clin. Oncol. 2024, 42, LBA588. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Reidy, D.L.; Vijayvergia, N.; Halperin, D.M.; Goldstein, G.; Kong, G.; Michael, M.; Grozinsky-Glasberg, S.; Goldstein, G.; Kong, G.; et al. Pivotal phase III COMPOSE trial will compare Lu-177 edotreotide with best standard of care for well-differentiated aggressive grade 2 and grade 3 gastroenteropancreatic neuroendocrine tumors. J. Clin. Oncol. 2022, 40, TPS514. [Google Scholar] [CrossRef]
- Sherman, M.; Levine, R. Nuclear Medicine and Wall Street: An Evolving Relationship. J. Nucl. Med. 2019, 60, 20S–24S. [Google Scholar] [CrossRef]
- Lee, S.T.; Emmett, L.M.; Pattison, D.A.; Hofman, M.S.; Bailey, D.L.; Latter, M.J.; Francis, R.J.; Scott, A.M. The Importance of Training, Accreditation, and Guidelines for the Practice of Theranostics: The Australian Perspective. J. Nucl. Med. 2022, 63, 819–822. [Google Scholar] [CrossRef]
- Roy, J.; Warner, B.M.; Basuli, F.; Zhang, X.; Zheng, C.; Goldsmith, C.; Phelps, T.; Wong, K.; Ton, A.T.; Pieschl, R.; et al. Competitive blocking of salivary gland F-18 DCFPyL uptake via localized, retrograde ductal injection of non-radioactive DCFPyL: A preclinical study. EJNMMI Res. 2021, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.; Mumper, R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Langbein, T.; Chausse, G.; Baum, R.P. Salivary Gland Toxicity of PSMA Radioligand Therapy: Relevance and Preventive Strategies. J. Nucl. Med. 2018, 59, 1172–1173. [Google Scholar] [CrossRef]
- Yilmaz, B.; Nisli, S.; Ergul, N.; Gursu, R.U.; Acikgoz, O.; Cermik, T.F. Effect of External Cooling on Lu-177 PSMA Uptake by the Parotid Glands. J. Nucl. Med. 2019, 60, 1388–1393. [Google Scholar] [CrossRef]
- Baum, R.P.; Langbein, T.; Singh, A.; Shahinfar, M.; Schuchardt, C.; Volk, G.F.; Kulkarni, H. Injection of Botulinum Toxin for Preventing Salivary Gland Toxicity after PSMA Radioligand Therapy: An Empirical Proof of a Promising Concept. Nucl. Med. Mol. Imaging 2018, 52, 80–81. [Google Scholar] [CrossRef]
- Mueller, J.; Langbein, T.; Mishra, A.; Baum, R.P. Safety of High-Dose Botulinum Toxin Injections for Parotid and Submandibular Gland Radioprotection. Toxins 2022, 14, 64. [Google Scholar] [CrossRef]
- Rousseau, E.; Lau, J.; Kuo, H.T.; Zhang, Z.; Merkens, H.; Hundal-Jabal, N.; Colpo, N.; Lin, K.S.; Benard, F. Monosodium Glutamate Reduces Ga-68 PSMA-11 Uptake in Salivary Glands and Kidneys in a Preclinical Prostate Cancer Model. J. Nucl. Med. 2018, 59, 1865–1868. [Google Scholar] [CrossRef]
- Sarnelli, A.; Belli, M.L.; Di Iorio, V.; Mezzenga, E.; Celli, M.; Severi, S.; Tardelli, E.; Nicolini, S.; Oboldi, D.; Uccelli, L.; et al. Dosimetry of Lu-177 PSMA-617 after Mannitol Infusion and Glutamate Tablet Administration: Preliminary Results of EUDRACT/RSO 2016-002732-32 IRST Protocol. Molecules 2019, 24, 621. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, G.; Sarnelli, A.; Severi, S.; Sansovini, M.; Belli, M.L.; Monti, M.; Foca, F.; Celli, M.; Nicolini, S.; Tardelli, E.; et al. Dosimetry and safety of Lu-177 PSMA-617 along with polyglutamate parotid gland protector: Preliminary results in metastatic castration-resistant prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3008–3017. [Google Scholar] [CrossRef] [PubMed]
- Burrin, D.G.; Stoll, B. Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr. 2009, 90, 850S–856S. [Google Scholar] [CrossRef] [PubMed]
- Capasso, E.; Durzu, S.; Piras, S.; Zandieh, S.; Knoll, P.; Haug, A.; Hacker, M.; Meleddu, C.; Mirzaei, S. Role of 64CuCl2 PET/CT in staging of prostate cancer. Ann. Nucl. Med. 2015, 29, 482–488. [Google Scholar] [CrossRef]
- Piccardo, A.; Paparo, F.; Puntoni, M.; Righi, S.; Bottoni, G.; Bacigalupo, L.; Zanardi, S.; DeCensi, A.; Ferrarazzo, G.; Gambaro, M.; et al. 64CuCl2 PET/CT in Prostate Cancer Relapse. J. Nucl. Med. 2018, 59, 444–451. [Google Scholar] [CrossRef]
Compound | Modality | Excretion | Mechanism of Action | Clinical Use | |
---|---|---|---|---|---|
Skeletal imaging | Tc-99m MDP | SPECT | Renal | Chemisorption as a phosphate analog reflecting increased bone turnover | Initial evaluation in high risk 1 patients for skeletal metastases Elevated PSA, positive DRE, or symptomatic cases in postprostatectomy or definitive RT Regular response evaluation after ADT |
C-11 choline | PET | Hepatorenal | Lipid metabolism: cellular uptake and incorporation into the cell membrane and lipid synthesis by enhanced kinase expression in malignant PCa cells | Considered for equivocal lesions on initial bone scans Limited clinical use because of short half-life (20 min), requiring on-site cyclotron | |
F-18 NaF | PET | Renal | Calcium analog: chemisorption of fluoride ions to the bone matrix by osteoblasts | High specificity, sensitivity, and PPV Alternative for conventional bone scans with better sensitivity, lesser uptake time, and higher resolution via hybrid images with CT | |
Soft tissue imaging | F-18 FDG | PET | Renal | Glucose metabolism: glucose analog surrogates for glycolysis (Warburg effect) Accumulation in malignant cells with enhanced glycolysis | High sensitivity but low specificity Not recommended for routine staging Prognostic implications in progressive CRPC |
F-18 fluorocholine | PET | Renal | Enhanced choline kinase activity in malignant PCa cells, thereby increasing choline transportation and phosphorylation | Role in biochemical recurrence and distant metastases | |
F-18 fluciclovine (FACBC) | PET | Renal | Amino acid transport: amino acid leucine analog Cellular uptake by amino acid transporters and utilization by PCa cells | No significant renal excretion and short uptake time (4–10 min) Detection of biochemical recurrence and progression in extraprostatic disease Limited use of bone metastases due to significant marrow uptake | |
Ga-68/F-18 PSMA | PET | Hepatorenal | Transmembrane glycoprotein-produced prostate epithelial cell membrane with PCa upregulation | High sensitivity and specificity for initial staging, biochemical recurrence, and progression in bone and soft tissues Good results with PSA level of <0.2 ng/mL 1 Need attention for “PSMA flare response” after ADT | |
Tc-99m PSMA | SPECT | Renal | Transmembrane glycoprotein-produced prostate epithelial cell membrane with PCa upregulation | High sensitivity and specificity Easily accessed, simplicity, lower cost, long half-life |
Targeting Agents | Half-Life | Modality | Excretion | Clinical Application | |
---|---|---|---|---|---|
Antibodies | In-111 7E11-C35 (capromab pendetide; ProstaScint) | 67.2 h | SPECT | Renal | |
Zr-89 huJ591 | 78.4 h | PET | Renal | ||
Zr-89 Df-IAB2M | 78.4 h | PET | Renal | ||
Small-Molecule PSMA Ligands | Ga-68 PSMA-HBED-CC Ga-68 PSMA-11 | 68 min | PET | Renal | Initial staging and biochemical recurrence/progression Using therapy (Ga-68/Lu-177 DOTAGA-ffk(Sub-KuE)) Approved 1 |
Ga-68 Ga-PSMA-I&T | 68 min | PET | Renal | Initial staging and biochemical recurrence/progression | |
F-18 DCFPyL (Pylarify®) | 110 min | PET | Renal | Metastasis; approved 1 | |
F-18 PSMA-1007 | 110 min | PET | Hepatobiliary | Under phase III investigation | |
F-18 Florastamin (FC-303) | 110 min | PET | Renal | Under phase III investigation | |
F-18 F-rhPSMA-7.3 (Posluma®) | 110 min | PET | Renal | Approved 1 | |
Tc-99m PSMA 2 | 6 h | SPECT | Renal | Under phase III investigation |
Radionuclide | Half-Life | Projection | Target | Clinical Use |
---|---|---|---|---|
Imaging and therapeutic isotopes | ||||
Lu-177 | 6.65 days | Reactor; β therapy | PSMA | mCRPC with progression on ADT and target-based chemotherapy |
Sm-153 | 46.28 h | Reactor; β therapy | Hydroxyapatite of bone formation | Palliative purpose for symptomatic bone metastases |
Therapeutic isotope | ||||
Ra-223 | 11.43 days | Generator; α therapy | Osteomimic similar to calcium, leading to the combination of osteoblasts | mCRPC with symptomatic bone metastasis without visceral metastases |
Ac-225 | 9.92 days | Reactor, cyclotron, generator; α therapy | PSMA | mCRPC |
Study Title | Clinical Phase | Identifier | Radiopharmaceuticals | Objective | Conditions | Primary Endpoints |
---|---|---|---|---|---|---|
TheraP: A trial of Lu-177 PSMA-617 theranostic vs. cabazitaxel in progressive mCRPC (ANZUP Protocol 1603) | Phase II | NCT03392428 | Lu-177 PSMA-617 | Activity and safety evaluation of Lu-PSMA against cabazitaxel in progressive mCRPC | CRPC patients eligible for cabazitaxel as the next treatment Both PSMA PET/CT and FDG PET/CT: only for FDG-positive but PSMA-negative lesions Randomization of the two groups: LuPSMA radionuclide therapy against cabazitaxel | Reduction in PSA by at least 50% from baseline |
VISION: Study of Lu-177 PSMA-617 In mCRPC | Phase III | NCT03511664 | Lu-177 PSMA-617 | Comparison of the two alternate primary endpoints of radiographic progression-rPFS and OS of the Lu-177 PSMA-617 therapy group and Lu-177 PSMA-617 with BSC/BSoC vs. BSC/BSoC alone group | mCRPC progression even after both ADT and either one or two taxane regimens PSMA-positive disease on Ga-68 PSMA-11 PET/CT Randomized 2:1 to receive Lu-177 PSMA-617 with/without BSC/BSoC | Imaging-based PFS and OS Improved PFS and OS in the Lu-177 PSMA-617 group |
ALSYMPCA: Study of radium-223 dichloride in patients with symptomatic HRPC and skeletal metastases | Phase III | NCT00699751 | Ra-223 dichloride (Xofigo, BAY88-8223) | Efficacy and safety of Ra-223 dichloride in patients with HRPC and skeletal metastases | Patients with symptomatic bone metastases | OS |
Study Title | Clinical Phase | Identifier | Radiopharmaceuticals | Objective | Conditions | Primary Endpoints |
---|---|---|---|---|---|---|
ENZA-p: Enzalutamide with Lu-177 PSMA-617 versus enzalutamide alone in men with mCRPC (ANZUP 1901) | Phase II | NCT04419402 | Lu-177 PSMA-617 | Activity and safety of adding Lu-177 PSMA to enzalutamide in mCRPC patients not previously treated with chemotherapy | mCRPC patients not previously treated with chemotherapy Randomized 1:1 to enzalutamide or enzalutamide and Lu-PSMA | PSA PFS |
LuPARP: Lu-177 PSMA-617 therapy and olaparib in patients with mCRPC | Phase I | NCT03874884 | Lu-177 PSMA-617 | Safety and tolerability of olaparib in combination with Lu-177 PSMA in mCRPC | mCRPC progression on a novel AR-targeted agent and no prior experience with platinum, PARP inhibitors, or 177Lu-PSMA | DLTs and MTD |
LuPIN: Lu-177 PSMA-617 and idronoxil in men with end-stage mCRPC | Phase I/II | ACTRN12618001073291 | Lu-177 PSMA-617 | Safety and efficacy investigation combining Lu-177 PSMA-617 with idronoxil (NOX66), a radiosensitizer | Progressive mCRPC previously treated with taxane chemotherapy and novel ASI | PSA response defined as 50% or PSA PFS/OS |
PRINCE: Radionuclide Lu-177 PSMA-617 therapy in combination with pembrolizumab for the treatment of mCRPC | Phase Ib/II | NCT03658447 | Lu-177 PSMA-617 | Safety, tolerability, and efficacy of the combination of Lu-177 PSMA-617 and pembrolizumab in mCRPC | Minimal symptoms and progression on at least one line of novel AR-targeted agents | PSA response defined as ≥50% decrease from baseline |
UpFrontPSMA: Randomized study of sequential Lu-177 PSMA 617 and docetaxel vs. docetaxel in mHNPC | Phase II | NCT04343885 | Lu-177 PSMA-617 | Effectiveness of Lu-177 PSMA with docetaxel against treatment with docetaxel only in newly diagnosed high-volume mCRPC patients | Newly diagnosed mCRPC Randomized 2:1 to Lu-177 PSMA and docetaxel against treatment with docetaxel only | Undetectable PSA (≤0.2 ng/mL) at 12 months after the commencement of protocol therapy |
AlphaBet: Combination of Ra-223 and Lu-177 PSMA-I&T in men with mCRPC | Phase I/II | NCT05383079 | Lu-177 PSMA-I&T | Safety of Ra-223 with Lu-177 PSMA-I&T in mCRPC | mCRPC patients who progressed on the second-generation AR antagonist | 50% PSA response rate |
DORA: Docetaxel vs. docetaxel and Ra-223 for mCRPC | Phase III | NCT03574571 | Ra-223 | Effectiveness of Ra-223 with docetaxel against treatment with docetaxel only in mCRPC patients | Documented progressive mCRPC cases with two or more bone metastases | OS defined as the time from randomization to death from any cause within 2 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, T. Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review. Biomedicines 2025, 13, 1132. https://doi.org/10.3390/biomedicines13051132
Lee J, Kim T. Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review. Biomedicines. 2025; 13(5):1132. https://doi.org/10.3390/biomedicines13051132
Chicago/Turabian StyleLee, Joohee, and Taejin Kim. 2025. "Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review" Biomedicines 13, no. 5: 1132. https://doi.org/10.3390/biomedicines13051132
APA StyleLee, J., & Kim, T. (2025). Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review. Biomedicines, 13(5), 1132. https://doi.org/10.3390/biomedicines13051132