Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Housing and Husbandry
2.3. Mouse Immunizations
2.4. Cotton Rat Immunogenicity and Efficacy Study
2.5. Vaccine Preparation of Protein Absobed with Spores
2.6. Cells and Virus
2.7. Determination of Serum IgG Titers and IgA Titers in NLF Samples in Mouse and Cotton Rat
2.8. Serum Neutralization Assays (SNA)
2.9. Intracellular Cytokine Staining (ICS)
2.10. RSV Viral Titers in Lungs and Nose
3. Results
3.1. Antibody and T Cell Responses in Mice Immunized Intramuscularly, Intranasally, and PO
3.2. Immunogenicity and Efficacy in Cotton Rats Immunized with Pre F and Spores, IM and IN
3.3. Immunogenicity in Cotton Rats Immunized with Pre F and Spores Using Methods for Strict and Non-Strict Intranasal Immunization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Pre F | Pre-fusion protein |
RSV | Respiratory syncytial virus |
B. subtilis | Bacillus subtilis |
IACUC | Institutional Animal Care and Use Committees |
IN | Intranasally |
IM | Intramuscularly |
PO | By mouth or oral |
NAL | Nasal airway lavage |
ELISA | Enzyme-linked immunosorbent assay, |
LRT | Lower respiratory tract |
IgG | Immunoglobulin G |
IgA | Immunoglobulin A |
ml | Milliliter |
ml | Microliter |
mg | Microgram |
SNab | Serum-neutralizing antibody titers |
iSpore | Inactivated or killed spore |
PD | Post-dose (after dosing or immunization) |
CTB | Cholera toxin B subunit |
NALT | Nasopharynx-associated lymphoid tissue |
P.S.I. | Pounds per square inch |
References
- Schaerlaekens, S.; Jacobs, L.; Stobbelaar, K.; Cos, P.; Delputte, P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines 2024, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Joyce, C.; Scallan, C.D.; Mateo, R.; Belshe, R.B.; Tucker, S.N.; Moore, A.C. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats. Vaccine 2018, 36, 4265–4277. [Google Scholar] [PubMed]
- Marzo, E.; Montbrau, C.; Moreno, M.C.; Roca, M.; Sitja, M.; March, R.; Gow, S.; Lacoste, S.; Ellis, J. NASYM, a live intranasal vaccine, protects young calves from bovine respiratory syncytial virus in the presence of maternal antibodies. Vet. Rec. 2021, 188, e83. [Google Scholar]
- Ivanov, V.; Oomens, A.G.P.; Papin, J.F.; Staats, R.; Reuter, D.N.; Yu, Z.; Piedra, P.A.; Wellliver, R.C., Sr. Intranasal and intrapulmonary vaccination with an M protein-deficient respiratory syncytial virus (RSV) vaccine improves clinical signs and reduces viral replication in infant baboons after an RSV challenge infection. Vaccine 2021, 39, 4063–4071. [Google Scholar]
- Lindell, D.M.; Morris, S.B.; White, M.P.; Kallal, L.E.; Lundy, P.K.; Hamouda, T.; Baker, J.R., Jr.; Lukacs, N.W. A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS ONE 2011, 6, e21823. [Google Scholar]
- Chai, P.; Shi, Y.; Yu, J.; Liu, X.; Yang, M.; Li, D.; Li, K.; Li, S.; Kong, X.; Zhang, Q.; et al. An oral vaccine based on the Ad5 vector with a double-stranded RNA adjuvant protects mice against respiratory syncytial virus. Int. Immunopharmacol. 2025, 146, 113970. [Google Scholar]
- Lavelle, E.C.; Ward, R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar]
- Ho, Y.T.; Hynes, D.; Martina, Y.; Love, B.; Horwell, E.; Xu, R.; Kadioglu, A.; Vo, L.; Hong, H.A.; Nguyen, L.H.; et al. Intranasal administration of DSM 32444 Bacillus subtilis spores: Safety and tolerability. J. Med. Microbiol. 2024, 73, 001845. [Google Scholar]
- Saggese, A.; Baccigalupi, L.; Donadio, G.; Ricca, E.; Isticato, R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int. J. Mol. Sci. 2023, 24, 10880. [Google Scholar] [CrossRef]
- Duc, L.H.; Cutting, S.M. Bacterial spores as heat stable vaccine vehicles. Expert. Opin. Biol. Ther. 2003, 3, 1263–1270. [Google Scholar]
- Lee, S.; Belitsky, B.R.; Brinker, J.P.; Kerstein, K.O.; Brown, D.W.; Clements, J.D.; Keusch, G.T.; Tzipori, S.; Sonenshein, A.L.; Herrmann, J.E. Development of a Bacillus subtilis-based rotavirus vaccine. Clin. Vaccine Immunol. 2010, 17, 1647–1655. [Google Scholar]
- Chen, B.; Yang, Y.; Wang, Z.; Dai, X.; Cao, Y.; Zhang, M.; Zhang, D.; Ni, X.; Zeng, Y.; Pan, K. Surface Display of Duck Hepatitis A Virus Type 1 VP1 Protein on Bacillus subtilis Spores Elicits Specific Systemic and Mucosal Immune Responses on Mice. Probiotics Antimicro. Prot. 2024. [Google Scholar]
- Hoang, T.H.; Hong, H.A.; Clark, G.C.; Titball, R.W.; Cutting, S.M. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect. Immun. 2008, 76, 5257–5265. [Google Scholar] [PubMed]
- Amuguni, J.H.; Lee, S.; Kerstein, K.O.; Brown, D.W.; Belitsky, B.R.; Herrmann, J.E.; Keusch, G.T.; Sonenshein, A.L.; Tzipori, S. Sublingually administered Bacillus subtilis cells expressing tetanus toxin C fragment induce protective systemic and mucosal antibodies against tetanus toxin in mice. Vaccine 2011, 29, 4778–4784. [Google Scholar] [PubMed]
- Potocki, W.; Negri, A.; Peszynska-Sularz, G.; Hinc, K.; Obuchowski, M.; Iwanicki, A. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb. Cell Fact. 2017, 16, 151. [Google Scholar]
- Lee, J.E.; Kye, Y.C.; Park, S.M.; Shim, B.S.; Yoo, S.; Hwang, E.; Kim, H.; Kim, S.J.; Han, S.H.; Park, T.S.; et al. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet. Res. 2020, 51, 68. [Google Scholar]
- Duc, L.H.; Hong, H.A.; Fairweather, N.; Ricca, E.; Cutting, S.M. Bacterial spores as vaccine vehicles. Infect. Immun. 2003, 71, 2810–2818. [Google Scholar]
- Prince, G.A.; Jenson, A.B.; Hemming, V.G.; Murphy, B.R.; Walsh, E.E.; Horswood, R.L.; Chanock, R.M. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactiva ted virus. J. Virol. 1986, 57, 721–728. [Google Scholar]
- Murphy, B.R.; Prince, G.A.; Collins, P.L.; Van Wyke Coelingh, K.; Olmsted, R.A.; Spriggs, M.K.; Parrott, R.H.; Kim, H.W.; Brandt, C.D.; Chanock, R.M. Current approaches to the development of vaccines effective against parainfluenza and respiratory syncytial viruses. Virus Res. 1988, 11, 1–15. [Google Scholar]
- Byrd, L.G.; Prince, G.A. Animal models of respiratory syncytial virus infection. Clin. Infect. Dis. 1997, 25, 1363–1368. [Google Scholar]
- Oxman, M.N.; Levin, M.J.; Johnson, G.R.; Schmader, K.E.; Straus, S.E.; Gelb, L.D.; Arbeit, R.D.; Simberkoff, M.S.; Gershon, A.A.; Davis, L.E.; et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 2005, 352, 2271–2284. [Google Scholar] [PubMed]
- Boukhvalova, M.S.; Prince, G.A.; Soroush, L.; Harrigan, D.C.; Vogel, S.N.; Blanco, J.C. The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine 2006, 24, 5027–5035. [Google Scholar] [PubMed]
- Boukhvalova, M.S.; Prince, G.A.; Blanco, J.C. The cotton rat model of respiratory viral infections. Biologicals 2009, 37, 152–159. [Google Scholar] [PubMed]
- Bouvier, N.M.; Lowen, A.C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses 2010, 2, 1530–1563. [Google Scholar] [CrossRef]
- Boukhvalova, M.S.; Blanco, J.C. The cotton rat Sigmodon hispidus model of respiratory syncytial virus infection. Curr. Top. Microbiol. Immunol. 2013, 372, 347–358. [Google Scholar]
- Rajagopala, S.V.; Singh, H.; Patel, M.C.; Wang, W.; Tan, Y.; Shilts, M.H.; Hartert, T.V.; Boukhvalova, M.S.; Blanco, J.C.G.; Das, S.R. Cotton rat lung transcriptome reveals host immune response to Respiratory Syncytial Virus infection. Sci. Rep. 2018, 8, 11318. [Google Scholar]
- Cullen, L.M.; Boukhvalova, M.S.; Blanco, J.C.G.; Morrison, T.G. Comparisons of Antibody Populations in Different Pre-Fusion F VLP-Immunized Cotton Rat Dams and Their Offspring. Vaccines 2020, 8, 133. [Google Scholar] [CrossRef]
- Kokai-Kun, J.F. The Cotton Rat as a Model for Staphylococcus aureus nasal colonization in humans: Cotton rat S. aureus nasal colonization model. Methods Mol. Biol. 2008, 431, 241–254. [Google Scholar]
- Citron, M.P.; Patel, M.; Purcell, M.; Lin, S.A.; Rubins, D.J.; McQuade, P.; Callahan, C.; Gleason, A.; Petrescu, I.; Knapp, W.; et al. A novel method for strict intranasal delivery of non-replicating RSV vaccines in cotton rats and non-human primates. Vaccine 2018, 36, 2876–2885. [Google Scholar]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar]
- Hageman, J.H.; Shankweiler, G.W.; Wall, P.R.; Franich, K.; McCowan, G.W.; Cauble, S.M.; Grajeda, J.; Quinones, C. Single, chemically defined sporulation medium for Bacillus subtilis: Growth, sporulation, and extracellular protease production. J. Bacteriol. 1984, 160, 438–441. [Google Scholar] [PubMed]
- Chen, Z.M.; Li, Q.; Liu, H.M.; Yu, N.; Xie, T.J.; Yang, M.Y.; Shen, P.; Chen, X.D. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Appl. Microbiol. Biotechnol. 2010, 85, 1353–1360. [Google Scholar]
- Tavares, M.B.; Souza, R.D.; Luiz, W.B.; Cavalcante, R.C.; Casaroli, C.; Martins, E.G.; Ferreira, R.C.; Ferreira, L.C. Bacillus subtilis endospores at high purity and recovery yields: Optimization of growth conditions and purification method. Curr. Microbiol. 2013, 66, 279–285. [Google Scholar] [PubMed]
- Cho, S.H.; Oh, S.Y.; Zhu, Z.; Lee, J.; Lane, A.P. Spontaneous eosinophilic nasal inflammation in a genetically-mutant mouse: Comparative study with an allergic inflammation model. PLoS ONE 2012, 7, e35114. [Google Scholar]
- Trinite, B.; Durr, E.; Pons-Grifols, A.; O’Donnell, G.; Aguilar-Gurrieri, C.; Rodriguez, S.; Urrea, V.; Tarres, F.; Mane, J.; Ortiz, R.; et al. VLPs generated by the fusion of RSV-F or hMPV-F glycoprotein to HIV-Gag show improved immunogenicity and neutralizing response in mice. Vaccine 2024, 42, 3474–3485. [Google Scholar]
- Yang, K.; Whalen, B.J.; Tirabassi, R.S.; Selin, L.K.; Levchenko, T.S.; Torchilin, V.P.; Kislauskis, E.H.; Guberski, D.L. A DNA vaccine prime followed by a liposome-encapsulated protein boost confers enhanced mucosal immune responses and protection. J. Immunol. 2008, 180, 6159–6167. [Google Scholar]
- Feltquate, D.M.; Heaney, S.; Webster, R.G.; Robinson, H.L. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 1997, 158, 2278–2284. [Google Scholar]
- Ou, B.; Yang, Y.; Lv, H.; Lin, X.; Zhang, M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023, 37, 143–180. [Google Scholar] [PubMed]
- Aps, L.R.; Diniz, M.O.; Porchia, B.F.; Sales, N.S.; Moreno, A.C.; Ferreira, L.C. Bacillus subtilis spores as adjuvants for DNA vaccines. Vaccine 2015, 33, 2328–2334. [Google Scholar]
- Barnes, A.G.; Cerovic, V.; Hobson, P.S.; Klavinskis, L.S. Bacillus subtilis spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur. J. Immunol. 2007, 37, 1538–1547. [Google Scholar]
- de Souza, R.D.; Batista, M.T.; Luiz, W.B.; Cavalcante, R.C.; Amorim, J.H.; Bizerra, R.S.; Martins, E.G.; Ferreira, L.C. Bacillus subtilis spores as vaccine adjuvants: Further insights into the mechanisms of action. PLoS ONE 2014, 9, e87454. [Google Scholar]
- Huang, J.M.; La Ragione, R.M.; Nunez, A.; Cutting, S.M. Immunostimulatory activity of Bacillus spores. FEMS Immunol. Med. Microbiol. 2008, 53, 195–203. [Google Scholar]
- Nguyen, V.A.; Huynh, H.A.; Hoang, T.V.; Ninh, N.T.; Pham, A.T.; Nguyen, H.A.; Phan, T.N.; Cutting, S.M. Killed Bacillus subtilis spores expressing streptavidin: A novel carrier of drugs to target cancer cells. J. Drug Target. 2013, 21, 528–541. [Google Scholar]
- Permpoonpattana, P.; Hong, H.A.; Phetcharaburanin, J.; Huang, J.M.; Cook, J.; Fairweather, N.F.; Cutting, S.M. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect. Immun. 2011, 79, 2295–2302. [Google Scholar]
- Oggioni, M.R.; Ciabattini, A.; Cuppone, A.M.; Pozzi, G. Bacillus spores for vaccine delivery. Vaccine 2003, 21 (Suppl. S2), S96–S101. [Google Scholar]
- Yu, J.; Chen, T.; Xie, Z.; Liang, P.; Qu, H.; Shang, M.; Mao, Q.; Ning, D.; Tang, Z.; Shi, M.; et al. Oral delivery of Bacillus subtilis spore expressing enolase of Clonorchis sinensis in rat model: Induce systemic and local mucosal immune responses and has no side effect on liver function. Parasitol. Res. 2015, 114, 2499–2505. [Google Scholar]
- Ricca, E.; Baccigalupi, L.; Cangiano, G.; De Felice, M.; Isticato, R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb. Cell Fact. 2014, 13, 115. [Google Scholar] [PubMed]
- Tavares Batista, M.; Souza, R.D.; Paccez, J.D.; Luiz, W.B.; Ferreira, E.L.; Cavalcante, R.C.; Ferreira, R.C.; Ferreira, L.C. Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect. Immun. 2014, 82, 1414–1423. [Google Scholar] [PubMed]
- Uyen, N.Q.; Hong, H.A.; Cutting, S.M. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 2007, 25, 356–365. [Google Scholar]
- Walsh, E.E.; Falsey, A.R.; Scott, D.A.; Gurtman, A.; Zareba, A.M.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Radley, D.; et al. A Randomized Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine. J. Infect. Dis. 2022, 225, 1357–1366. [Google Scholar]
- Baber, J.; Arya, M.; Moodley, Y.; Jaques, A.; Jiang, Q.; Swanson, K.A.; Cooper, D.; Maddur, M.S.; Loschko, J.; Gurtman, A.; et al. A Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine With and Without Adjuvant in Healthy Older Adults. J. Infect. Dis. 2022, 226, 2054–2063. [Google Scholar] [PubMed]
- Awar, M.; Mylonakis, E. In older adults, an AS01(E)-adjuvanted RSVPreF3 OA vaccine reduced RSV-related lower respiratory tract disease. Ann. Intern. Med. 2023, 176, JC62. [Google Scholar]
- Docando, F.; Nunez-Ortiz, N.; Serra, C.R.; Arense, P.; Enes, P.; Oliva-Teles, A.; Diaz-Rosales, P.; Tafalla, C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immunol. 2022, 124, 142–155. [Google Scholar] [PubMed]
- Amuguni, H.; Lee, S.; Kerstein, K.; Brown, D.; Belitsky, B.; Herrmann, J.; Keusch, G.; Sonenshein, A.; Tzipori, S. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect. 2012, 14, 447–456. [Google Scholar]
- Hinc, K.; Stasilojc, M.; Piatek, I.; Peszynska-Sularz, G.; Isticato, R.; Ricca, E.; Obuchowski, M.; Iwanicki, A. Mucosal adjuvant activity of IL-2 presenting spores of Bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS ONE 2014, 9, e95187. [Google Scholar]
- Huang, J.M.; Hong, H.A.; Van Tong, H.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 2010, 28, 1021–1030. [Google Scholar]
- Pan, J.G.; Choi, S.K.; Jung, H.C.; Kim, E.J. Display of native proteins on Bacillus subtilis spores. FEMS Microbiol. Lett. 2014, 358, 209–217. [Google Scholar]
- Isticato, R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Isticato, R.; Cangiano, G.; Tran, H.T.; Ciabattini, A.; Medaglini, D.; Oggioni, M.R.; De Felice, M.; Pozzi, G.; Ricca, E. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 2001, 183, 6294–6301. [Google Scholar]
- Cutting, S.M.; Hong, H.A.; Baccigalupi, L.; Ricca, E. Oral vaccine delivery by recombinant spore probiotics. Int. Rev. Immunol. 2009, 28, 487–505. [Google Scholar]
- Song, M.; Hong, H.A.; Huang, J.M.; Colenutt, C.; Khang, D.D.; Nguyen, T.V.; Park, S.M.; Shim, B.S.; Song, H.H.; Cheon, I.S.; et al. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012, 30, 3266–3277. [Google Scholar] [PubMed]
- Xu, H.; Ruwona, T.B.; Thakkar, S.G.; Chen, Y.; Zeng, M.; Cui, Z. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum. Vaccin. Immunother. 2017, 13, 2688–2694. [Google Scholar]
- Lund, F.E.; Randall, T.D. Scent of a vaccine. Science 2021, 373, 397–399. [Google Scholar]
- Li, P.; Li, Y.; Shao, G.; Yu, Q.; Yang, Q. Comparison of immune responses to intranasal and intrapulmonary vaccinations with the attenuated Mycoplasma hyopneumoniae 168 strain in pigs. J. Vet. Med. Sci. 2015, 77, 519–525. [Google Scholar]
- Zaman, M.; Chandrudu, S.; Toth, I. Strategies for intranasal delivery of vaccines. Drug Deliv. Transl. Res. 2013, 3, 100–109. [Google Scholar] [PubMed]
- Casadei, E.; Salinas, I. Comparative models for human nasal infections and immunity. Dev. Comp. Immunol. 2019, 92, 212–222. [Google Scholar] [PubMed]
- Chuluunbaatar, T.; Ichii, O.; Nakamura, T.; Irie, T.; Namba, T.; Islam, M.R.; Otani, Y.; Masum, M.A.; Okamatsu-Ogura, Y.; Elewa, Y.H.A.; et al. Unique Running Pattern and Mucosal Morphology Found in the Colon of Cotton Rats. Front. Physiol. 2020, 11, 587214. [Google Scholar]
- Burian, M.; Rautenberg, M.; Kohler, T.; Fritz, M.; Krismer, B.; Unger, C.; Hoffmann, W.H.; Peschel, A.; Wolz, C.; Goerke, C. Temporal expression of adhesion factors and activity of global regulators during establishment of Staphylococcus aureus nasal colonization. J. Infect. Dis. 2010, 201, 1414–1421. [Google Scholar]
- Pletneva, L.M.; Haller, O.; Porter, D.D.; Prince, G.A.; Blanco, J.C.G. Induction of type I interferons and interferon-inducible Mx genes during respiratory syncytial virus infection and reinfection in cotton rats. J. Gen. Virol. 2008, 89, 261–270. [Google Scholar]
- Southam, D.S.; Dolovich, M.; O’Byrne, P.M.; Inman, M.D. Distribution of intranasal instillations in mice: Effects of volume, time, body position, and anesthesia. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 282, L833–L839. [Google Scholar]
- Cai, L.; Xu, H.; Cui, Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022, 23, 191. [Google Scholar] [PubMed]
- Visweswaraiah, A.; Novotny, L.A.; Hjemdahl-Monsen, E.J.; Bakaletz, L.O.; Thanavala, Y. Tracking the tissue distribution of marker dye following intranasal delivery in mice and chinchillas: A multifactorial analysis of parameters affecting nasal retention. Vaccine 2002, 20, 3209–3220. [Google Scholar] [PubMed]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, 481–502. [Google Scholar] [PubMed]
Group | Protein | Adjuvant | ROA |
---|---|---|---|
1 | RSV Pre F (2 mcg) | None | IN |
2 | RSV Pre F (2 mcg) | AdjuPhos | IN |
3 | RSV Pre F (2 mcg) | Inactivated spore (iSpore) | IN |
4 | RSV Pre F (2 mcg) | Live Spore | IN |
5 | RSV Pre F (2 mcg) | Inactivated spore (iSpore) and AdjuPhos | IN |
6 | RSV Pre F (2 mcg) | Live spore and AdjuPhos | IN |
7 | RSV Pre F (2 mcg) | AdjuPhos | IM |
8 | RSV Pre F (2 mcg) | Inactivated spore (iSpore) | IM |
9 | RSV Pre F (2 mcg) | Live Spore | IM |
10 | RSV Pre F (2 mcg) | AdjuPhos | PO |
11 | RSV Pre F (2 mcg) | Inactivated spore (iSpore) | PO |
12 | RSV Pre F (2 mcg) | Live Spore | PO |
13 | RSV Pre F (2 mcg) | Live spore and AdjuPhos | PO |
Group | Adjuvant | ROA | IgG Binding ELISA (GMT(95% CI = U, L)) | SNA | IgA | Mean IgG2a/IgG1 |
---|---|---|---|---|---|---|
1 | None | IN | 1 × 103 [6 × 104, 3 × 10] | 5 × 10 [6 × 102, 4] | 2 | |
2 | AdjuPhos | IN | 3 × 105 [5 × 105, 1 × 105] | 3 × 103 [8 × 103, 1 × 103] | 13 | 0.0158 |
3 | Inactivated spore (iSpore) | IN | 3 × 105 [1 × 106, 1 × 105] | 3 × 103 [7 × 103, 1 × 103] | 13 | 0.0593 |
4 | Live Spore | IN | 3 × 105 [2 × 106, 4 × 104] | 5 × 103 [3 × 104, 9 × 102] | 32 | 0.0752 |
5 | Inactivated spore (iSpore) and AdjuPhos | IN | 1 × 106 (2 × 106, 6 × 105) | 2 × 104 (3 × 104, 9 × 103) | 22 | 0.0073 |
6 | Live spore and AdjuPhos | IN | 6 × 105 [1 × 106, 2 × 105] | 2 × 104 [7 × 104, 4 × 103] | 23 | 0.0223 |
7 | AdjuPhos | IM | 1 × 106 [3 × 106, 7 × 105] | 2 × 104 [6 × 104, 7 × 103] | 2 | 0.0348 |
8 | Inactivated spore (iSpore) | IM | 1 × 106 [2 × 106, 6 × 105] | 3 × 104 [2 × 105, 6 ×103] | 2 | 0.0097 |
9 | Live Spore | IM | 1 × 106 [2 × 106, 8 × 105] | 3 × 104 [2 × 105, 6 × 103] | 2 | 0.0157 |
10 | AdjuPhos | PO | 3 × 10 [3 × 10, 30] | 1 × 10 [2 × 10, 9] | ND | ND |
11 | Inactivated spore (iSpore) | PO | 3 × 10 [3 × 10, 30] | 2 × 10 [20, 10] | ND | ND |
12 | Live Spore | PO | 3 × 10 [30, 30] | 1 × 10 [20, 9] | ND | ND |
13 | Live spore and AdjuPhos | PO | 3 × 10 [30, 30] | 1 × 10 [10, 10] | ND | ND |
Group | Adjuvant | ROA | |
---|---|---|---|
1 | None | None | - |
2 | RSV A2 105.5 pfu | None | IN |
3 | Inactivated RSV (0.2 ug equivalent) | None | IN |
4 | Inactivated RSV (0.2 ug equivalent) | iSpores 1 × 108 CFU | IN |
5 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN |
6 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN |
7 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN |
8 | RSV Pre F (2 mcg) | Live spores 1 × 108 CFU | IN |
9 | RSV Pre F (2 mcg) | AdjuPhos | IN |
10 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IM |
11 | RSV Pre F (2 mcg) | AdjuPhos | IM |
Grp | Vaccine | Adjuvant | ROA | IgG Binding ELISA (GMT) | SNA | Lung Virus Reduction Log10 | Nose Virus Reduction Log10 |
---|---|---|---|---|---|---|---|
1 | None | None | NA | 80 | 10 | - | - |
2 | RSV A2 105.5 pfu | None | IN | 1 × 105 | 30 | 2.6 | 3.3 |
3 | Inactivated RSV (0.2 ug equivalent) | None | IN | 1 × 103 | 10 | >0.1 | >0.2 |
4 | Inactivated RSV (0.2 ug equivalent) | iSpores 1 × 108 CFU | IN | 30 | 10 | 0 | >0.2 |
5 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN | 30 | 10 | 0 | >0.2 |
6 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN | 30 | 10 | 0 | >0.2 |
7 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IN | 50 | 10 | 0 | >0.2 |
8 | RSV Pre F (2 mcg) | Live spores 1 × 108 CFU | IN | 50 | 10 | >0.1 | >0.2 |
9 | RSV Pre F (2 mcg) | AdjuPhos | IN | 50 | 10 | 0 | >0.2 |
10 | RSV Pre F (2 mcg) | iSpores 1 × 108 CFU | IM | 5 × 106 | 5 × 102 | 2.6 | 3 |
11 | RSV Pre F (2 mcg) | AdjuPhos | IM | 9 × 106 | 1 × 103 | 2.6 | 3 |
Vaccine Volume | IgG Binding ELISA (GMT; [95% CI = U, L]) | SNA |
---|---|---|
0.01 | 8 × 10 [3 × 103, 2] | 10 |
0.05 | 4 × 105 [4 × 106, 4 ×104] | 4 × 102 |
0.1 | 2 × 104 [6 × 106, 50] | 1 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Wang, H.; Callahan, C.; O’Donnell, G.; Rodriguez, S.; Staupe, R.P.; Balibar, C.J.; Citron, M.P. Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines 2025, 13, 1112. https://doi.org/10.3390/biomedicines13051112
Xiao J, Wang H, Callahan C, O’Donnell G, Rodriguez S, Staupe RP, Balibar CJ, Citron MP. Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines. 2025; 13(5):1112. https://doi.org/10.3390/biomedicines13051112
Chicago/Turabian StyleXiao, Jianying, Hao Wang, Cheryl Callahan, Gregory O’Donnell, Silveria Rodriguez, Ryan P. Staupe, Carl J. Balibar, and Michael P. Citron. 2025. "Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models" Biomedicines 13, no. 5: 1112. https://doi.org/10.3390/biomedicines13051112
APA StyleXiao, J., Wang, H., Callahan, C., O’Donnell, G., Rodriguez, S., Staupe, R. P., Balibar, C. J., & Citron, M. P. (2025). Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines, 13(5), 1112. https://doi.org/10.3390/biomedicines13051112