Ambient Temperature and the Frequency of Subsequent Heart Failure Decompensations in an Emergency Department
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Kurmani, S.; Squire, I. Acute Heart Failure: Definition, Classification and Epidemiology. Curr. Heart Fail. Rep. 2017, 14, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, B.; Willard, J.J.; Lovato, L.C.; Rocco, M.V.; Lewis, C.E.; Oparil, S.; Cushman, W.C.; Bates, J.T.; Bello, N.A.; Aurigemma, G.; et al. Incidence and Outcomes of Acute Heart Failure with Preserved Versus Reduced Ejection Fraction in SPRINT. Circ. Heart Fail. 2021, 14, e008322. [Google Scholar] [CrossRef]
- Njoroge, J.N.; Teerlink, J.R. Pathophysiology and Therapeutic Approaches to Acute Decompensated Heart Failure. Circ. Res. 2021, 128, 1468–1486. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar]
- Juneau, M.; Larivée, L.; White, M. Cold temperature impairs maximal exercise performance in patients with heart failure: Attenuation by acute ACE inhibitor therapy. Can. J. Cardiol. 2002, 18, 981–986. [Google Scholar]
- Miró, Ò.; Benito-Lozano, M.; Lopez-Ayala, P.; Rodríguez, S.; Llorens, P.; Yufera-Sanchez, A.; Jacob, J.; Traveria, L.; Strebel, I.; Gil, V.; et al. Influence of Meteorological Temperature and Pressure on the Severity of Heart Failure Decompensations. J. Gen. Intern. Med. 2023, 38, 600–609. [Google Scholar] [CrossRef]
- Singh, B.; Mittal, A.; Goyal, A.; Singh, G.; Sondh, M.; Chauhan, R.; Tandon, R.; Chhabra, S.T.; Aslam, N.; Mohan, B.; et al. Effect of environment and season on acute decompensated heart failure: Data from low-to middle-income country. Indian Heart J. 2022, 74, 406–413. [Google Scholar] [CrossRef]
- Nganou-Gnindjio, C.N.; Awah Epoupa, R.A.; Wafeu Sadeu, G.; Tchapmi Njeunje, D.P.; Endomba Angong, F.T.; Menanga, A.P. Seasonal variation of decompensated heart failure admissions and mortality rates in sub-Saharan Africa, Cameroon. Ann. Cardiol. D’angéiologie 2021, 70, 148–152. [Google Scholar] [CrossRef]
- Matsuda, H.; Kuragaichi, T.; Sato, Y. Investigating the seasonal variation of heart failure hospitalizations and in-hospital mortality risks in Japan using a nationwide database. J. Cardiol. 2024, 83, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Inglis, S.C.; Clark, R.A.; Shakib, S.; Wong, D.T.; Molaee, P.; Wilkinson, D.; Stewart, S. Hot summers and heart failure: Seasonal variations in morbidity and mortality in Australian heart failure patients (1994–2005). Eur. J. Heart Fail. 2008, 10, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.E.; Platt, R.; Déry, V.; Kapetanakis, C.; Lamontagne, D.; Ducharme, A.; Giannetti, N.; Frenette, M.; Beck, E.J. Seasonal congestive heart failure mortality and hospitalisation trends, Quebec 1990–1998. J. Epidemiol. Community Health 2004, 58, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Santner, V.; Riepl, H.S.; Posch, F.; Wallner, M.; Rainer, P.P.; Ablasser, K.; Kolesnik, E.; Hoeller, V.; Zach, D.; Schwegel, N.; et al. Non-eligibility for pivotal HFpEF/HFmrEF outcome trials and mortality in a contemporary heart failure cohort. Eur. J. Intern. Med. 2023, 118, 73–81. [Google Scholar] [CrossRef]
- Stewart, S.; McIntyre, K.; Capewell, S.; McMurray, J.J. Heart failure in a cold climate. Seasonal variation in heart failure-related morbidity and mortality. J. Am. Coll. Cardiol. 2002, 39, 760–766. [Google Scholar] [CrossRef]
- Boulay, F.; Berthier, F.; Sisteron, O.; Gendreike, Y.; Gibelin, P. Seasonal variation in chronic heart failure hospitalizations and mortality in France. Circulation 1999, 100, 280–286. [Google Scholar] [CrossRef]
- Lee, H.R., Jr. Climate Change 2023: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023. [Google Scholar]
- Abrignani, M.G.; Lombardo, A.; Braschi, A.; Renda, N.; Abrignani, V. Climatic influences on cardiovascular diseases. World J. Cardiol. 2022, 14, 152–169. [Google Scholar] [CrossRef]
- Cleland, J.G.; Swedberg, K.; Follath, F.; Komajda, M.; Cohen-Solal, A.; Aguilar, J.C.; Dietz, R.; Gavazzi, A.; Hobbs, R.; Korewicki, J.; et al. The EuroHeart Failure survey programme—A survey on the quality of care among patients with heart failure in Europe. Part 1: Patient characteristics and diagnosis. Eur. Heart J. 2003, 24, 442–463. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosinski, G.; Fetter, W. Dispersion of atmospheric air pollution in summer and winter season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef]
- Heidecker, B.; Pagnesi, M.; Luscher, T.F. Heart failure and respiratory tract infection: Cause and consequence of acute decompensation? Eur. J. Heart Fail. 2024, 26, 960–962. [Google Scholar] [CrossRef]
- Kienbacher, C.L.; Kaltenberger, R.; Schreiber, W.; Tscherny, K.; Fuhrmann, V.; Roth, D.; Herkner, H. Extreme weather conditions as a gender-specific risk factor for acute myocardial infarction. Am. J. Emerg. Med. 2021, 43, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Tei, C.; Horikiri, Y.; Park, J.C.; Jeong, J.W.; Chang, K.S.; Toyama, Y.; Tanaka, N. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation 1995, 91, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Sydykov, A.; Maripov, A.; Muratali Uulu, K.; Kushubakova, N.; Petrovic, A.; Vroom, C.; Cholponbaeva, M.; Duishobaev, M.; Satybaldyev, S.; Satieva, N.; et al. Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Alt. Med. Biol. 2019, 20, 375–382. [Google Scholar] [CrossRef]
- Hintsala, H.; Kandelberg, A.; Herzig, K.H.; Rintamäki, H.; Mäntysaari, M.; Rantala, A.; Antikainen, R.; Keinänen-Kiukaanniemi, S.; Jaakkola, J.J.; Ikäheimo, T.M.; et al. Central aortic blood pressure of hypertensive men during short-term cold exposure. Am. J. Hypertens. 2014, 27, 656–664. [Google Scholar] [CrossRef]
- Sun, Z. Cardiovascular responses to cold exposure. Front. Biosci. (Elite Ed.) 2010, 2, 495–503. [Google Scholar] [CrossRef]
- Izzo, J.L., Jr.; Larrabee, P.S.; Sander, E.; Lillis, L.M. Hemodynamics of seasonal adaptation. Am. J. Hypertens. 1990, 3, 405–407. [Google Scholar] [CrossRef]
- Hirai, M.; Kato, M.; Kinugasa, Y.; Sugihara, S.; Yanagihara, K.; Yamada, K.; Watanabe, T.; Yamamoto, K. Clinical scenario 1 is associated with winter onset of acute heart failure. Circ. J. 2015, 79, 129–135. [Google Scholar] [CrossRef]
- Kumar, M.; Thompson, P.D. A literature review of immersion pulmonary edema. Physician Sportsmed. 2019, 47, 148–151. [Google Scholar] [CrossRef]
n (% Miss) | Summary Estimate | |
---|---|---|
Age—yrs. | 1248 (0) | 80 (74–87) |
Females—n (%) | 1248 (0) | 625 (50) |
Clinical features of heart failure | ||
HFpEF (EF ≥ 50%)—n (%) | 866 (31) | 375 (43) |
HFmrEF (EF 41–49%)—n (%) | 866 (31) | 160 (19) |
HFrEF (EF ≤ 40%)—n (%) | 866 (31) | 331 (38) |
Hospitalization on admission—n (%) | 1248 (0) | 1045 (84) |
Intravenous diuretic treatment on admission—n (%) | 1246 (<1) | 578 (46) |
Heart failure signs and symptoms, n (%) | ||
Leg edema | 1248 (0) | 779 (62) |
Pleural effusion | 1248 (0) | 738 (59) |
Pulmonary congestion | 1248 (0) | 697 (56) |
Pulmonary rales | 1248 (0) | 510 (41) |
Dyspnea | 1248 (0) | 585 (47) |
Other signs | 1248 (0) | 180 (14) |
Laboratory parameters | ||
NT-proBNP—pg/ml | 1137 (9) | 4080 (1741–9410) |
eGFR—mL/min/1.73 m2 | 1245 (<1) | 48 (31–62) |
hsCRP—mg/L | 1096 (12) | 13 (5–41) |
Univariate Linear Regression | Multiple Linear Regression | |||||
---|---|---|---|---|---|---|
Beta-Coefficient | 95% CI | p-Value | Adjusted Beta-Coefficient | 95% CI | p-Value | |
Maximal daily temperature | −0.07 | −0.09, −0.05 | <0.001 | −0.07 | −0.10, −0.04 | <0.001 |
Day | ||||||
Monday | Reference | Reference | ||||
Tuesday | −1.40 | −2.2, −0.61 | <0.001 | −1.30 | −2.1, −0.56 | <0.001 |
Wednesday | −0.95 | −1.8, −0.14 | 0.022 | −0.88 | −1.7, −0.10 | 0.028 |
Thursday | −0.77 | −1.6, 0.04 | 0.064 | −0.75 | −1.5, 0.04 | 0.062 |
Friday | −0.58 | −1.4, 0.24 | 0.2 | −0.51 | −1.3, 0.27 | 0.2 |
Saturday | −1.80 | −2.6, −1.0 | <0.001 | −1.80 | −2.6, −1.0 | <0.001 |
Sunday | −1.10 | −1.9, −0.26 | 0.010 | −1.10 | −1.9, −0.30 | 0.007 |
Average humidity | 0.02 | 0.00, 0.03 | 0.060 | −0.01 | −0.03, 0.01 | 0.400 |
Daily precipitation | −0.02 | −0.07, 0.03 | 0.500 | 0.01 | −0.05, 0.07 | 0.700 |
Average wind speed | −0.10 | −0.18, −0.02 | 0.013 | −0.06 | −0.15, 0.03 | 0.200 |
Daily sunshine duration | −0.09 | −0.14, −0.04 | <0.001 | 0.01 | −0.07, 0.09 | 0.900 |
Average atmospheric pressure | −0.02 | −0.05, 0.01 | 0.300 | −0.02 | −0.05, 0.01 | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riepl, H.S.; Santner, V.; Schwegel, N.; Hoeller, V.; Wallner, M.; Kolesnik, E.; von Lewinski, D.; Ablasser, K.; Kreuzer, P.; Zorn-Pauly, K.; et al. Ambient Temperature and the Frequency of Subsequent Heart Failure Decompensations in an Emergency Department. Biomedicines 2025, 13, 1054. https://doi.org/10.3390/biomedicines13051054
Riepl HS, Santner V, Schwegel N, Hoeller V, Wallner M, Kolesnik E, von Lewinski D, Ablasser K, Kreuzer P, Zorn-Pauly K, et al. Ambient Temperature and the Frequency of Subsequent Heart Failure Decompensations in an Emergency Department. Biomedicines. 2025; 13(5):1054. https://doi.org/10.3390/biomedicines13051054
Chicago/Turabian StyleRiepl, Hermann Stefan, Viktoria Santner, Nora Schwegel, Viktoria Hoeller, Markus Wallner, Ewald Kolesnik, Dirk von Lewinski, Klemens Ablasser, Philipp Kreuzer, Klaus Zorn-Pauly, and et al. 2025. "Ambient Temperature and the Frequency of Subsequent Heart Failure Decompensations in an Emergency Department" Biomedicines 13, no. 5: 1054. https://doi.org/10.3390/biomedicines13051054
APA StyleRiepl, H. S., Santner, V., Schwegel, N., Hoeller, V., Wallner, M., Kolesnik, E., von Lewinski, D., Ablasser, K., Kreuzer, P., Zorn-Pauly, K., Aziz, F., Sourij, H., Zirlik, A., Platzer, D., & Verheyen, N. (2025). Ambient Temperature and the Frequency of Subsequent Heart Failure Decompensations in an Emergency Department. Biomedicines, 13(5), 1054. https://doi.org/10.3390/biomedicines13051054