Cryotherapy as a Surgical De-Escalation Strategy in Breast Cancer: Techniques, Complications, and Oncological Outcomes
Abstract
1. Introduction
2. Methods
| Study (Year) | Country | Study Design (n) | Key Inclusion Criteria | Tumor Size (cm) | Intervention | Cryotherapy Protocol | Follow-Up (mo) |
|---|---|---|---|---|---|---|---|
| Cazzato (2015) [15] | France | Prospective Cohort (n = 23) | Biopsy-proven BC; ≥0.5 cm tumor–skin distance | ≤3.0 | Percutaneous cryoablation | IceSphere/IceRod; 1–2 sessions | NR |
| Comen (2024) [10] | USA | Prospective Cohort (n = 5) | Early-stage IDC (T1/T2), no mets | ≥1.5 | Cryo + ipilimumab/nivolumab | Ice Pearl/Ice Force; 1 session | ~47 |
| Gajda (2014) [16] | Germany | Cohort (n = 53) | Biopsy-proven BC | ≤1.5 in 32 pts; >1.5 in 20 pts | Percutaneous cryoablation | Not reported; surgery after cryo | 1–35 days * |
| Habrawi (2021) [17] | USA | Prospective Cohort (n = 12) | Age ≥ 50, low-risk unifocal IDC | ~1.0 | Percutaneous cryoablation | Visica® 2; single session | NR |
| Kawamoto (2024) [18] | Japan | Prospective Cohort (n = 18) | Early-stage IDC | ~1.0 | Percutaneous cryoablation | ProSense; single session | ~Not reported |
| Khan (2023) [19] | USA | Cohort (n = 32) | Age ≥ 50, unifocal IDC, ≤T1/T2 | 0.87 ± 0.35 | Percutaneous cryoablation | Visica 2/ProSense; single session | 36 |
| Kwong (2023) [20] | Hong Kong | Prospective Cohort (n = 15) | Solitary T1 BC; ≥0.5 cm to skin | 1.3 by US | Percutaneous cryoablation | ProSense; single session | NR |
| Rzaca (2013) [21] | Poland | Case Series (n = 6) | Paget’s disease of nipple | NR | Percutaneous cryoablation | Kriopol K26-M1; 1–2 sessions | ~94 |
| Pusztaszeri (2007) [22] | Switzerland | Prospective Cohort (n = 11) | US-visible invasive BC | <2.0 | Percutaneous cryoablation | CRYO-HIT; single session | 4–5 wks * |
| Poplack (2015) [23] | Int’l | Prospective Cohort (n = 20) | IDC ≤ 1.5 cm | 1.0 (mean) | Percutaneous cryoablation | Visica/Visica 2; single session | ~1 |
| Pfleiderer (2002) [24] | Germany | Cohort (n = 15) | US-detectable IDC or ILC; ≥1 cm from skin | 2.1 ± 0.78 | Percutaneous cryoablation | CryoHit; single session | 1–5 days * |
| Manenti (2013) [25] | Italy | Retrospective Cohort (n = 80) | Subclinical IDC (≤2.0 cm) | ~1.6 | Percutaneous cryoablation | IceRod; single session | 18 |
| McArthur (2016) [26] | USA | Prospective Cohort (n = 19) | Early-stage BC, T ≥ 1.5 m | ≥1.5 | Cryo ± ipilimumab | IceRod/IceSeed; single session | ~31 |
| Beji (2017) [27] | France | Prospective Cohort (n = 17) | Metastatic IDC/ILC | 0.5–4.5 | Percutaneous cryoablation | IceSeed/IceRod; single session | 22 |
| Kinoshita (2017) [28] | Japan | Case Series (n = 4) | Small BC, “Luminal A” | ~1.13 | Percutaneous cryoablation | CryoHit; single session | 6 |
| Pfleiderer (2005) [29] | Germany | Prospective Cohort (n = 30) | Stage T1 BC ≤ 1.5 cm | 0.5–1.5 | Percutaneous cryoablation | 0.33 cm Galil cryoprobe; single session | NR |
| Vogl (2024) [30] | Germany | Retrospective Cohort (n = 45) | Unresectable BC ≤ 3 lesions | 1.6 ± 0.7 | Percutaneous cryoablation | IceCure ProSense; mostly single session | 24 |
| Navarro (2023) [31] | Spain | Prospective Cohort (n = 20) | Low-risk, unifocal IDC | ~0.9 | Percutaneous cryoablation | ICEfx Galil; single session | 25 days * |
| Oueidat (2024) [32] | USA | Retrospective Multi-Center (n = 112) | BC ineligible for trials | ~1.0 (0.7–1.8) | Percutaneous cryoablation | Various devices; single session | 24 |
| Adachi (2020) [33] | Japan | Retrospective Cohort (n = 193) | Early BC (IDC/DCIS) | 0.9 (0.25–1.5) | Percutaneous cryoablation | Visica I/IceSense3; single session | 12 |
| Simmons (2016) [34] | USA | Prospective Cohort (n = 86) | Unifocal IDC ≤ 25% in situ | 0.1–2.0 | Percutaneous cryoablation | Visica 2; sessions NR | ~1 |
| Niu (2013) [35] | China | Prospective Cohort (n = 120) | Metastatic BC | >5.0 cm used 3–4 probes | Cryo ± immuno/chemo | Endocare argon-based; single vs. multiple | 120 |
| Fine (2024) [36] | USA | Prospective Cohort (n = 194) | Early-stage, US-visible BC | 0.28–1.4 | Percutaneous cryoablation | ProSense; freeze cycles tailored to size | 54 |
| Pusceddu (2017) [37] | Italy | Prospective Cohort (n = 35) | BC with metastatic disease | 3.0 ± 1.4 | Percutaneous cryoablation | Galil (SeedNet); 1–2 sessions | 46 |
| Manenti (2011) [38] | USA | Prospective Cohort (n = 15) | DCIS ≤ 1.0 cm | 0.4–1.2 | Percutaneous cryoablation | IceRod, single session | 6 |
| Littrup (2009) [39] | USA | Prospective Cohort (n = 11) | Biopsy-proven BCIS | 1.7 ± 1.2 | Multi-probe cryoablation | Endocare cryoprobes; 1–2 sessions | 18 |
| Kawamoto (2021) [40] | Japan | Prospective Cohort (n = 8) | IDC ≤ 15 mm, HER2-, Ki-67 ≤ 20% | ~1.0 | US-guided cryoablation + RT and AI | ProSense 10 G; single session | 28 |
| Machida (2018) [41] | Japan | Retrospective Cohort (n = 54) | DCIS or IDC ≤ 1.5 cm | ~0.9 | Cryoablation only | Visica I or IceSense3; 1–2 sessions | 41 |
| Liang (2017) [42] | China | Prospective Cohort (n = 16) | HER2+ recurrent BC, KPS ≥ 60 | NR | Cryo + NK cells + Herceptin | Endocare argon-helium; single session | 9–12 |
| Sabel (2004) [43] | Multinational | Prospective Cohort (n = 29) | Solitary BC ≤ 2.0 cm | ~1.2 ± 0.5 | Cryoablation | Visica system; single session | NR |
| Navarro (2024) [44] | Spain | Prospective Cohort (n = 59) | Age ≥ 18, suitable for BCS, no requirement for primary systemic therapy, IDC ≤ 2.0 cm, ER+/HER2-, negative axillary status | 1.01 ± 0.36 | Cryoablation | ICEfx Galil; single session | 22 days * |
3. Results
3.1. Patient Selection and Tumor Characteristics
3.2. Technique and Protocol for Cryotherapy
3.3. Imaging Follow-Up and Response Assessment
3.4. Patient Satisfaction and Complications
3.5. Oncological Outcomes
3.6. Risk of Bias and Certainty of Evidence
4. Discussion
4.1. Practical Implications (Clinician Takeaways)
4.2. Strengths, Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef]
- Beltran-Bless, A.A.; Kacerovsky-Strobl, S.; Gnant, M. Explaining risks and benefits of loco-regional treatments to patients. Breast 2023, 71, 132–137. [Google Scholar] [CrossRef]
- Shah, D.R.; Green, S.; Elliot, A.; McGahan, J.P.; Khatri, V.P. Current oncologic applications of radiofrequency ablation therapies. World J. Gastrointest. Oncol. 2013, 5, 71–80. [Google Scholar] [CrossRef]
- Erinjeri, J.P.; Clark, T.W. Cryoablation: Mechanism of action and devices. J. Vasc. Interv. Radiol. 2010, 21 (Suppl. S8), S187–S191. [Google Scholar] [CrossRef] [PubMed]
- Graña-López, L.L.; Abelairas-López, L.L.; Fernández-Sobrado, I.I.; Verea-Varela, S.S.; Villares-Armas, Á.A. Acceptance and results of cryoablation for the treatment of early breast cancer in non-surgical patients. Br. J. Radiol. 2024, 97, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Sardela De Miranda, F.; Martinez-Marin, D.; Babcock, R.L.; Castro, M.; Boligala, G.P.; Khan, S.Y.; Furr, K.L.; Castro-Piedras, I.; Wagner, N.; Robison, D.E.; et al. Cryoablation of primary breast cancer tumors induces a systemic abscopal effect altering TIME (tumor immune microenvironment) in distant tumors. Front. Immunol. 2024, 15, 1498942. [Google Scholar] [CrossRef]
- Galati, F.; Pasculli, M.; Maroncelli, R.; Rizzo, V.; Moffa, G.; Cerbelli, B.; d’Amati, G.; Catalano, C.; Pediconi, F. Ultrasound-guided cryoablation of early breast cancer: Safety, technical efficacy, patients’ satisfaction, and outcome prediction with MRI/CEM: A pilot case-control study. Eur. Radiol. Exp. 2024, 8, 120. [Google Scholar] [CrossRef]
- Texas Tech University Health Sciences Center. Grouping Immune-Modulation with Cryoablation (LOGIC) for Breast Cancers (NCT05806385). 2023. Available online: https://clinicaltrials.gov/study/NCT05806385 (accessed on 16 July 2025).
- Comen, E.; Budhu, S.; Elhanati, Y.; Page, D.; Rasalan-Ho, T.; Ritter, E.; Wong, P.; Plitas, G.; Patil, S.; Brogi, E.; et al. Preoperative immune checkpoint inhibition and cryoablation in early-stage breast cancer. iScience 2024, 27, 108880. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W., Jr.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008, 336, 1106–1110, Erratum in BMJ 2008, 336, 0-b. https://doi.org/10.1136/bmj.a139. [Google Scholar] [CrossRef]
- Cazzato, R.L.; de Lara, C.T.; Buy, X.; Ferron, S.; Hurtevent, G.; Fournier, M.; Debled, M.; Palussière, J. Single-Centre Experience with Percutaneous Cryoablation of Breast Cancer in 23 Consecutive Non-surgical Patients. Cardiovasc. Interv. Radiol. 2015, 38, 1237–1243. [Google Scholar] [CrossRef]
- Gajda, M.R.; Mireskandari, M.; Baltzer, P.A.; Pfleiderer, S.O.; Camara, O.; Runnebaum, I.B.; Kaiser, W.A.; Petersen, I. Breast pathology after cryotherapy. Histological regression of breast cancer after cryotherapy. Pol. J. Pathol. 2014, 65, 20–28. [Google Scholar] [CrossRef]
- Habrawi, Z.; Melkus, M.W.; Khan, S.; Henderson, J.; Brandi, L.; Chu, V.; Layeequr Rahman, R. Cryoablation: A promising non-operative therapy for low-risk breast cancer. Am. J. Surg. 2021, 221, 127–133. [Google Scholar] [CrossRef]
- Kawamoto, H.; Tsugawa, K.; Furuya, Y.; Sakamaki, K.; Kakimoto, S.; Kitajima, M.; Takishita, M.N.; Tazo, M.; Nakano, M.H.; Kuroda, T.; et al. Percutaneous ultrasound-guided cryoablation for early-stage primary breast cancer: A follow-up study in Japan. Breast Cancer 2024, 31, 695–704. [Google Scholar] [CrossRef]
- Khan, S.Y.; Cole, J.; Habrawi, Z.; Melkus, M.W.; Layeequr Rahman, R. Cryoablation Allows the Ultimate De-escalation of Surgical Therapy for Select Breast Cancer Patients. Ann. Surg. Oncol. 2023, 30, 8398–8403. [Google Scholar] [CrossRef]
- Kwong, A.; Co, M.; Fukuma, E. Prospective Clinical Trial on Expanding Indications for Cryosurgery for Early Breast Cancers. Clin. Breast Cancer 2023, 23, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Rzaca, M.; Tarkowski, R. Paget’s disease of the nipple treated successfully with cryosurgery: A series of cases report. Cryobiology 2013, 67, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Pusztaszeri, M.; Vlastos, G.; Kinkel, K.; Pelte, M.F. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology 2007, 55, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Poplack, S.P.; Levine, G.M.; Henry, L.; Wells, W.A.; Heinemann, F.S.; Hanna, C.M.; Deneen, D.R.; Tosteson, T.D.; Barth, R.J., Jr. A Pilot Study of Ultrasound-Guided Cryoablation of Invasive Ductal Carcinomas up to 15 mm With MRI Follow-Up and Subsequent Surgical Resection. AJR Am. J. Roentgenol. 2015, 204, 1100–1108. [Google Scholar] [CrossRef]
- Pfleiderer, S.O.; Freesmeyer, M.G.; Marx, C.; Kühne-Heid, R.; Schneider, A.; Kaiser, W.A. Cryotherapy of breast cancer under ultrasound guidance: Initial results and limitations. Eur. Radiol. 2002, 12, 3009–3014. [Google Scholar] [CrossRef] [PubMed]
- Manenti, G.; Scarano, A.L.; Pistolese, C.A.; Perretta, T.; Bonanno, E.; Orlandi, A.; Simonetti, G. Subclinical Breast Cancer: Minimally Invasive Approaches. Our Experience with Percutaneous Radiofrequency Ablation vs. Cryotherapy. Breast Care 2013, 8, 356–360. [Google Scholar] [CrossRef]
- McArthur, H.L.; Diab, A.; Page, D.B.; Yuan, J.; Solomon, S.B.; Sacchini, V.; Comstock, C.; Durack, J.C.; Maybody, M.; Sung, J.; et al. A Pilot Study of Preoperative Single-Dose Ipilimumab and/or Cryoablation in Women with Early-Stage Breast Cancer with Comprehensive Immune Profiling. Clin. Cancer Res. 2016, 22, 5729–5737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beji, H.; Pilleul, F.; Picard, R.; Tredan, O.; Bouhamama, A.; Peix, M.; Mavrovi, E.; Mastier, C. Percutaneous cryoablation of breast tumours in patients with stable metastatic breast cancer: Safety, feasibility and efficacy. Br. J. Radiol. 2018, 91, 20170500. [Google Scholar] [CrossRef]
- Kinoshita, S.; Miyake, R.; Shimada, N.; Hirano, A.; Seki, Y.; Shimizu, K.; Harada, J.; Suzuki, M.; Kato, K.; Uchida, K.; et al. Initial experience with contrast-enhanced ultrasonography in follow-up assessment of small breast cancer treated by cryoablation. Australas. Med. J. 2017, 10, 599. [Google Scholar] [CrossRef]
- Pfleiderer, S.O.; Marx, C.; Camara, O.; Gajda, M.; Kaiser, W.A. Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancers. Investig. Radiol. 2005, 40, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.J.; Bielfeldt, J.; Kübler, U.; Adwan, H. CT-Guided Percutaneous Cryoablation of Breast Cancer: A Single-Center Experience. Cancers 2024, 16, 2373. [Google Scholar] [CrossRef] [PubMed]
- Roca Navarro, M.J.; Garrido Alonso, D.; Navarro Monforte, Y.; García Martínez, F.; Díaz de Bustamante Durbán, T.; Córdoba Chicote, M.V.; Oliver Goldaracena, J.M. Efficacy of ultrasound-guided cryoablation in treating low-risk breast cancer. Radiologia (Engl. Ed.) 2023, 65, 112–121. [Google Scholar] [CrossRef]
- Oueidat, K.; Baird, G.L.; Barclay-White, B.; Kozlowski, K.; Plaza, M.J.; Aoun, H.; Tomkovich, K.; Littrup, P.J.; Pigg, N.; Ward, R.C. Cryoablation of Primary Breast Cancer in Patients Ineligible for Clinical Trials: A Multiinstitutional Study. AJR Am. J. Roentgenol. 2024, 223, e2431392. [Google Scholar] [CrossRef]
- Adachi, T.; Machida, Y.; Fukuma, E.; Tateishi, U. Fluorodeoxyglucose positron emission tomography/computed tomography findings after percutaneous cryoablation of early breast cancer. Cancer Imaging 2020, 20, 49. [Google Scholar] [CrossRef]
- Simmons, R.M.; Ballman, K.V.; Cox, C.; Carp, N.; Sabol, J.; Hwang, R.F.; Attai, D.; Sabel, M.; Nathanson, D.; Kenler, A.; et al. A Phase II Trial Exploring the Success of Cryoablation Therapy in the Treatment of Invasive Breast Carcinoma: Results from ACOSOG (Alliance) Z1072. Ann. Surg. Oncol. 2016, 23, 2438–2445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, L.; Mu, F.; Zhang, C.; Li, Y.; Liu, W.; Jiang, F.; Li, L.; Liu, C.; Zeng, J.; Yao, F.; et al. Cryotherapy protocols for metastatic breast cancer after failure of radical surgery. Cryobiology 2013, 67, 17–22. [Google Scholar] [CrossRef]
- Fine, R.E.; Gilmore, R.C.; Tomkovich, K.R.; Dietz, J.R.; Berry, M.P.; Hernandez, L.E.; Columbus, K.S.; Seedman, S.A.; Fisher, C.S.; Han, L.K.; et al. Cryoablation Without Excision for Early-Stage Breast Cancer: ICE3 Trial 5-Year Follow-Up on Ipsilateral Breast Tumor Recurrence. Ann. Surg. Oncol. 2024, 31, 7273–7283. [Google Scholar] [CrossRef]
- Pusceddu, C.; Melis, L.; Ballicu, N.; Meloni, P.; Sanna, V.; Porcu, A.; Fancellu, A. Cryoablation of Primary Breast Cancer in Patients with Metastatic Disease: Considerations Arising from a Single-Centre Data Analysis. Biomed. Res. Int. 2017, 2017, 3839012. [Google Scholar] [CrossRef] [PubMed]
- Manenti, G.; Perretta, T.; Gaspari, E.; Pistolese, C.A.; Scarano, L.; Cossu, E.; Bonanno, E.; Buonomo, O.C.; Petrella, G.; Simonetti, G.; et al. Percutaneous local ablation of unifocal subclinical breast cancer: Clinical experience and preliminary results of cryotherapy. Eur. Radiol. 2011, 21, 2344–2353. [Google Scholar] [CrossRef]
- Littrup, P.J.; Jallad, B.; Chandiwala-Mody, P.; D’Agostini, M.; Adam, B.A.; Bouwman, D. Cryotherapy for breast cancer: A feasibility study without excision. J. Vasc. Interv. Radiol. 2009, 20, 1329–1341. [Google Scholar] [CrossRef]
- Kawamoto, H.; Tsugawa, K.; Takishita, M.; Tazo, M.; Nakano, M.H.; Tsuruga, T.; Oi, R.; Kuroda, T.; Yoshie, R.; Shimo, A.; et al. VAB and MRI following percutaneous ultra-sound guided cryoablation for primary early-stage breast cancer: A pilot study in Japan. J. Cancer Ther. 2021, 12, 563–576. [Google Scholar] [CrossRef]
- Machida, Y.; Shimauchi, A.; Igarashi, T.; Fukuma, E. MRI Findings After Cryoablation of Primary Breast Cancer Without Surgical Resection. Acad. Radiol. 2019, 26, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Niu, L.; Xu, K.; Wang, X.; Liang, Y.; Zhang, M.; Chen, J.; Lin, M. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancer. Mol. Immunol. 2017, 92, 45–53. [Google Scholar] [CrossRef]
- Sabel, M.S.; Kaufman, C.S.; Whitworth, P.; Chang, H.; Stocks, L.H.; Simmons, R.; Schultz, M. Cryoablation of early-stage breast cancer: Work-in-progress report of a multi-institutional trial. Ann. Surg. Oncol. 2004, 11, 542–549. [Google Scholar] [CrossRef]
- Roca Navarro, M.J.; Oliver Goldaracena, J.M.; Garrido Alonso, D.; Navarro Monforte, Y.; Díaz de Bustamante Durbán, T.; Córdoba Chicote, M.V.; García Martínez, F.; Martí Álvarez, C.; Yébenes Gregorio, L.; Montes Botella, J.L.; et al. Pre-surgical cryoablation in ≤ 2 cm ER + /HER2-tumors. Prognostic factors for the presence of residual invasive carcinoma. Breast Cancer Res. Treat. 2024, 206, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles’ heel? Cancer Lett. 2021, 497, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Won, K.A.; Spruck, C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020, 57, 1245–1261. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Hegg, R.; Chung, W.P.; Im, S.A.; Jacot, W.; Ganju, V.; Chiu, J.W.; Xu, B.; Hamilton, E.; Madhusudan, S.; et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. Lancet 2023, 401, 105–117. [Google Scholar] [CrossRef]
- Lee, J.; Park, Y.H. Trastuzumab deruxtecan for HER2+ advanced breast cancer. Future Oncol. 2022, 18, 7–19. [Google Scholar] [CrossRef]
- Kerridge, W.D.; Kryvenko, O.N.; Thompson, A.; Shah, B.A. Fat Necrosis of the Breast: A Pictorial Review of the Mammographic, Ultrasound, CT, and MRI Findings with Histopathologic Correlation. Radiol. Res. Pract. 2015, 2015, 613139. [Google Scholar] [CrossRef]
- Avril, S.; Muzic, R.F., Jr.; Plecha, D.; Traughber, B.J.; Vinayak, S.; Avril, N. 18F-FDG PET/CT for Monitoring of Treatment Response in Breast Cancer. J. Nucl. Med. 2016, 57 (Suppl. S1), 34S–39S. [Google Scholar] [CrossRef] [PubMed]
- Corines, M.J.; Sogani, J.; Hogan, M.P.; Mango, V.L.; Bryce, Y. The role of contrast-enhanced mammography after cryoablation of breast cancer. Am. J. Roentgenol. 2024, 222, e2330250. [Google Scholar] [CrossRef]


| Outcome | Certainty (GRADE) 1 | Key Findings | Reasons for Downgrading or Upgrading |
|---|---|---|---|
| Local Recurrence | ⊕⊕⊕O Moderate | Recurrence rates ranged from 0% to 68.8%; lower recurrence in small/unifocal tumors | High variability in outcomes; limited follow-up periods |
| Overall Survival | ⊕⊕⊕⊕ High (non-MBC) | Survival > 80% for early-stage cases; metastatic survival extended with multiple cryotherapy sessions | Robust data for early-stage; limited studies for metastases |
| Residual Disease | ⊕⊕⊕O Moderate | Higher residual disease with larger tumors or multifocal disease | Inconsistent reporting, heterogeneity in tumor characteristics |
| Patient Satisfaction | ⊕⊕OO Low | High satisfaction with cosmesis reported in limited studies | Underreporting in 80% of studies |
| Domain | Cryotherapy | Breast-Conserving Surgery + Radiotherapy (BCS + RT) | Endocrine Therapy Alone (Selected Luminal A) |
|---|---|---|---|
| Local control (5–10 yr) | Emerging evidence; limited long-term data. ICE3: 4% 5-yr IBTR in T1 tumors; risk increases with >1.5–2 cm, multifocality, lobular histology. | Gold standard. IBTR ~2–5% at 5 yr with modern RT; most reliable long-term durability. | Weakest local control. Historical series: IBTR 10–20% +, often unacceptable except in frail medically inoperable patients. |
| Complications | Mostly minor: bruising, hematoma, fat necrosis; rare skin burns. No general anesthesia. | Surgical + RT toxicities: wound complications, seroma, fibrosis, skin changes, fatigue. | Minimal procedural complications; endocrine side-effects (arthralgia, hot flashes, mood changes). |
| Cosmesis | Excellent; minimal scarring; no volume loss. | Good but variable; may see contour changes, nipple displacement, fibrosis, depending on RT. | Excellent; no procedural changes. |
| Quality of life (QoL) | High satisfaction in reported studies, but PRO data limited. | Good long-term QoL; transient RT-related fatigue. | Depends on endocrine tolerance; some discontinue due to side effects. |
| Surveillance burden | Higher early imaging burden (MRI/US/CEM) to detect residual disease. | Standard annual mammography. | Standard annual mammography. |
| Suitability criteria | Best for the following: small (<1.5–2 cm), unifocal, HR+, IDC, US-visible tumors; patients desiring non-surgical options. | Broadly suitable for most early-stage breast cancers. | Only for very frail or medically inoperable low-risk luminal A patients who decline/are unfit for surgery. |
| Retreatment options | Possible repeat cryo; conversion to surgery feasible. | Re-excision or mastectomy if recurrence. | Surgery if disease progresses with endocrine therapy. |
| Logistical/cost considerations | Outpatient; lower procedural cost compared to conventional surgery; advanced imaging follow-up may increase cost. | Highest resource burden (procedural cost, theater utilization). | Lowest procedural cost; long-term endocrine therapy monitoring needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.L.; Sule, A.A.; Lai, H.X.; Ng, Q.X.; Goh, S.S.N. Cryotherapy as a Surgical De-Escalation Strategy in Breast Cancer: Techniques, Complications, and Oncological Outcomes. Biomedicines 2025, 13, 2987. https://doi.org/10.3390/biomedicines13122987
Lee KL, Sule AA, Lai HX, Ng QX, Goh SSN. Cryotherapy as a Surgical De-Escalation Strategy in Breast Cancer: Techniques, Complications, and Oncological Outcomes. Biomedicines. 2025; 13(12):2987. https://doi.org/10.3390/biomedicines13122987
Chicago/Turabian StyleLee, Kai Lin, Ashita Ashish Sule, Hao Xing Lai, Qin Xiang Ng, and Serene Si Ning Goh. 2025. "Cryotherapy as a Surgical De-Escalation Strategy in Breast Cancer: Techniques, Complications, and Oncological Outcomes" Biomedicines 13, no. 12: 2987. https://doi.org/10.3390/biomedicines13122987
APA StyleLee, K. L., Sule, A. A., Lai, H. X., Ng, Q. X., & Goh, S. S. N. (2025). Cryotherapy as a Surgical De-Escalation Strategy in Breast Cancer: Techniques, Complications, and Oncological Outcomes. Biomedicines, 13(12), 2987. https://doi.org/10.3390/biomedicines13122987

