Anticancer Potential of Isoflavones: A Narrative Overview of Mechanistic Insights and Experimental Evidence from the Past Ten Years
Abstract
1. Introduction
2. Methodology of Literature Review
2.1. Type of Review
2.2. Search Strategy
2.3. Study Selection Process
- Described only in silico results;
- Did not directly assess anticancer activity;
- Examined compounds whose chemical structures had not been elucidated; or
- Were written in languages other than English.
2.4. Data Analysis
- Antitumor mechanisms;
- Gene and protein expression modulation;
- Effects on cell death pathways;
- Cell line models used;
- In vivo xenograft results (when available);
- Overall biological outcomes in relation to the methodological approaches.
3. Anticancer Activity of Isoflavones
3.1. Genistein
3.2. Daidzein
3.3. Equol
3.4. Wighteone
3.5. Durmillone
3.6. Neobavaisoflavone
3.7. Biochanin A
3.8. Isolupalbigenin
3.9. Derriscandenon
3.10. Alpinumisoflavone
3.11. Puerarin
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 143B | Osteosarcoma cell line |
| 2AA | 2 Aminoanthracene |
| 4NQO | 4-nitroquinoline oxide |
| 5-FU | 5-fluorouracil |
| 6-OHDA | 6-hydroxydopamine |
| A2780 | Ovarian carcinoma cell line |
| A431 | Skin epidermoid carcinoma cell line |
| A549 | Lung cancer cells |
| AGS | Gastric tumor cell line |
| Akt | Protein kinase B |
| AsPC-1 | Pancreatic adenocarcinoma cell line |
| Atg7 | Autophagy-related protein 7 |
| ATP7A | ATPase Copper Transporting Alpha |
| BAX | Bcl-2-associated X protein |
| Bax/BCL-2 | Bcl-2-associated X protein/B-cell lymphoma ratio |
| BAX/BCL-xL ratio | Bcl-2-associated X protein/B-cell lymphoma-extra-large ratio |
| BCL-2 | B-cell lymphoma 2 protein |
| BCL-xl | B-cell lymphoma-extra-large gene |
| BEAS-2B | Bronchial epithelial cell line |
| Bel-7402 | Hepatoma cell line |
| BGC-823 | Endocervical adenocarcinoma cell line |
| Ca | Calcium |
| CCR7 | C-C Motif Chemokine Receptor 7 |
| CDK1 | Cyclin-Dependent Kinase 1 |
| CDK2 | Cyclin-Dependent Kinase 2 |
| CEM/ADR5000 | Doxorubicin-resistant leukemia cells |
| CNE2 | Nasopharyngeal carcinoma cell line |
| CTNNBIP1 | β-catenin interacting protein 1 |
| CTR1 | Copper-Transporter 1 |
| CXCR4 | C-X-C chemokine receptor type 4 |
| CYP1A1 | Cytochrome P450 family 1 subfamily A member 1 |
| CYP24A1 | Cytochrome P450 family 24 subfamily A member 1 |
| D283 Med | Medulloblastoma cell line |
| DU145 | Prostate Cancer Cell Line |
| EGFR | Epidermal growth factor receptor |
| ER | Estrogen receptor |
| ERK | Extracellular Signal-Regulated Kinase |
| ER-α | Estrogen Receptor Alpha |
| ERα/β | Estrogen Receptor alpha and beta ratio |
| ERβ | Estrogen receptor beta |
| FAK | Focal Adhesion Kinase |
| GEN-Cu-GEN@FUA | Genistein complexed with copper and 5-fluorouracil |
| GLO I | Glyoxalase I |
| GSH | Glutathione |
| GSH- reduced | Glutathione (reduced) |
| GSSG | Glutathione (oxidized) |
| HaCaT | Epidermal cell line |
| HAG/src3-1 | Gallbladder carcinoma cell line expressing the oncogenic kinase gene |
| HB4a | Breast epithelial cell line |
| HeLa | Cervical adenocarcinoma cell line |
| HepG2 | Hepatocellular carcinoma cell line |
| HL60 | Promyelocytic leukemia cell line |
| HOS | Osteosarcoma cell line |
| HT-29 | Colon adenocarcinoma cell line |
| Huh7 | Hepatocellular cancer cell line |
| HUVECs | Umbilical vein endothelial cells |
| ICAM | Intercellular Adhesion Molecule 1 |
| IκBα | Inhibitor of nuclear factor kappa-B alpha |
| K562 | Leukemia cell line |
| K562/ADR | Adriamycin-resistant leukemia cell |
| KB | Epidermoid carcinoma |
| KYSE 30, 450, 510 | Esophageal cancer cell line |
| L929 | Mouse fibroblasts |
| LC3-II | Microtubule-associated protein 1 light chain 3 beta |
| LC3-II∕I | Microtubule-associated protein 1A/1B-light chain 3 form II and I ratio |
| LNCaP | Prostate cancer cell line |
| LO2 | Normal hepatic cell line |
| MCF-7 | Breast adenocarcinoma cell line |
| MDA-MB-231 | Breast cancer cell lines |
| MDA-MB-231/BCRP | Breast Cancer Resistance Protein-expressing MDA-MB-231 cell line |
| MG63 | Osteosarcoma cell line |
| MIA PaCa-2 | Pancreatic adenocarcinoma cell line |
| miR-155 | MicroRNA 155 |
| MMP-2 | Matrix Metalloproteinase-2 |
| MMP-9 | Matrix Metallopeptidase-9 |
| MNNG/HOS | Osteosarcoma cell line |
| mTOR | Mechanistic Target of Rapamycin |
| NALM-6 | Leukemia B cell line |
| NCOA4 | Nuclear Receptor Coactivator 4 |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| NHA | Normal astrocyte cell line |
| NSCLC | Non-small-cell lung cancer line |
| p21 | Cyclin-Dependent Kinase Inhibitor 1A |
| p27 | Cyclin-Dependent Kinase Inhibitor 1B |
| P53 | Tumor protein 53 |
| p65 | NF-κB-subunit proto-oncogene |
| p-Akt/Akt | Phosphorylated-Protein Kinase B/Total Protein Kinase B |
| PARP | Poly (ADP-ribose) polymerase |
| PC-3 | Prostate adenocarcinoma cell line |
| ROS | Reactive Oxygen Species |
| Src | Non-receptor protein tyrosine kinase |
| Se | Selenium |
| SiHa | Cervical carcinoma cell line |
| SIRT3 | Sirtuin 3 |
| SJSA-1 | Osteosarcoma cell line |
| SK-BR-3 | Breast Adenocarcinoma cell line |
| SK-OV-3 | Ovarian carcinoma cell line |
| SMMC-7721 | Hepatocarcinoma cell line |
| STAT3 | Signal transducer and activator of transcription 3 |
| STAT3/FAK | Signal transducer and activator of transcription 3 and focal adhesion kinase (FAK) signaling pathway |
| SW1783 | Astrocytoma cell line |
| SW480 | Colorectal adenocarcinoma cell line |
| U2OS | Osteosarcoma cell line |
| U2OS/MTX300 | Osteosarcoma cell line with methotrexate (MTX) resistance |
| U-87 | Glioblastoma cell line |
| U87MG.ΔEGFR | Glioblastoma cell line expressing EGFRvIII |
| UGT1A1 | UDP glucuronosyltransferase family 1 member A1 |
| VCAM | Vascular Cell Adhesion Molecule 1 |
| VEGF | Vascular Endothelial Growth Factor |
| v-src | Oncogenic kinase gene |
| Y79 | Retinoblastoma cell line |
| Zn | Zinc |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Zong, G.; Wang, X.; Yue, B.; Cheng, P.; Tao, R.; Li, X.; Wei, Z.; Lu, Y. Promises of natural products as clinical applications for cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2025, 1880, 189241. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 2007, 24, 1225–1244. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers 2022, 14, 6203. [Google Scholar] [CrossRef]
- Sun, C.; Gui, J.; Sheng, Y.; Huang, L.; Zhu, X.; Huang, K. Specific signaling pathways mediated programmed cell death in tumor microenvironment and target therapies. Discov. Oncol. 2025, 16, 776. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Edwards, J.M.; Raffauf, R.F.; Le Quesne, P.W. Quesne Antineoplastic Activity and Cytotoxicity of Flavones, Isoflavones, and Flaaaanones1. utc. 2025. Available online: https://pubs.acs.org/doi/abs/10.1021/np50001a002 (accessed on 2 December 2025).
- Martin, P.M.; Horwitz, K.B.; Ryan, D.S.; Mcguire, W.L. Phytoestrogen Interaction with Estrogen Receptors in Human Breast Cancer Cells. Endocrinology 1978, 103, 1860–1867. [Google Scholar] [CrossRef]
- Kaufman-Szymczyk, A.; Jalmuzna, J.; Lubecka-Gajewska, K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br. J. Pharmacol. 2024, 182, 2259–2286. [Google Scholar] [CrossRef]
- Lv, H.W.; Wang, Q.L.; Luo, M.; Zhu, M.D.; Liang, H.M.; Li, W.J.; Cai, H.; Zhou, Z.B.; Wang, H.; Tong, S.Q.; et al. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch. Pharmacal. Res. 2023, 46, 207–272. [Google Scholar] [CrossRef] [PubMed]
- Selepe, M.A. Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies. ChemMedChem 2024, 19, e202400420. [Google Scholar] [CrossRef]
- Ko, K.P. Isoflavones: Chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev. 2014, 15, 7001–7010. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, Y.; Shen, L.; Li, D.; Xu, J.; He, X.; Wang, Y. Isoflavones isolated from the fruits of Ficus altissima and their anti-proliferative activities. Fitoterapia 2024, 175, 105966. [Google Scholar] [CrossRef]
- Liu, Y.P.; Sun, L.L.; Zhang, X.L.; Niu, H.Y.; Pan, Z.H.; Fu, Y.H. Prenylated isoflavones with potential antiproliferative activities from Mappianthus iodoides. Nat. Prod. Res. 2020, 34, 2295–2300. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.-F.; Xu, J.; Kitdamrongtham, W.; Manosroi, A.; Manosroi, J.; Tokuda, H.; Abe, M.; Akihisa, T.; Feng, F. Potential cancer chemopreventive and anticancer constituents from the fruits of Ficus hispida L.f. (Moraceae). J. Ethnopharmacol. 2018, 214, 37–46. [Google Scholar] [CrossRef]
- Lee, W.; Song, G.; Bae, H. In vitro and in silico study of the synergistic anticancer effect of alpinumisoflavone with gemcitabine on pancreatic ductal adenocarcinoma through suppression of ribonucleotide reductase subunit-M1. Eur. J. Pharm. Sci. 2025, 204, 106969. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, R.; Ombra, M.N.; Gridelli, C.; Picariello, G.; Di Stasio, M.; Volpe, M.G. Isoflavone extracts enhance the effect of epidermal growth factor receptor inhibitors in NSCLC cell lines. Anticancer Res. 2016, 36, 5827–5833. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; Abdollah, M.R.A.; Elsesy, M.E.; El Ella, D.A.A.; Zada, S.K.; Tolba, M.F. The natural isoflavone Biochanin-A synergizes 5-fluorouracil anticancer activity in vitro and in vivo in Ehrlich solid-phase carcinoma model. Phytother. Res. 2022, 36, 1310–1325. [Google Scholar] [CrossRef]
- Desai, V.; Tadinada, S.M.; Shaghaghi, H.; Summer, R.; Lai, J.C.K.; Bhushan, A. Combination Treatment of Biochanin A and Atorvastatin Alters Mitochondrial Bioenergetics, Modulating Cell Metabolism and Inducing Cell Cycle Arrest in Pancreatic Cancer Cells. Anticancer Res. 2024, 44, 2307–2323. [Google Scholar] [CrossRef]
- Park, H.; Jin, U.-H.; Orr, A.A.; Echegaray, S.P.; Davidson, L.A.; Allred, C.D.; Chapkin, R.S.; Jayaraman, A.; Lee, K.; Tamamis, P.; et al. Isoflavones as Ah Receptor Agonists in Colon-Derived Cell Lines: Structure-Activity Relationships. Chem. Res. Toxicol. 2019, 32, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M.; El Oirdi, M.; Aatif, M.; Nahvi, I.; Muteeb, G.; Alam, M.W. Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties. Molecules 2023, 28, 2925. [Google Scholar] [CrossRef]
- Stanisławska, I.J.; Figat, R.; Kiss, A.K.; Bobrowska-Korczak, B. Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients 2022, 14, 1225. [Google Scholar] [CrossRef] [PubMed]
- Belcher, S.M.; Belcher, S.M.; Burton, C.C.; Cookman, C.J.; Kirby, M.; Miranda, G.L.; Saeed, F.O.; Wray, K.E. Estrogen and soy isoflavonoids decrease sensitivity of medulloblastoma and central nervous system primitive neuroectodermal tumor cells to chemotherapeutic cytotoxicity. BMC Pharmacol. Toxicol. 2017, 18, 63. [Google Scholar] [CrossRef]
- Kumar, V.; Chauhan, S.S. Daidzein Induces Intrinsic Pathway of Apoptosis along with ER α/β Ratio Alteration and ROS Production. Asian Pac. J. Cancer Prev. 2021, 22, 603–610. [Google Scholar] [CrossRef]
- Elkhalifa, A.E.O.; Banu, H.; Khan, M.I.; Ashraf, S.A. Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer. Nutrients 2023, 15, 3949. [Google Scholar] [CrossRef]
- Ullah, M.F.; Ahmad, A.; Bhat, S.H.; Khan, H.Y.; Zubair, H.; Sarkar, F.H.; Hadi, S.M. Simulating hypoxia-induced acidic environment in cancer cells facilitates mobilization and redox-cycling of genomic copper by daidzein leading to pro-oxidant cell death: Implications for the sensitization of resistant hypoxic cancer cells to therapeutic challenges. BioMetals 2016, 29, 299–310. [Google Scholar] [CrossRef]
- Lepri, S.R.; Zanelatto, L.C.; da Silva, P.B.G.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. The effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: The expression of CTNNBIP1 (β-catenin), APC (adenomatous polyposis coli) and BIRC5 (survivin). Hum. Cell 2014, 27, 78–84. [Google Scholar] [CrossRef]
- Wang, P.; Lu, H.; Zhang, C.; Wang, R.; Chen, X.; Qiao, L.; Wang, Z.; Wang, W. Daidzin improves the cisplatin chemosensitivity for osteosarcoma via binding to β-catenin protein and suppressing the wnt pathway. Sci. Rep. 2025, 15, 5484. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Liu, B.; Ma, L.; Su, J.; Ding, Y. Daidzein and puerarin synergistically suppress gastric cancer proliferation via STAT3/FAK pathway Inhibition. Hereditas 2025, 162, 58. [Google Scholar] [CrossRef] [PubMed]
- Ito, C.; Matsui, T.; Miyabe, K.; Hasan, C.M.; Rashid, M.A.; Tokuda, H.; Itoigawa, M. Three isoflavones from Derris scandens (Roxb.) Benth and their cancer chemopreventive activity and in vitro antiproliferative effects. Phytochemistry 2020, 175, 112376. [Google Scholar] [CrossRef]
- Ito, C.; Matsui, T.; Miyabe, K.; Hasan, C.M.; Rashid, M.A.; Itoigawa, M. Four new isoflavones from Derris scandens and their in vitro antiproliferative effects. Nat. Prod. Res. 2022, 36, 1448–1453. [Google Scholar] [CrossRef]
- Yan, W.; Yang, J.; Tang, H.; Xue, L.; Chen, K.; Wang, L.; Zhao, M.; Tang, M.; Peng, A.; Long, C.; et al. Flavonoids from the stems of Millettia pachyloba Drake mediate cytotoxic activity through apoptosis and autophagy in cancer cells. J. Adv. Res. 2019, 20, 117–127. [Google Scholar] [CrossRef]
- Adem, F.A.; Kuete, V.; Mbaveng, A.T.; Heydenreich, M.; Koch, A.; Ndakala, A.; Irungu, B.; Yenesew, A.; Efferth, T. Cytotoxic flavonoids from two Lonchocarpus species. Nat. Prod. Res. 2019, 33, 2609–2617. [Google Scholar] [CrossRef]
- Buyinza, D.; Yang, L.J.; Derese, S.; Ndakala, A.; Coghi, P.; Heydenreich, M.; Wong, V.K.W.; Möller, H.M.; Yenesew, A. Cytotoxicity of isoflavones from Millettia dura. Nat. Prod. Res. 2021, 35, 2744–2747. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, R.; Kong, Y.; Wang, J.; Xia, W.; Guo, J.; Liu, J.; Sun, H.; Liu, K.; Yang, J.; et al. S-equol, a Secondary Metabolite of Natural Anticancer Isoflavone Daidzein, Inhibits Prostate Cancer Growth In Vitro and In Vivo, Though Activating the Akt/FOXO3a Pathway. Curr. Cancer Drug Targets 2016, 16, 455–465. [Google Scholar] [CrossRef]
- Ono, M.; Ejima, K.; Higuchi, T.; Takeshima, M.; Wakimoto, R.; Nakano, S. Equol Enhances Apoptosis-inducing Activity of Genistein by Increasing Bax/Bcl-xL Expression Ratio in MCF-7 Human Breast Cancer Cells. Nutr. Cancer 2017, 69, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-Y.; Jo, M.S.; Lee, D.; Baek, S.E.; Baek, J.; Yu, J.S.; Jo, J.; Yun, H.; Kang, K.S.; Yoo, J.E.; et al. Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorganic Chem. 2019, 83, 135–144. [Google Scholar] [CrossRef]
- Van Chien, T.; Anh, N.T.; Thanh, N.T.; Thao, T.T.P.; Van Loc, T.; Van Sung, T. Two new prenylated isoflavones from Maclura cochinchinensis collected in Hoa Binh province Vietnam. Nat. Prod. Res. 2019, 33, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Komeil, I.A.; El-Refaie, W.M.; Gowayed, M.A.; El-Ganainy, S.O.; El Achy, S.N.; Huttunen, K.M.; Abdallah, O.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int. J. Pharm. 2021, 601, 120564. [Google Scholar] [CrossRef]
- Antosiak, A.; Milowska, K.; Maczynska, K.; Rozalska, S.; Gabryelak, T. Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line. Med. Chem. Res. 2017, 26, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, A.; Aichinger, G.; Stornig, K.; Marko, D. Impact of Oxidative Metabolism on the Cytotoxic and Genotoxic Potential of Genistein in Human Colon Cancer Cells. Mol. Nutr. Food Res. 2019, 63, 1800635. [Google Scholar] [CrossRef]
- Hwang, S.T.; Yang, M.H.; Baek, S.H.; Um, J.Y.; Ahn, K.S. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci. 2020, 263, 118594. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Takeshima, M.; Nishi, A.; Higuchi, T.; Nakano, S. Genistein Suppresses v-Src-Driven Proliferative Activity by Arresting the Cell-Cycle at G2/M through Increasing p21 Level in Src-Activated Human Gallbladder Carcinoma cells. Nutr. Cancer 2021, 73, 1471–1479. [Google Scholar] [CrossRef]
- Khamesi, S.M.; Barough, M.S.; Zargan, J.; Shayesteh, M.; Banaee, N.; Noormohammadi, A.H.; Alikhani, H.K.; Mousavi, M. Evaluation of Anticancer and Cytotoxic Effects of Genistein on PC3 Prostate Cell Line under Three-Dimensional Culture Medium. Iran. Biomed. J. 2022, 26, 380–388. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Strzempek, W.; Łaszcz, M.; Leś, A.; Menaszek, E.; Sidoryk, K.; Stolarczyk, K. Anti-Cancer and Electrochemical Properties of Thiogenistein—New Biologically Active Compound. Int. J. Mol. Sci. 2021, 22, 8783. [Google Scholar] [CrossRef] [PubMed]
- Tsuboy, M.S.; Marcarini, J.C.; de Souza, A.O.; de Paula, N.A.; Dorta, D.J.; Mantovani, M.S.; Ribeiro, L.R. Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis. J. Med. Food 2014, 17, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Bai, H.; Huang, C.-L.; Zhang, Y.; Zeng, X.; Wan, H.; Zuo, W.; Wang, H.-Y.; Zeng, Y.-X.; Wang, Y.-D. Mechanism Study of Isoflavones as an Anti-Retinoblastoma Progression Agent. Oncotarget 2017, 8, 88401–88409. [Google Scholar] [CrossRef]
- Danciu, C.; Soica, C.; Oltean, M.; Avram, S.; Borcan, F.; Csanyi, E.; Ambrus, R.; Zupko, I.; Muntean, D.; Dehelean, C.A.; et al. Genistein in 1:1 inclusion complexes with ramified cyclodextrins: Theoretical, physicochemical and biological evaluation. Int. J. Mol. Sci. 2014, 15, 1962–1982. [Google Scholar] [CrossRef]
- Shpigel, J.; Luciano, E.F.; Ukandu, B.; Sauane, M.; de la Parra, C. Soy Isoflavone Genistein Enhances Tamoxifen Sensitivity in Breast Cancer via microRNA and Glucose Metabolism Modulation. Int. J. Mol. Sci. 2025, 26, 733. [Google Scholar] [CrossRef]
- Chen, S.; Huang, H.; Li, Q.; Cai, J.; Miao, Z.; Xie, P.; Tang, S.; He, D. Carrier-free nanoparticles based on self-assembly of 5-FU and copper-genistein complexes for the combined treatment of hepatocellular carcinoma. Drug Deliv. Transl. Res. 2025, 15, 1299–1316. [Google Scholar] [CrossRef]
- Hikita, K.; Yamada, S.; Shibata, R.; Katoh, M.; Murata, T.; Kato, K.; Tanaka, H.; Kaneda, N. Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells through Inhibition of Glyoxalase I. Nat. Prod. Commun. 2015, 10, 1581–1584. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Wang, R.; Wang, Y.; Xu, J.; He, X. Anti-proliferative and anti-inflammatory prenylated isoflavones and coumaronochromones from the fruits of Ficus altissima. Bioorganic Chem. 2021, 113, 104996. [Google Scholar] [CrossRef]
- Maszczyk, M.; Banach, K.; Rok, J.; Rzepka, Z.; Beberok, A.; Wrześniok, D. Evaluation of Possible Neobavaisoflavone Chemosensitizing Properties towards Doxorubicin and Etoposide in SW1783 Anaplastic Astrocytoma Cells. Cells 2023, 12, 593. [Google Scholar] [CrossRef] [PubMed]
- Maszczyk, M.; Banach, K.; Karkoszka, M.; Rzepka, Z.; Rok, J.; Beberok, A.; Wrześniok, D. Chemosensitization of U-87 MG Glioblastoma Cells by Neobavaisoflavone towards Doxorubicin and Etoposide. Int. J. Mol. Sci. 2022, 23, 5621. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, W.; Wang, W.; Lin, S.; Yang, L. Puerarin suppresses LPS-induced breast cancer cell migration, invasion and adhesion by blockage NF-κB and Erk pathway. Biomed. Pharmacother. 2017, 92, 429–436. [Google Scholar] [CrossRef]
- Lv, P.; Hu, Y.; Ding, L.; Xiang, W. Puerarin triggers sensitivity to ferroptosis in glioblastoma cells by activating SIRT3/NCOA4-dependent autophagy. Int. Immunopharmacol. 2025, 149, 114246. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lim, J.-Y.; Jeon, Y.-D.; Kim, D.-K.; Lee, D.-H. Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice. Int. J. Mol. Sci. 2025, 26, 1342. [Google Scholar] [CrossRef]
- Díaz, L.; Cely-Veloza, W.; Coy-Barrera, E. Identification of Anti-Proliferative Compounds from Genista monspessulana Seeds through Covariate-Based Integration of Chemical Fingerprints and Bioactivity Datasets. Molecules 2022, 27, 3996. [Google Scholar] [CrossRef]
- Ren, J.; Huang, Q.; Xu, Y.; Yang, M.; Yang, J.; Hu, K. Isoflavone lupiwighteone induces cytotoxic, apoptotic, and antiangiogenic activities in DU-145 prostate cancer cells. Anti-Cancer Drugs 2015, 26, 599–611. [Google Scholar] [CrossRef]
- Sakamoto, T.; Horiguchi, H.; Oguma, E.; Kayama, F. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J. Nutr. Biochem. 2010, 21, 856–864. [Google Scholar] [CrossRef]
- Satih, S.; Rabiau, N.; Bignon, Y.-J.; Bernard-Gallon, D.J. Soy Phytoestrogens and Breast Cancer Chemoprevention: Molecular Mechanisms. Curr. Nutr. Food Sci. 2008, 4, 259–264. [Google Scholar] [CrossRef]
- Moyer, A.; Tanaka, K.; Cheng, E.H. Apoptosis in Cancer Biology and Therapy. Annu. Rev. Pathol. Mech. Dis. 2025, 20, 303–328. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2021, 23, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 2005, 17, 559–564. [Google Scholar] [CrossRef]
- Shojaei, F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Lett. 2012, 320, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.K.; Houghton, P.J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 2004, 40, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.O. Control of Deoxyisoflavone Synthesis in Soybean Tissue. Planta 1969, 87, 26–35. [Google Scholar] [CrossRef]
- Tuli, H.S.; Kumar, A.; Sak, K.; Aggarwal, D.; Gupta, D.S.; Kaur, G.; Vashishth, K.; Dhama, K.; Kaur, J.; Saini, A.K.; et al. Gut Microbiota-Assisted Synthesis, Cellular Interactions and Synergistic Perspectives of Equol as a Potent Anticancer Isoflavone. Pharmaceuticals 2022, 15, 1418. [Google Scholar] [CrossRef]

| Antitumor Mechanism and/or Experimental Evidence | Animal/Cell Line Tested | IC50 (µM) a, Selective Index (S.I.) b; % Reference Growth Inhibition c or Dose d | Ref. |
|---|---|---|---|
| Alpinumisoflavone | |||
| Cytotoxicity (MTT), no mechanistic data available | PC-3 (prostate adenocarcinoma) SiHa (cervical carcinoma) A-549 (lung carcinoma) L929 (mouse fibroblasts, normal) | 18.6 (PC-3); 19.6 (siHa); >303 (A-549); >297 (L929)-(IC50) a. ~15.9 (PC-3); ~15.1 (SiHa) (S.I.) b. | [14] |
| Cytotoxicity (MTT), no mechanistic data available | HL-60 (acute promyelocytic leukemia) SMMC-7721 (hepatocellular carcinoma) MCF-7 (breast adenocarcinoma) SW480 (colorectal adenocarcinoma) | 0.98 (HL-60); 3.25 (SMMC-7721); 7.56 (MCF-7); 3.27 (SW480)-(IC50) a. | [15] |
| Cytotoxicity (MTT), no mechanistic data available | K562 (leukemia) K562/ADR (leukemia) | 42.7 (K562); 49.93 (K562/ADR)-(IC50) a. | [16] |
| Apoptosis with changes in the mitochondrial membrane potential, with ROS generation; Cell migration inhibition; Upregulation of p53 and RRM1 proteins; Colony formation inhibition. | PANC-1 (pancreatic carcinoma) MIA PaCa-2 (pancreatic carcinoma) | 28.92 (MIA PaCa-2); 35.82 (PANC-1)-(IC50) a. | [17] |
| Biochanin A | |||
| Cytotoxicity (MTT), with reduced EGFR activity | A549 (lung carcinoma) H1795 (lung carcinoma) HCC827 (lung carcinoma) | 13.5 (A549); 42.0 (H1795); 0.135 (HCC827)-(IC50) a. | [18] |
| Apoptosis via caspase-3 activation; Downregulation of ERα and Cyclin D1; Reduction in MMP-2 and VEGF proteins; Tumor growth inhibition (Ehrlich carcinoma) | MCF-7 (breast adenocarcinoma) MDA-MB-231 (breast adenocarcinoma) Balb/c mice (in vivo model) | 1.97 (MCF-7); 4.87 (MDA-MB-231)-(IC50) a. Tumor growth decrease at 20 mg/kg d | [19] |
| Apoptosis; Decreased expression of phospho-AKT and phospho-mTOR; PARP cleavage; Reduced Cyclin A/B1 and STAT3 (Y705) activation | AsPC-1 (pancreatic adenocarcinoma) MIA PaCa-2 cells (pancreatic adenocarcinoma) PANC-1 (pancreatic carcinoma) | Biochanin A/atorvastatin (80 μM/5µM) d. ~82%c (AsPC-1 and MIA PaCa-2); ~35% c (PANC-1). | [20] |
| Cytotoxicity (MTT), no mechanistic data available; Induction of CYP1A1, CYP1B1, and UGT1A1 gene expression | Caco-2 (colorectal adenocarcinoma) | 50 μM d. | [21] |
| Daidzein | |||
| Apoptosis with ROS generation; Cell migration inhibition; Upregulation of CTR1 and ATP7A genes | HPrEC (prostate epithelial cells, primary) LNCaP (prostate carcinoma) DU145 (prostate carcinoma) | 50 µM d. ~40%c (LNCaP); ~45% c (DU145); ~10% c (HprEC). ~ 1.5 (LNCaP); ~1.6 DU145 (S.I.) b. | [22] |
| Antigenotoxic and antiproliferative effects | LNCaP (human prostate cancer cell line) Sprague Dawley rats | 10 µM d. 70% of inhibition of 4NQO toxicity. | [23] |
| Decrease in caspase-3 activity; Colony formation inhibition | D283 Med (medulloblastoma) | 10 nM d in combination with cisplatin | [24] |
| Apoptosis caspase-dependent; ROS generation; Upregulation of Bax; Downregulation of Bcl-2 and Erα and Increased Erβ expression | MCF-7 (breast adenocarcinoma) | 100.0 (IC50) a. | [25] |
| Cytotoxicity (MTT), with reduced EGFR activity | A549 (lung carcinoma) H1795 (lung carcinoma) HCC827 (lung carcinoma) | 13.5 (A549); 42.0 (H1795); 0.135 (HCC827)-(IC50) a. | [18] |
| Cytotoxicity (MTT), no mechanistic data available; Cell migration inhibition | A549 (lung carcinoma) | 83.06 (IC50) a. | [26] |
| Apoptosis with ROS generation; DNA damage pH-and Cu-dependent | MDA-MB-231 (breast adenocarcinoma) | 50 (IC50) a. | [27] |
| Cytotoxicity (Trypan blue), no mechanistic data available; Decreased β-catenin expression | HT-29 (colorectal adenocarcinoma) | 100 (IC50) a. | [28] |
| Apoptosis caspase-dependent, Cell migration and invasion inhibition; Decreased β-catenin, Cyclin D1, MMP9 and MPP2 expression; tumor growth inhibition | U2OS, HOS, MNNG/HOS, SJSA-1, 143B, MG63, U2OS/MTX300 (osteosarcoma cell line), male BALB/c nude mice | 25.7 (U2OS); 58.7 (U2OS/MTX300); 56.9 (HOS); 33.4 (MNNG/HOS); 19.8 (SJSA-1) 26.4 µM (143B)-(IC50) a. Tumor growth decrease with (20/5 mg/kg) of cisplatin and Daidzin d. | [29] |
| Apoptosis with loss of mitochondrial membrane potential and with ROS generation; Cell cycle arrest at G0/G1 phase; Colony formation and migration inhibition | BGC-823 (endocervical adenocarcinoma) GES-1 (gastric epithelial cells) | 19.64 (BGC-823); >60µM (GES-1)-(IC50) a. ~3,1 (S.I.) b. | [30] |
| Derriscandenon | |||
| Apoptosis with loss of mitochondrial membrane potential | KB (epidermoid carcinoma) NALM-6 (acute lymphoblastic leukemia, B-cell) Fibroblasts (fibroblasts) | 78.2%c (NALM-6); 3.2% c (KB); > 25% c (fibroblasts). ~1.1. (NALM-6); ~7.8 (KB)-(S.I.) b. | [31] |
| Apoptosis with loss of mitochondrial membrane potential | KB (epidermoid carcinoma) NALM-6 (acute lymphoblastic leukemia, B-cell) A549 (lung carcinoma) Fibroblasts (human dermal fibroblasts) | 2.7 (KB); 9.5 (NALM-6); 23.4 (fibroblasts)-(IC50) a. ~2.4 (NALM-6); ~8.6 (KB)-(S.I.) b. | [32] |
| Durmillone | |||
| Apoptosis with loss of mitochondrial membrane potential | MCF-7 (breast adenocarcinoma) HeLa (cervical adenocarcinoma) HUVECs (umbilical vein endothelial cells) | 11.08 (MCF-7); 6.09 (HeLa); >50 (HUVEC)-(IC50) a. ~4.5 (MCF-7); ~8.2 (HeLa)-(S.I.) b. | [33] |
| Apoptosis with loss of mitochondrial membrane potential | U87MG (glioblastoma) MDA-MB-231 (breast adenocarcinoma) CEM/ADR5000 (acute lymphoblastic leukemia, T-cell) | 0.86 (CEM/ADR500); 8.97 (MDA-MB-231); 5.83 (U87MG)-(IC50) a. | [34] |
| Apoptosis with loss of mitochondrial membrane potential | A549 (lung carcinoma) BEAS-2B (bronchial epithelial cells) LO2 (fetal hepatocytes) CCD19Lu (fibroblasts) | 6.6 (A549); 58.4 (BEAS-2B); 78.4 (LO2); >100 (CCD19Lu)-(IC50) a. ~15.1 (S.I.) b. | [35] |
| Equol | |||
| Antigenotoxic and antiproliferative effects | LNCaP (prostate carcinoma) Sprague Dawley rats (in vivo model) | 10 µM d + 0.25 mg/L of 4NQO and 1 mg/L to 5 mg/L d of 2AA with 55 ± 9% genotoxicity inhibition c. | [23] |
| Apoptosis with FasL and Bim protein expression; Cell cycle arrest at G2/M phase; CDK1 and Cyclin B inhibition; Increased FOXO3a, p21, p27 and decreased p-FOXO3a expression; Antitumoral activity in xenografts of PC3 cells | PC-3 (prostate adenocarcinoma) DU145 (prostate carcinoma) LNCaP (prostate carcinoma) RWPE-1 (prostate epithelial cells, non-malignant) BALB/c mice (in vivo model) | 119 (PC-3); 139 (DU145); 169 µM (LNCaP)-(IC50) a. Inhibited tumor growth 43.2% c at 20 mg/Kg d | [36] |
| Decrease in caspase 3 activity and cell colony formation inhibition | D283 Med MB (medulloblastoma) | 100 nM with 10 nM of cisplatin d | [24] |
| Apoptosis with downregulation of Bcl-xL expression and activation of Akt and mTOR; Cell Cycle Arrest at G2/M | MCF-7 (breast adenocarcinoma) MDA-MB-468 (breast adenocarcinoma) SK-BR-3 (breast adenocarcinoma) | 56.8 (MCF-7); 67.0 MDA-MB-468); 42.1 (SK-BR-3)-(IC50) a. | [37] |
| Genistein | |||
| Apoptosis and negative regulation of Erα | ER-positive MCF-7 (breast adenocarcinoma) ER-negative MDA-MB-231 (breast adenocarcinoma) | 68.34% c (MCF-7); 47.37% c (MDA-MB-231) | [38] |
| Cytotoxicity (MTT) no mechanistic data available | KB cell (carcinoma epidermoid) and HepG2 (hepatocellular carcinoma) | 26.99 (KB) 19.5 (HepG2)-(IC50) a. | [39] |
| Apoptosis caspase-dependent; VEGFA, MMP-9 downregulation; Antitumoral effect in chemically induced Hepatocellular carcinoma | HepG2 (hepatocellular carcinoma) Swiss albino mice (in vivo model) | 23.6 (IC50) a. 75 mg/kg to 100 mg/kg d. | [40] |
| Apoptosis with loss of mitochondrial membrane potential and ROS generation | SK-OV-3 (ovarian carcinoma) | 90.0 (IC50) a. | [41] |
| Cytotoxicity (MTT), with reduced EGFR activity | A549 (lung carcinoma) H1795 (lung carcinoma) HCC827 (lung carcinoma) | 13.5 (A549); 42.0 (H1795); 0.135 (HCC827)-(IC50 a). | [18] |
| Apoptosis with p53 activation, ROS generation, and with TOPII-inhibiting potential | HT-29 (colorectal adenocarcinoma) | 200 (IC50) a. | [42] |
| Apoptosis caspase-depedent, Cell viability, Downregulation Erα of BcL2/BcLx-xL, MPP9 and cyclin D1 | MCF-7 and MDA-MB-231 cells (Human breast carcinoma) | 150 µM d with 60% c (MCF-7); 35% c (MDA-MB-231 cells). | [43] |
| Apoptosis with ROS-generation; Inhibition of cancer cell migration; Upregulation of CTR1 and ATP7A expression | HPrEC (prostate epithelial cells, primary) LNCaP (prostate carcinoma) DU145 (prostate carcinoma) | 50 µMd with ~40% c (LNCaP); ~45% c (DU145); ~10% c (HprEC). ~ 1.5 (LNCaP); ~1.6 DU145 (S.I.) b. | [22] |
| Antigenotoxic and antiproliferative effects | LNCaP (prostate carcinoma) Sprague Dawley rats (in vivo model) | 10 µM d + 0.25 mg/L of 4NQO and 1 mg/L to 5 mg/L d of 2AA with 55 ± 9% c genotoxicity inhibition. | [23] |
| Decrease in caspase 3 activity; Colony formation inhibition | D283 Med MB (medulloblastoma) | 10 and 100 nM d | [24] |
| Cytotoxicity (WST), no mechanistic data available; Cell Cycle Arrest at G2/M | HAG/src31 (adenocarcinoma, v-src-transfected) HAG/neo3-5 (epithelial cell line, HAG-1 derivative) | 25.0 (HAG/src31); 50.0 HAG/neo3-5-(IC50) a. | [44] |
| Apoptosis non-mitochondrial pathway; Reduction in NO; Increase expression of catalase and glutathione (GSH) | PC3 (prostate adenocarcinoma) | ~200 (IC50) a. | [45] |
| Cytotoxicity (PrestoBlue assay), no mechanistic data available | DU145 (prostate carcinoma) | 100.0 (IC50) a. | [46] |
| Apoptosis with downregulation of BAX and BCL-xl genes; Cell cycle Arrest at G1 phase | MCF-7 (breast adenocarcinoma) HB4a (mammary epithelial cells) | 100.0 (IC50) a. Cell Cycle arrest 25µM d | [47] |
| Cytotoxicity (Trypan blue), no mechanistic data available; Decrease in β-catenin gene (CTNNBIP1) expression | HT-29 (colorectal adenocarcinoma) | 100 (IC50) a. | [28] |
| Cytotoxicity (MTT), no mechanistic data available; Cell Cycle Arrest at G1/S phase; downregulation of mTOR and of cyclin E1; Antitumoral activity in xenografts of Y70 cells | Y79 (retinoblastoma) BALB/c nude mice (in vivo model) | 1.23 µM (IC50) a. 73.24% tumor weight reduction c with 60 mg/kg d | [48] |
| Cytotoxicity (MTT), no mechanistic data available; Antiangiogenic effects | HeLa (cervical adenocarcinoma) A431 (epidermoid carcinoma) MCF-7 (breast adenocarcinoma) A2780 (ovarian carcinoma) | 69.88 (A431); 44.02 (MCF-7); 17.49 (A2780); 16.47 (HeLa)-(IC50) a. antiangiogenic effect with 50 µM d | [49] |
| Apoptosis with downregulation of Bcl-xL expression and upregulation of Akt and mTOR; Cell Cycle Arrest at G2/M | MCF-7 (breast adenocarcinoma) MDA-MB-468 (breast adenocarcinoma) SK-BR-3 (breast adenocarcinoma) | 56.8 (MCF-7); 67.0 MDA-MB-468); 42.1 (SK-BR-3) (IC50) a. | [37] |
| Cytotoxicity (MTT), no mechanistic data available; Decreases cell migration; Downregulation of miR-155 and HK2 expression | MCF7 TAM-S (breast adenocarcinoma, tamoxifen-sensitive) MCF7 TAM-R (breast adenocarcinoma, tamoxifen-resistant) | 20.0 (MCF-7 TAM-S); >20.0 µM MCF7 (TAM-R) (IC50) a. | [50] |
| Apoptosis with ROS-generation; Cell migration inhibition; Cell cycle arrest at S and G2 phase. Antitumoral activity in xenografts of Bel-7402 cells | LO2 (liver cells) HUVECs (umbilical vein endothelial cells) Bel-7402 (endocervical adenocarcinoma) BALB/c nude mice (in vivo model) | 1.42 µM (Bel-7402); >80 (HUVECs and LO2) (IC50) a. 20 mg/kg d with 3.7-fold tumor reduction | [51] |
| Isolupalbigenin | |||
| Cytotoxicity (MTT), no mechanistic data available | K562 (leukemia) K562/ADR (leukemia) A549 (lung carcinoma) SPC-A-1 (lung carcinoma) ASG (gastric carcinoma) HeLa (cervical adenocarcinoma) HepG2 (hepatocellular carcinoma) CNE2 (nasopharyngeal carcinoma) HaCaT (normal epidermal keratinocytes) | 56.44 (AGS); 1.55 (K562); 50.2 3(K562/ADR); 52.40(HeLa); 52.67; (HepG2), 52.86; (CNE2); 49.86; (SPC-A-1) 33.41 (Hacat)-(IC50) a. 21.5 (K562)-(S.I.) b. | [16] |
| Apoptosis caspase-dependent and inhibition of Glyoxalase I (GLO I) | HL-60 (leukemia) | 13.4 (IC50) a. | [52] |
| Apoptosis and colony formation inhibition | HepG2 (hepatocellular carcinoma) | 40 (IC50) a. | [53] |
| Neobavaisoflavone | |||
| Apoptosis with changes in the mitochondrial membrane potential; Cell cycle arrest at G1/S phase | SW1783 (anaplastic astrocytoma) | 75.0 (IC50) a. | [54] |
| Apoptosis with changes in the mitochondrial membrane potential; Cell cycle arrest at G1 phase | U-87 MG (glioblastoma) NHA (normal human astrocytes) | 50.0 (IC50) a. | [55] |
| Puerarin | |||
| Cytotoxicity (Cell Counting Kit-8), no mechanistic data available; NF-kB inhibition; with downregulation of CCR7, CXCR4, MMP-2, MMP-9, ICAM and VCAM; Inhibition cell migration | MCF-7 (breast adenocarcinoma) MDA-MB-231 (breast adenocarcinoma) | 80.0 (IC50) a. | [56] |
| Cytotoxicity (Cell Counting Kit-8) with ROS generation; Decreased of GSH/GSSG ratio; Upregulation of SIRT3, NCOA4, and the ratio of LC3-II/I | U87MG (glioblastoma) | 40.0 (IC50) a. | [57] |
| Apoptosis caspase-dependent | HeLa (cervical adenocarcinoma) | 25.0 (IC50) a. | [58] |
| Wighteone | |||
| Cytotoxicity (MTT), no mechanistic data available | K562 (leukemia) ASG (gastric carcinoma) | 55.46 (ASG); 50.28 (K562)-(IC50) a. | [16] |
| Apoptosis caspase-dependent with ROS generation | HepG2 (hepatocellular carcinoma) HL-60 (promyelocytic leukemia) A549 (lung carcinoma) HeLa (cervical adenocarcinoma) KB (epidermoid carcinoma) HT29 (colorectal adenocarcinoma) LO2 (normal hepatic cells) | 3.2 (HepG2); 75.1 (LO2); 14.9 (HeLa); 51.4 (HT-29); 73.3 (A-549); 14.3 (KB);2.5 (HL-60) (IC50) a. 23.5 (HepG2) (SI) b. | [59] |
| Cytotoxicity (MTT), no mechanistic data available | PC-3 (prostate adenocarcinoma) | 34.3 (IC50) a. | [14] |
| Apoptosis with changes in the mitochondrial membrane potential and ROS-generation; Inhibition of CDK1 and CDK2; Downregulation of the Akt and VEGF; Cell cycle arrest at G2/M phase; Cell migration inhibition. | DU-145 (prostate carcinoma) HUVECs (umbilical vein endothelial cells) | 23.7(DU-145); 50.5 (HUVEC)-(IC50) a. 2.1 (S.I.) b. | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knupp, M.S.; de Queiroz, L.N.; Brito, M.d.F.; Abreu, L.S.; Robbs, B.K. Anticancer Potential of Isoflavones: A Narrative Overview of Mechanistic Insights and Experimental Evidence from the Past Ten Years. Biomedicines 2025, 13, 2990. https://doi.org/10.3390/biomedicines13122990
Knupp MS, de Queiroz LN, Brito MdF, Abreu LS, Robbs BK. Anticancer Potential of Isoflavones: A Narrative Overview of Mechanistic Insights and Experimental Evidence from the Past Ten Years. Biomedicines. 2025; 13(12):2990. https://doi.org/10.3390/biomedicines13122990
Chicago/Turabian StyleKnupp, Maryna Schuenck, Lucas Nicolau de Queiroz, Mateus de Freitas Brito, Lucas Silva Abreu, and Bruno Kaufmann Robbs. 2025. "Anticancer Potential of Isoflavones: A Narrative Overview of Mechanistic Insights and Experimental Evidence from the Past Ten Years" Biomedicines 13, no. 12: 2990. https://doi.org/10.3390/biomedicines13122990
APA StyleKnupp, M. S., de Queiroz, L. N., Brito, M. d. F., Abreu, L. S., & Robbs, B. K. (2025). Anticancer Potential of Isoflavones: A Narrative Overview of Mechanistic Insights and Experimental Evidence from the Past Ten Years. Biomedicines, 13(12), 2990. https://doi.org/10.3390/biomedicines13122990

