Comparison of Intraneural FacilitationTM Therapy and Exercise on Patients with Type 2 Diabetes: A Single-Blind Randomized Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Randomization and Blinding
2.4. Interventions
2.4.1. Intraneural FacilitationTM (INF®) Therapy
- reduce arterial-neural compression and facilitate epineurial inflow (Figure 2);
- redirect epineurial pressure into transperineurial channels to increase endoneurial flow (Figure 3); and
- A third sub-hold to sustain proximal perfusion velocity through gentle joint biasing to minimize stasis. All sessions followed a standardized clinical research protocol validated for the NTC research setting. Treatment fidelity was confirmed via checklists completed at each session.
2.4.2. Standard Exercise Program
- Aerobic gait training (15 min at self-selected pace; rate of perceived exertion monitoring on a 6–20 Borg scale);
- Strength training (3 sets × 15 repetitions of knee bends, toe rises, hip extensions, adduction, and abduction);
- Flexibility training (5 min each for calves and hamstrings); and
- Balance training (single-leg stance × 5 trials per leg).
2.5. Outcome Measures
2.6. Sample Size and Power Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DPN | Diabetic peripheral neuropathy |
| T2D | Type 2 Diabetes |
| INF® therapy | Intraneural FacilitationTM therapy |
| NTC | Neuropathic Therapy Center |
| PQAS | Pain-quality assessment scale |
| REDCap | Research electronic data capture |
| BMI | Body mass index |
| NIRS | Near-Infrared Spectroscopy |
References
- Yang, Y.; Zhao, B.; Wang, Y.; Lan, H.; Liu, X.; Hu, Y.; Cao, P. Diabetic neuropathy: Cutting-edge research and future directions. Signal Transduct. Target. Ther. 2025, 10, 132. [Google Scholar] [CrossRef]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef]
- Chang, M.C.; Yang, S. Diabetic peripheral neuropathy essentials: A narrative review. Ann. Palliat. Med. 2023, 12, 390–398. [Google Scholar] [CrossRef]
- Jan, Y.K.; Kelhofer, N.; Tu, T.; Mansuri, O.; Onyemere, K.; Dave, S.; Pappu, S. Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus. Diagnostics 2024, 14, 2830. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. 2023, 14, 1265372. [Google Scholar] [CrossRef] [PubMed]
- Gordois, A.; Scuffham, P.; Shearer, A.; Oglesby, A.; Tobian, J.A. The Health Care Costs of Diabetic Peripheral Neuropathy in the U.S. Diabetes Care 2003, 26, 1790–1795. [Google Scholar] [CrossRef]
- Schratzberger, P.; Walter, D.H.; Rittig, K.; Bahlmann, F.H.; Pola, R.; Curry, C.; Silver, M.; Krainin, J.G.; Weinberg, D.H.; Ropper, A.H.; et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Investig. 2001, 107, 1083–1092. [Google Scholar] [CrossRef]
- Ward, J.D. Abnormal microvasculature in diabetic neuropathy. Eye 1993, 7, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Thrainsdottir, S.; Malik, R.A.; Dahlin, L.B.; Wiksell, P.; Eriksson, K.F.; Rosen, I.; Petersson, J.; Greene, D.A.; Sundkvist, G. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 2003, 52, 2615–2622. [Google Scholar] [CrossRef]
- Mohseni, S.; Badii, M.; Kylhammar, A.; Thomsen, N.O.B.; Eriksson, K.F.; Malik, R.A.; Rosen, I.; Dahlin, L.B. Longitudinal study of neuropathy, microangiopathy, and autophagy in sural nerve: Implications for diabetic neuropathy. Brain Behav. 2017, 7, e00763. [Google Scholar] [CrossRef]
- Gracia-Sanchez, A.; Lopez-Pineda, A.; Nouni-Garcia, R.; Zunica-Garcia, S.; Chicharro-Luna, E.; Gil-Guillen, V.F. Impact of Exercise Training in Patients with Diabetic Peripheral Neuropathy: An Umbrella Review. Sports Med. Open 2025, 11, 75. [Google Scholar] [CrossRef]
- Grover-Johnson, N.M.; Baumann, F.G.; Imparato, A.M.; Kim, G.E.; Thomas, P.K. Abnormal innervation of lower limb epineurial arterioles in human diabetes. Diabetologia 1981, 20, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, L.L.; Veldink, J.; Notermans, N.C.; Bleys, R.L. Quantitative assessment of the innervation of epineurial arteries in the peripheral nerve by immunofluorescence: Differences between controls and patients with peripheral arterial disease. Acta Neuropathol. 2002, 103, 475–480. [Google Scholar] [CrossRef]
- Beggs, J.; Johnson, P.C.; Olafsen, A.; Watkins, C.J. Innervation of the vasa nervorum: Changes in human diabetics. J. Neuropathol. Exp. Neurol. 1992, 51, 612–629. [Google Scholar] [CrossRef]
- Dubsky, M.; Veleba, J.; Sojakova, D.; Marhefkova, N.; Fejfarova, V.; Jude, E.B. Endothelial Dysfunction in Diabetes Mellitus: New Insights. Int. J. Mol. Sci. 2023, 24, 10705. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Nucera, S.; Macri, R.; Scicchitano, M.; Bosco, F.; Scarano, F.; Ruga, S.; et al. The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and Pathophysiological Implications. Int. J. Mol. Sci. 2019, 20, 3022. [Google Scholar] [CrossRef]
- Gu, D.; Xia, Y.; Ding, Z.; Qian, J.; Gu, X.; Bai, H.; Jiang, M.; Yao, D. Inflammation in the Peripheral Nervous System after Injury. Biomedicines 2024, 12, 1256. [Google Scholar] [CrossRef]
- Sprenger-Svacina, A.; Svacina, M.K.R.; Otlu, H.G.; Gao, T.; Sheikh, K.A.; Zhang, G. Endoneurial immune interplay in peripheral nerve repair: Insights and implications for future therapeutic interventions. Front. Neurosci. 2025, 19, 1602112. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, H.Q.; Gou, B.; Zheng, Y.L. Mechanisms of exercise for diabetic neuropathic pain. Front. Aging Neurosci. 2022, 14, 975453. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Hastings, M.K. The Application of Exercise Training for Diabetic Peripheral Neuropathy. J. Clin. Med. 2021, 10, 5042. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S. Diabetes-induced peripheral neuropathy: Is prescribing physical exercise the answer? Biomol. Biomed. 2024, 24, 436–439. [Google Scholar] [CrossRef]
- Alshahrani, A.; Bussell, M.; Johnson, E.; Tsao, B.; Bahjri, K. Effects of a Novel Therapeutic Intervention in Patients With Diabetic Peripheral Neuropathy. Arch. Phys. Med. Rehabil. 2016, 97, 733–738. [Google Scholar] [CrossRef]
- Bussell, M.; Sahba, K.; Jahromi, H.; Rashidian, M.; Hankins, J. A Retrospective Assessment of Neuropathic Pain in Response to Intraneural Facilitation® Therapy and Neurovascular Index-Guided Food Elimination. Biomedicines 2025, 13, 688. [Google Scholar] [CrossRef]
- Sahba, K.; Berk, L.; Bussell, M.; Lohman, E.; Zamora, F.; Gharibvand, L. Treating peripheral neuropathy in individuals with type 2 diabetes mellitus with intraneural facilitation: A single blind randomized control trial. J. Int. Med. Res. 2022, 50, 3000605221109390. [Google Scholar] [CrossRef] [PubMed]
- Price, R.; Smith, D.; Franklin, G.; Gronseth, G.; Pignone, M.; David, W.S.; Armon, C.; Perkins, B.A.; Bril, V.; Rae-Grant, A.; et al. Oral and Topical Treatment of Painful Diabetic Polyneuropathy: Practice Guideline Update Summary: Report of the AAN Guideline Subcommittee. Neurology 2022, 98, 31–43. [Google Scholar] [CrossRef]
- Cruvinel-Junior, R.H.; Ferreira, J.; Verissimo, J.L.; Monteiro, R.L.; Silva, E.Q.; Suda, E.Y.; Sacco, I.C.N. Affordable web-based foot-ankle exercise program proves effective for diabetic foot care in a randomized controlled trial with economic evaluation. Sci. Rep. 2024, 14, 16094. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Cruvinel-Junior, R.H.; da Silva, E.Q.; Verissimo, J.L.; Monteiro, R.L.; Duarte, M.; Giacomozzi, C.; Sacco, I.C.N. Effectiveness of a web-based foot-ankle exercise program for treating ulcer risk factors in diabetic neuropathy in a randomized controlled trial. Sci. Rep. 2024, 14, 27291. [Google Scholar] [CrossRef]
- Khurshid, S.; Saeed, A.; Kashif, M.; Nasreen, A.; Riaz, H. Effects of multisystem exercises on balance, postural stability, mobility, walking speed, and pain in patients with diabetic peripheral neuropathy: A randomized controlled trial. BMC Neurosci. 2025, 26, 16. [Google Scholar] [CrossRef]
- Nguyen, V.; Dinh, Q.; Yu, F.; Jia, S.; Wang, X. Interventional effects of exercise on neuropathy in patients with diabetes: A systematic review with meta-analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Gammaitoni, A.R.; Olaleye, D.O.; Oleka, N.; Nalamachu, S.R.; Galer, B.S. The pain quality assessment scale: Assessment of pain quality in carpal tunnel syndrome. J. Pain. 2006, 7, 823–832. [Google Scholar] [CrossRef]
- Victor, T.W.; Jensen, M.P.; Gammaitoni, A.R.; Gould, E.M.; White, R.E.; Galer, B.S. The dimensions of pain quality: Factor analysis of the Pain Quality Assessment Scale. Clin. J. Pain. 2008, 24, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, E.; Jamieson, A.; Chiesa, S.T.; Hughes, A.D.; Jones, S. A short review of application of near-infrared spectroscopy (NIRS) for the assessment of microvascular post-occlusive reactive hyperaemia (PORH) in skeletal muscle. Front. Physiol. 2024, 15, 1480720. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, L.; Ye, T.; Pu, Y.; Yao, Q.; Luo, J.; Huang, Y.; Zhang, X.; Yang, Z. Effectiveness of exercise on musculoskeletal function and clinical outcomes in patients with diabetic peripheral neuropathy: A systematic review and meta-analysis. Front. Neurol. 2025, 16, 1610955. [Google Scholar] [CrossRef] [PubMed]




| Variables | INF® Therapy Group | Exercise Group | ||
|---|---|---|---|---|
| Age | 70.15 ± 7.08 a | 68.50 ± 4.05 | ||
| Height | 1.70 ± 0.11 | 1.69 ± 0.09 | ||
| Weight | 90.11 ± 23.17 | 82.73 ± 13.02 | ||
| BMI | 30.97 ± 5.50 | 29.30 ± 5.35 | ||
| Gender | Female | 9 (45.0) b | Female | 7 (38.9) |
| Male | 11 (55.0) | Male | 11 (61.1) | |
| Race | White or Caucasian | 12 (60.0) | White or Caucasian | 11 (61.1) |
| Black or African American | 2 (10.0) | Black or African American | 3 (16.7) | |
| Asian | 1 (5.0) | Asian | 2 (11.1) | |
| Hispanic or Latino | 2 (10.0) | Hispanic or Latino | 2 (11.1) | |
| Two or more race groups | 3 (15.0) | Two or more race groups | — | |
| Questionnaire | INF® Therapy Group n = 20 | Exercise Group n = 18 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| PQAS | Pre-Treatment | Post-Treatment | Cohen d | Statistical Analysis a | Pre-Treatment | Post-Treatment | Cohen d | Statistical Analysis a | Statistical Analysis b |
| Shooting | 3.65 ± 2.94 a | 2.15 ± 2.91 | −0.53 | p = 0.030 | 3.94 ± 3.80 | 2.94 ± 3.10 | −0.37 | NS | NS |
| Sharp | 4.95 ± 3.05 | 2.35 ± 2.35 | −0.85 | p = 0.001 | 4.78 ± 3.64 | 2.78 ± 3.00 | −0.80 | p = 0.003 | NS |
| Electrical | 3.95 ± 2.95 | 1.95 ± 2.11 | −0.75 | p = 0.003 | 4.50 ± 3.59 | 2.83 ± 3.00 | −0.58 | p = 0.025 | NS |
| Hot | 2.60 ± 3.00 | 1.85 ± 2.58 | −0.28 | NS | 4.00 ± 3.40 | 2.83 ± 3.19 | −0.41 | NS | NS |
| Radiating | 3.60 ± 2.89 | 2.05 ± 2.52 | −0.53 | p = 0.028 | 2.72 ± 2.95 | 2.56 ± 2.66 | −0.07 | NS | NS |
| Paroxysmal domain mean | 3.75 ± 2.40 | 2.78 ± 2.43 | −0.78 | p = 0.002 | 3.99 ± 2.55 | 2.79 ± 2.43 | −0.86 | p = 0.002 | NS |
| Itchy | 3.10 ± 2.59 | 0.80 ± 1.06 | −0.94 | p = 0.000 | 2.06 ± 3.24 | 2.06 ± 2.73 | 0.00 | NS | NS |
| Cold | 3.15 ± 3.48 | 1.70 ± 2.52 | −0.52 | p = 0.030 | 3.28 ± 3.41 | 2.17 ± 2.83 | −0.35 | NS | NS |
| Numb | 5.70 ± 3.11 | 3.75 ± 3.08 | −0.79 | p = 0.002 | 5.67 ± 3.01 | 3.94 ± 2.86 | −0.56 | p = 0.029 | NS |
| Sensitive | 3.65 ± 3.72 | 2.50 ± 2.72 | −0.39 | NS | 4.06 ± 3.56 | 2.17 ± 2.33 | −0.53 | p = 0.037 | NS |
| Tingling | 5.70 ± 2.79 | 2.90 ± 2.85 | −0.94 | p = 0.000 | 4.67 ± 3.05 | 3.50 ± 2.96 | −0.36 | NS | NS |
| Superficial domain mean | 4.26 ± 1.84 | 2.33 ± 1.67 | −1.16 | p = 0.000 | 3.94 ± 1.94 | 2.77 ± 2.33 | −0.85 | p = 0.002 | NS |
| Aching | 4.15 ± 2.94 | 2.75 ± 2.83 | −0.53 | p = 0.030 | 3.67 ± 2.89 | 2.89 ± 2.65 | −0.21 | NS | NS |
| Heavy | 4.25 ± 3.49 | 3.30 ± 3.16 | −0.24 | NS | 3.56 ± 3.28 | 2.11 ± 2.61 | −0.58 | p = 0.024 | NS |
| Dull | 5.05 ± 2.87 | 3.15 ± 2.50 | −0.50 | p = 0.036 | 3.67 ± 2.57 | 3.61 ± 2.23 | −0.02 | NS | NS |
| Cramping | 4.65 ± 3.36 | 3.25 ± 3.02 | −0.50 | p = 0.037 | 3.67 ± 3.27 | 2.33 ± 2.22 | −0.39 | NS | NS |
| Throbbing | 3.15 ± 3.18 | 1.60 ± 2.33 | −0.50 | p = 0.037 | 3.39 ± 3.71 | 2.72 ± 2.95 | −0.20 | NS | NS |
| Deep domain mean | 4.25 ± 2.57 | 2.81 ± 2.07 | −0.54 | p = 0.025 | 3.59 ± 2.23 | 2.73 ± 2.10 | −0.44 | NS | NS |
| Intense | 5.35 ± 2.96 | 3.55 ± 2.76 | −0.59 | p = 0.017 | 5.67 ± 2.57 | 3.78 ± 2.76 | −0.65 | p = 0.014 | NS |
| Unpleasant | 6.30 ± 2.56 | 3.50 ± 2.76 | −0.81 | p = 0.002 | 7.06 ± 2.60 | 4.28 ± 3.06 | −0.89 | p = 0.002 | NS |
| Deep | 5.30 ± 3.13 | 3.55 ± 3.35 | −0.59 | p = 0.017 | 4.89 ± 3.58 | 3.61± 2.87 | −0.33 | NS | NS |
| Surface | 5.10 ± 3.16 | 2.95 ± 2.63 | −0.57 | p = 0.020 | 5.06 ± 2.88 | 2.83 ± 2.62 | −0.58 | p = 0.025 | NS |
| Tender | 3.40 ± 3.00 | 2.25 ± 2.00 | −0.37 | NS | 4.56 ± 3.71 | 2.44 ± 2.91 | −0.53 | p = 0.037 | NS |
| Total Score | 86.75 ± 40.68 | 51.85 ± 37.77 | −0.83 | p = 0.001 | 84.83 ± 38.12 | 58.39 ± 40.64 | −0.99 | p = 0.001 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahba, K.; Wilson, C.G.; Gonzales, E.; Hankins, J.; Jahromi, H.; Ghamsary, M.; Bussell, M. Comparison of Intraneural FacilitationTM Therapy and Exercise on Patients with Type 2 Diabetes: A Single-Blind Randomized Trial. Biomedicines 2025, 13, 2968. https://doi.org/10.3390/biomedicines13122968
Sahba K, Wilson CG, Gonzales E, Hankins J, Jahromi H, Ghamsary M, Bussell M. Comparison of Intraneural FacilitationTM Therapy and Exercise on Patients with Type 2 Diabetes: A Single-Blind Randomized Trial. Biomedicines. 2025; 13(12):2968. https://doi.org/10.3390/biomedicines13122968
Chicago/Turabian StyleSahba, Kyan, Christopher G. Wilson, Evelen Gonzales, Jamie Hankins, Hailey Jahromi, Mark Ghamsary, and Mark Bussell. 2025. "Comparison of Intraneural FacilitationTM Therapy and Exercise on Patients with Type 2 Diabetes: A Single-Blind Randomized Trial" Biomedicines 13, no. 12: 2968. https://doi.org/10.3390/biomedicines13122968
APA StyleSahba, K., Wilson, C. G., Gonzales, E., Hankins, J., Jahromi, H., Ghamsary, M., & Bussell, M. (2025). Comparison of Intraneural FacilitationTM Therapy and Exercise on Patients with Type 2 Diabetes: A Single-Blind Randomized Trial. Biomedicines, 13(12), 2968. https://doi.org/10.3390/biomedicines13122968

