Genetic Aberrations in Normal Tissues Adjacent to Biliary Tract Cancers
Abstract
1. Introduction
2. Methods
2.1. Patients and Samples
2.2. Sequencing
2.3. Bioinformatic Data Processing and Analysis
2.4. Identification of Somatic Single-Nucleotide Variants and Short Indels
2.5. Calculation of the Tumor Mutation Burden
2.6. Mutational Signature Analysis
2.7. Copy Number Variation Analysis
2.8. Pathway and Network Analysis
3. Results
3.1. Patient Characteristics
3.2. Somatic Mutations
3.3. Pathways Associated with the Mutant Genes
3.4. Mutational Signatures
3.5. Copy Number Variation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BTCs | biliary tract cancers |
| BilIN | biliary intraepithelial neoplasias |
| BAM | binary alignment map |
| CGC | Cancer Gene Census |
| CNVs | copy number variations |
| dCCAs | distal cholangiocarcinomas |
| EHCCA | extrahepatic cholangiocarcinoma |
| GATK | Genome Analysis Toolkit |
| iCCAs | intrahepatic cholangiocarcinomas |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| NATs | normal tissues adjacent to tumors |
| SNVs | single-nucleotide variants |
| TMB | tumor mutation burden |
| WES | whole-exome sequencing |
| WGS | whole-genome sequencing |
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.G.; Makarova-Rusher, O.V.; Greten, T.F. The case for immune-based approaches in biliary tract carcinoma. Hepatology 2016, 64, 1785–1791. [Google Scholar] [CrossRef]
- Roy, S.; Glaser, S.; Chakraborty, S. Inflammation and progression of cholangiocarcinoma: Role of angiogenic and lymphangiogenic mechanisms. Front. Med. 2019, 6, 293. [Google Scholar] [CrossRef]
- Shrihari, T.G. Dual role of inflammatory mediators in cancer. Ecancermedicalscience 2017, 11, 721. [Google Scholar] [CrossRef]
- Galandiuk, S.; Rodriguez-Justo, M.; Jeffery, R.; Nicholson, A.M.; Cheng, Y.; Oukrif, D.; Elia, G.; Leedham, S.J.; McDonald, S.A.; Wright, N.A.; et al. Field cancerization in the intestinal epithelium of patients with Crohn’s ileocolitis. Gastroenterology 2012, 142, 855–864.e8. [Google Scholar] [CrossRef]
- Dotto, G.P. Multifocal epithelial tumors and field cancerization: Stroma as a primary determinant. J. Clin. Investig. 2014, 124, 1446–1453. [Google Scholar] [CrossRef]
- Lochhead, P.; Chan, A.T.; Nishihara, R.; Fuchs, C.S.; Beck, A.H.; Giovannucci, E.; Ogino, S. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression. Mod. Pathol. 2015, 28, 14–29. [Google Scholar] [CrossRef]
- Slaughter, D.P.; Southwick, H.W.; Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953, 6, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef]
- Lin, J.; Peng, X.; Dong, K.; Long, J.; Guo, X.; Li, H.; Bai, Y.; Yang, X.; Wang, D.; Lu, X.; et al. Genomic Characterization of Co-Existing Neoplasia and Carcinoma Lesions Reveals Distinct Evolutionary Paths of Gallbladder Cancer. Nat. Commun. 2021, 12, 4753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.; Li, C.; Wang, C.; Jiang, W.; Chang, J.; Han, S.; Lu, Z.; Shao, Z.; Wang, Y.; et al. The Genomic Landscape of Cholangiocarcinoma Reveals the Disruption of Post-Transcriptional Modifiers. Nat. Commun. 2022, 13, 3061. [Google Scholar] [CrossRef]
- Zhou, Z.-J.; Ye, Y.-H.; Hu, Z.-Q.; Hou, Y.-R.; Liu, K.-X.; Sun, R.-Q.; Wang, P.-C.; Luo, C.-B.; Li, J.; Zou, J.-X.; et al. Whole-Exome Sequencing Reveals Genomic Landscape of Intrahepatic Cholangiocarcinoma and Identifies SAV1 as a Potential Driver. Nat. Commun. 2024, 15, 9960. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Camarda, R.; Odegaard, J.; Paik, H.; Oskotsky, B.; Krings, G.; Goga, A.; Sirota, M.; Butte, A.J. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat. Commun. 2017, 8, 1077. [Google Scholar] [CrossRef]
- Esteller, M.; Dawson, M.A.; Kadoch, C.; Rassool, F.V.; Jones, P.A.; Baylin, S.B. The epigenetic hallmarks of cancer. Cancer Discov. 2024, 14, 1783–1809. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Zhang, X.; Liu, H.; Guo, J. KDM6A suppresses hepatocellular carcinoma cell proliferation by negatively regulating the TGF-β/SMAD signaling pathway. Exp. Ther. Med. 2020, 20, 2774–2782. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Guo, C.; Liu, L.; Jiao, D.; Sun, Z.; Wu, K.; Zhao, Y.; Han, X. TTN/OBSCN ‘Double-Hit’ predicts favourable prognosis, ‘immune-hot’ subtype and potentially better immunotherapeutic efficacy in colorectal cancer. J. Cell. Mol. Med. 2021, 25, 3239–3251. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Jang, S.J.; Kim, J.; Sohn, I.; Lee, J.Y.; Cho, E.J.; Chun, S.-M.; Sung, C.O. Spontaneous mutations in the single TTN gene represent high tumor mutation burden. NPJ Genom. Med. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, X.; Shi, Y. Association of MUC16 mutation with response to immune checkpoint inhibitors in solid tumors. JAMA Netw. Open 2020, 3, e2013201. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Brunner, S.F.; Roberts, N.D.; Wylie, L.A.; Moore, L.; Aitken, S.J.; Davies, S.E.; Sanders, M.A.; Ellis, P.; Alder, C.; Hooks, Y.; et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 2019, 574, 538–542. [Google Scholar] [CrossRef]
- Varier, R.A.; Timmers, H.T. Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta 2011, 1815, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, H.; Zhao, E.; Cui, H. The diverse roles of histone demethylase KDM4B in normal and cancer development and progression. Front. Cell Dev. Biol. 2021, 9, 790129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, B.H.; Xiao, M.; Li, H.; Guo, L.; Wang, M.X.; Yu, S.-H.; Ye, Q.-H. KDM5C represses FASN-mediated lipid metabolism to exert tumor suppressor activity in intrahepatic cholangiocarcinoma. Front. Oncol. 2020, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Rondinelli, B.; Rosano, D.; Antonini, E.; Frenquelli, M.; Montanini, L.; Huang, D.; Segalla, S.; Yoshihara, K.; Amin, S.B.; Lazarevic, D.; et al. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J. Clin. Investig. 2015, 125, 4625–4637. [Google Scholar] [CrossRef]
- Qiu, H.; Makarov, V.; Bolzenius, J.K.; Halstead, A.; Parker, Y.; Wang, A.; Iyer, G.V.; Wise, H.; Kim, D.; Thayaparan, V.; et al. KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and drives cell proliferation in bladder cancer. Cancer Res. 2023, 83, 814–829. [Google Scholar] [CrossRef]
- Foster, S.S.; De, S.; Johnson, L.K.; Petrini, J.H.J.; Stracker, T.H. Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc. Natl. Acad. Sci. USA 2012, 109, 9953–9958. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Fu, J. DNA damage response and cell fate decisions across the lifespan: From fetal development to age-related respiratory diseases. Cell Biosci. 2025, 15, 114. [Google Scholar] [CrossRef]
- Zhang, W.; Van Gent, D.C.; Incrocci, L.; Van Weerden, W.M.; Nonnekens, J. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 2020, 23, 24–37. [Google Scholar] [CrossRef]
- Soussi, T.; Béroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer 2001, 1, 233–240. [Google Scholar] [CrossRef]
- Skoulidis, F.; Heymach, J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kopetz, S.; Newhook, T.E.; De Bellis, M.; Chun, Y.S.; Tzeng, C.D.; Aloia, T.A.; Vauthey, J.-N. Mutation status of RAS, TP53, and SMAD4 is superior to mutation status of RAS alone for predicting prognosis after resection of colorectal liver metastases. Clin. Cancer Res. 2019, 25, 5843–5851. [Google Scholar] [CrossRef]
- Ono, M.; Ono, Y.; Nakamura, T.; Tsuchikawa, T.; Kuraya, T.; Kuwabara, S.; Nakanishi, Y.; Asano, T.; Matsui, A.; Tanaka, K.; et al. Predictors of long-term survival in pancreatic ductal adenocarcinoma after pancreatectomy: TP53 and SMAD4 mutation scoring in combination with CA19-9. Ann. Surg. Oncol. 2022, 29, 5007–5019. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, D.; Liu, J.; Qiu, J.; Zhou, J.; Ying, J.; Shi, Y.; Wang, Z.; Lou, H.; Cui, J.; et al. Genomic alterations in biliary tract cancer predict prognosis and immunotherapy outcomes. J. Immunother. Cancer 2021, 9, e003214. [Google Scholar] [CrossRef] [PubMed]
- Churi, C.R.; Shroff, R.; Wang, Y.; Rashid, A.; Kang, H.C.; Weatherly, J.; Zuo, M.; Zinner, R.; Hong, D.; Meric-Bernstam, F.; et al. Mutation profiling in cholangiocarcinoma: Prognostic and therapeutic implications. PLoS ONE 2014, 9, e115383. [Google Scholar] [CrossRef] [PubMed]




| Patient ID | Age | Sex | Diagnosis | Smoking /Alcohol | Comorbidity /Inflammatory Factors | Pathology /Differentiation | TNM stage | Margin | Associated Findings | Growth Pattern |
|---|---|---|---|---|---|---|---|---|---|---|
| S424 | 83 | F | EHCCA | Non-smoker /None | Cholangitis | Adenocarcinoma /Moderate | pT2N0Mx | R0 | BilIN-1 | Diffusely infiltrating |
| S426 | 72 | F | EHCCA | Non-smoker /None | - | Adenocarcinoma /Well | pT2N1Mx | R0 | BilIN-3 | Periductal infiltrating |
| S028 | 76 | F | EHCCA | Non-smoker /None | - | Adenocarcinoma /Moderate | pT2N1Mx | R0 | BilIN-3 | Periductal infiltrating |
| S037 | 75 | M | EHCCA | Ex-smoker (>1 yr) /None | - | Adenocarcinoma /Moderate | pT3N1Mx | R0 | BilIN-1 | Periductal infiltrating |
| S427 | 59 | F | EHCCA | Non-smoker /None | - | Adenocarcinoma /Moderate | pT2aN1Mx | R1 | IPNB with high-grade dysplasia | Periductal infiltrating |
| S390 | 78 | M | IHCCA | Non-smoker /None | - | Adenocarcinoma /Moderate | pT3N0Mx | R1 | – | Mass-forming |
| S170 | 57 | M | IHCCA | Ex-smoker /None | Gallstone Viral hepatitis | Adenocarcinoma /Moderate | pT1aN0Mx | R0 | BilIN-1 | Mass-forming |
| S428 | 65 | M | IHCCA | Smoker /Alcoholics | - | Adenocarcinoma /Moderate | pT1bN0Mx | R0 | – | Mass-forming |
| S430 | 58 | F | IHCCA | Non-smoker /None | Hepato-lithiasis | Adenocarcinoma /Moderate | pT2N0Mx | R0 | – | Mixed mass-forming /periductal infiltrating |
| S423 | 55 | F | GBC | Non-smoker /None | Gallbladder polyp | Adenocarcinoma /Moderate | pT2N0Mx | R0 | – | Mixed expanding /infiltrative |
| S425 | 81 | M | GBC | Non-smoker /None | - | Adenocarcinoma /Moderate | pT3N1Mx | R0 | – | Diffuse infiltrative |
| S429 | 59 | F | GBC | Non-smoker /Alcoholics | Adenocarcinoma /Well | pT1aN0Mx | R0 | Mixed expanding /infiltrative | ||
| S431 | 77 | M | GBC | Ex-smoker /None | Adenocarcinoma /Well | pT2aN1Mx | R0 | Diffuse infiltrative |
| Gene | Position | HGVS.c | HGVS.p | Variant Type | Patient ID |
|---|---|---|---|---|---|
| APC | chr5:112838410 | c.2816A>C | p.K939T | SNP | S424 |
| chr5:112841706 | c.6112C>G | p.L2038V | SNP | S429 | |
| FAM131B | chr7:143356953 | c.680G>A | p.G227E | SNP | S170 |
| chr7:143359365 | c.229G>A | p.A77T | SNP | S028 | |
| FAM135B | chr8:138197572 | c.767G>A | p.R256H | SNP | S426 |
| chr8:138167985 | c.1168C>T | p.P390S | SNP | S431 | |
| chr8:138151854 | c.2621A>G | p.E874G | SNP | S425 | |
| IRS4 | chrX:108735702 | c.643G>C | p.G215R | SNP | S423 |
| chrX:108735023 | c.3322C>G | p.L1108V | SNP | S427 | |
| MUC16 | chr19:8978644 | c.2495C>T | p.S832L | SNP | S431 |
| chr19:8977901 | c.3238A>G | p.M1080V | SNP | S427 | |
| chr19:8906760 | c.37888G>A | p.E12630K | SNP | S426 | |
| chr19:8898625 | c.39172C>T | p.P13058S | SNP | S170 | |
| chr19:8883508 | c.41501G>A | p.S13834N | SNP | S424 | |
| chr19:8955687 | c.21083T>A | p.M7028K | SNP | S428 | |
| PREX2 | chr8:68080485 | c.1685G>T | p.R562L | SNP | S429 |
| chr8:68108133 | c.2740G>T | p.A914S | SNP | S424 | |
| RNF213 | chr17:80346941 | c.8606T>C | p.I2869T | SNP | S390 |
| chr17:80347169 | c.8834G>A | p.R2945H | SNP | S423 | |
| SH3GL1 | chr19:4362329 | c.910C>T | p.P304S | SNP | S390 |
| chr19:4361726 | c.981C>G | p.F327L | SNP | S170 | |
| TCF7L2 | chr10:113141292 | c.661C>A | p.P221T | SNP | S390 |
| chr10:113165608 | c.1445C>T | p.P482L | SNP | S424 | |
| TCF12 | chr15:57231161 | c.589C>T | p.P197S | SNP | S429 |
| chr15:57273058 | c.1774C>T | p.P592S | SNP | S037 | |
| TP53 | chr17:7675206 | c.406C>G | p.Q136E | SNP | S424 |
| chr17:7675161 | c.451C>G | p.P151A | SNP | S427 | |
| WNK2 | chr9:93247700 | c.1700C>T | p.P567L | SNP | S429 |
| chr9:93289369 | c.4729_4731del | p.P1577del | DEL | S430 | |
| ZFHX3 | chr16:72959949 | c.197C>T | p.A66V | SNP | S428 |
| chr16:72959907 | c.239C>T | p.T80I | SNP | S426 | |
| chr16:72957811 | c.2335G>A | p.A779T | SNP | S428 | |
| chr16:72788585 | c.9629_9691del | p.P3210_Q3230del | DEL | S423 |
| Patient ID | Gene | Position | HGVS.c | HGVS.p | ClinVar | Sample |
|---|---|---|---|---|---|---|
| S427 | CDKN2A | chr9:21971209 | c.151-1G>A | p.X51_splice | pathogenic | Tumor |
| S428 | KRAS | chr12:25245350 | c.35G>A | p.G12D | pathogenic | Tumor |
| S430 | KRAS | chr12:25245350 | c.35G>A | p.G12D | pathogenic | Tumor |
| S170 | PIK3CA | chr3:179218303 | c.1633G>A | p.E545K | pathogenic | Tumor |
| S427 | TP53 | chr17:7675161 | c.451C>G | p.P151A | pathogenic | NAT, Tumor |
| S430 | TP53 | chr17:7673788 | c.832C>A | p.P278T | pathogenic | Tumor |
| S028 | TP53 | chr17:7674191 | c.772G>T | p.E258* | pathogenic | Tumor |
| S428 | APC | chr5:112840210 | c.4616C>A | p.S1539* | likely pathogenic | Tumor |
| S431 | CDKN2A | chr9:21971037 | c.322G>A | p.D108N | likely pathogenic | Tumor |
| S431 | ERBB2 | chr17:39711955 | c.929C>T | p.S310F | likely pathogenic | Tumor |
| S428 | ERBB3 | chr12:56088557 | c.889G>T | p.D297Y | likely pathogenic | Tumor |
| S170 | PTEN | chr10:87960879 | c.802-14_809del | p.X268_splice | likely pathogenic | Tumor |
| S028 | SMAD4 | chr18:51047214 | c.170del | p.L57* | likely pathogenic | Tumor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, C.H.; Park, S.H.; Lee, H.J.; Lee, J.H.; Han, S.Y.; Park, Y.M.; Seo, H.I.; Kim, D.U.; Noh, B.G. Genetic Aberrations in Normal Tissues Adjacent to Biliary Tract Cancers. Biomedicines 2025, 13, 2812. https://doi.org/10.3390/biomedicines13112812
Kwon CH, Park SH, Lee HJ, Lee JH, Han SY, Park YM, Seo HI, Kim DU, Noh BG. Genetic Aberrations in Normal Tissues Adjacent to Biliary Tract Cancers. Biomedicines. 2025; 13(11):2812. https://doi.org/10.3390/biomedicines13112812
Chicago/Turabian StyleKwon, Chae Hwa, Sung Hee Park, Hye Ji Lee, Jong Hyun Lee, Sung Yong Han, Yong Mok Park, Hyung Il Seo, Dong Uk Kim, and Byeong Gwan Noh. 2025. "Genetic Aberrations in Normal Tissues Adjacent to Biliary Tract Cancers" Biomedicines 13, no. 11: 2812. https://doi.org/10.3390/biomedicines13112812
APA StyleKwon, C. H., Park, S. H., Lee, H. J., Lee, J. H., Han, S. Y., Park, Y. M., Seo, H. I., Kim, D. U., & Noh, B. G. (2025). Genetic Aberrations in Normal Tissues Adjacent to Biliary Tract Cancers. Biomedicines, 13(11), 2812. https://doi.org/10.3390/biomedicines13112812

