Sex Differences in Individuals at High Risk of Atrial Fibrillation: A Primary Care Community Cohort Study, 2015–2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Scope
2.3. Data Collection and Information Sources
2.4. Study Population
2.5. Inclusion and Exclusion Criteria
2.6. Variables
2.7. Statistical Analysis
3. Results
3.1. Overall Cohort
3.2. High-Risk for Atrial Fibrillation Subgroup (Quartile 4)
3.3. New-Onset AF in the High-Risk AF (Quartile 4) Subgroup
3.4. Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AF | Atrial Fibrillation |
| ABC pathway | Atrial fibrillation Better Care |
| ESC | European Society of Cardiology |
| AF-CARE | AF Comorbidity Avoidance of stroke Rate and rhythm control Evaluation |
| EAPs | Primary Care teams |
| ICS | Catalan Health Institute |
| HCC3 | Shared Health records of Catalonia |
| CMBD | Minimum Basic Data set |
| IRRs | Incidence Rate Ratios |
| AAMRs | Age-Adjusted Mortality Rates |
| EAST-AFNET study | Early Treatment of Atrial Fibrillation for Stroke Prevention Trial |
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414, Erratum in Eur. Heart J. 2025, 46, ehaf306. https://doi.org/10.1093/eurheartj/ehaf306. [Google Scholar] [CrossRef]
- Linz, D.; Hermans, A.; Tieleman, R.G. Early atrial fibrillation detection and the transition to comprehensive management. EP Europace 2021, 23 (Suppl. S2), ii46–ii51. [Google Scholar] [CrossRef]
- Svennberg, E.; Freedman, B.; Andrade, J.G.; Anselmino, M.; Biton, Y.; Boriani, G.; Brandes, A.; Buckley, C.M.; Cameron, A.; Clua-Espuny, J.L.; et al. Recent-onset atrial fibrillation: Challenges and opportunities. Eur. Heart J. 2025, ehaf478. [Google Scholar] [CrossRef] [PubMed]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.H. Managing high-risk atrial fibrillation patients with multiple comorbidities. Int. J. Arrhythm. 2023, 24, 4. [Google Scholar] [CrossRef]
- Riesgo, A.; Sant, E.; Benito, L.; Hoyo, J.; Miró, O.; Mont, L.; Bragulat, E.; Coll-Vinent, B. Sex differences in the treatment of patients with atrial fibrillation: Population-based study in a local health district. Rev. Esp. Cardiol. 2011, 64, 233–236. [Google Scholar] [CrossRef]
- Odening, K.E.; Deiß, S.; Dilling-Boer, D.; Didenko, M.; Eriksson, U.; Nedios, S.; Ng, F.S.; Roca Luque, I.; Sanchez Borque, P.; Vernooy, K.; et al. Mechanisms of sex differences in atrial fibrillation: Role of hormones and differences in electrophysiology, structure, function, and remodelling. EP Europace 2019, 21, 366–376. [Google Scholar] [CrossRef]
- Jeong, J.H.; Choi, J.I. A ‘Gender Paradox’ of Female as a Stroke Risk in Atrial Fibrillation: Do Women Live Longer Than Men? Korean Circ. J. 2022, 52, 604–605. [Google Scholar] [CrossRef]
- Nakamizo, T.; Misumi, M.; Takahashi, T.; Kurisu, S.; Matsumoto, M.; Tsujino, A. Female “Paradox” in Atrial Fibrillation—Role of Left Truncation Due to Competing Risks. Life 2023, 13, 1132. [Google Scholar] [CrossRef]
- Lip, G. The ABC pathway: An integrated approach to improve AF management. Nat. Rev. Cardiol. 2017, 14, 627–628. [Google Scholar] [CrossRef]
- Clua-Espuny, J.L.; Hernández-Pinilla, A.; Gentille-Lorente, D.; Muria-Subirats, E.; Forcadell-Arenas, T.; de Diego-Cabanes, C.; Ribas-Seguí, D.; Diaz-Vilarasau, A.; Molins-Rojas, C.; Palleja-Millan, M.; et al. Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study). Biomedicines 2025, 13, 119. [Google Scholar] [CrossRef]
- Abellana, R.; Gonzalez-Loyola, F.; Verdu-Rotellar, J.M.; Bustamante, A.; Palà, E.; Clua-Espuny, J.L.; Montaner, J.; Pedrote, A.; Del Val-Garcia, J.L.; Ribas Segui, D.; et al. Predictive model for atrial fibrillation in hypertensive diabetic patients. Eur. J. Clin. Investig. 2021, 51, e13633. [Google Scholar] [CrossRef]
- Alonso, A.; Krijthe, B.P.; Aspelund, T.; Stepas, K.A.; Pencina, M.J.; Moser, C.B.; Sinner, M.F.; Sotoodehnia, N.; Fontes, J.D.; Janssens, A.C.; et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: The CHARGE-AF consortium. J. Am. Heart Assoc. 2013, 2, e000102. [Google Scholar] [CrossRef]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC] study). Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Wang, L.; Zhang, T.; Gao, H.; Pastori, D.; Liang, Z.; Lip, G.Y.H.; Wang, Y. The mC2HEST Score for Incident Atrial Fibrillation: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Adv. 2025, 4, 101521. [Google Scholar] [CrossRef] [PubMed]
- Segan, L.; Canovas, R.; Nanayakkara, S.; Chieng, D.; Prabhu, S.; Voskoboinik, A.; Sugumar, H.; Ling, L.H.; Lee, G.; Morton, J.; et al. New-onset atrial fibrillation prediction: The HARMS2-AF risk score. Eur. Heart J. 2023, 44, 3443–3452. [Google Scholar] [CrossRef]
- Clua-Espuny, J.L.; Panisello-Tafalla, A.; Lucas-Noll, J.; Muria-Subirats, E.; Forcadell-Arenas, T.; Carrera-Ortiz, J.M.; Molto-Balado, P.; Clua-Queralt, J.; Fusté-Anguera, I.; Reverte-Vilarroya, S.; et al. Stroke Risk Stratification in Incident Atrial Fibrillation: A Sex-Specific Evaluation of CHA2DS2-VA and CHA2DS2-VASc. J. Cardiovasc. Dev. Dis. 2025, 12, 259. [Google Scholar] [CrossRef]
- Lucas-Noll, J.; Clua-Espuny, J.L.; Carles-Lavila, M.; Solà-Adell, C.; Roca-Burgueño, Í.; Panisello-Tafalla, A.; Gavaldà-Espelta, E.; Queralt-Tomas, L.; Lleixà-Fortuño, M. Sex Disparities in the Direct Cost and Management of Stroke: A Population-Based Retrospective Study. Healthcare 2024, 12, 1369. [Google Scholar] [CrossRef]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Baset-Martínez, S.; Carot-Domenech, J.; Clua-Espuny, J.L. Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines 2023, 11, 1825. [Google Scholar] [CrossRef]
- Pla de Salut de la Regió Sanitària Terres de l’Ebre 2021–2025; Direcció General de Planificació i Recerca en Salut: Tortosa, Spain, 2022; Available online: https://scientiasalut.gencat.cat/handle/11351/7964 (accessed on 5 December 2024).
- Idescat. Indicadors Demogràfics i de Territori. Estructura per Edats, Envelliment i Dependència. Comarques i Aran; Institut d’Estadística de Catalunya: Barcelona, Spain, 2025; Available online: http://www.idescat.cat/pub/?id=inddt&n=915&by=com (accessed on 5 December 2024).
- Generalitat de Catalunya. Projeccions de Població Principals Resultats 2013–2051; Institut d’Estadística de Catalunya: Barcelona, Spain, 2008; Available online: https://www.idescat.cat/serveis/biblioteca/docs/cat/pp2021-2041pr.pdf (accessed on 5 December 2024).
- Idescat. Anuario Estadístico de Cataluña. Renda Familiar Disponible Bruta. Índex. Comarques i Aran, i Àmbits; Institut d’Estadística de Catalunya: Barcelona, Spain, 2024; Available online: http://www.idescat.cat/pub/?id=aec&n=941 (accessed on 5 December 2024).
- Muria-Subirats, E.; Clua-Espuny, J.L.; Ballesta-Ors, J.; Lorman-Carbó, B.; Lechuga-Durán, I.; Fernández-Sáez, J.; Pla-Farnós, R. Incidence and Risk Assessment for Atrial Fibrillation at 5 Years: Hypertensive Diabetic Retrospective Cohort. Int. J. Environ. Res. 2020, 17, 3491. [Google Scholar] [CrossRef]
- Wu, G.; Wu, J.; Lu, Q.; Cheng, Y.; Mei, W. Association between cardiovascular risk factors and atrial fibrillation. Front. Cardiovasc. Med. 2023, 10, 1110424. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Ghelani, K.P.; Chen, L.Y.; Norby, F.L.; Soliman, E.Z.; Koton, S.; Alonso, A. Thirty-Year Trends in the Incidence of Atrial Fibrillation: The ARIC Study. J. Am. Heart Assoc. 2022, 11, e023583. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Van Gelder, I.C.; Desteghe, L.; EHRA-PATHS Investigators. ESC and EHRA lead a path towards integrated care for multimorbid atrial fibrillation patients: The Horizon 2020 EHRA-PATHS project. Eur. Heart J. 2022, 43, 1450–1452. [Google Scholar] [CrossRef]
- Westerman, S.; Wenger, N. Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes. Curr. Cardiol. Rev. 2019, 15, 136–144. [Google Scholar] [CrossRef]
- Piccini, J.P.; Simon, D.N.; Steinberg, B.A.; Thomas, L.; Allen, L.A.; Fonarow, G.C.; Gersh, B.; Hylek, E.; Kowey, P.R.; Reiffel, J.A.; et al. Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Investigators and Patients. Differences in Clinical and Functional Outcomes of Atrial Fibrillation in Women and Men: Two-Year Results From the ORBIT-AF Registry. JAMA Cardiol. 2016, 1, 282–291. [Google Scholar] [CrossRef]
- Roten, L.; Goulouti, E.; Lam, A.; Elchinova, E.; Nozica, N.; Spirito, A.; Wittmer, S.; Branca, M.; Servatius, H.; Noti, F.; et al. Age and Sex Specific Prevalence of Clinical and Screen-Detected Atrial Fibrillation in Hospitalized Patients. J. Clin. Med. 2021, 10, 4871. [Google Scholar] [CrossRef]
- Magnussen, C.; Niiranen, T.J.; Ojeda, F.M.; Gianfagna, F.; Blankenberg, S.; Njølstad, I.; Vartiainen, E.; Sans, S.; Pasterkamp, G.; Hughes, M.; et al. Sex Differences and Similarities in Atrial Fibrillation Epidemiology, Risk Factors, and Mortality in Community Cohorts: Results From the BiomarCaRE Consortium (Biomarker for Cardiovascular Risk Assessment in Europe). Circulation 2017, 136, 1588–1597. [Google Scholar] [CrossRef]
- Romiti, G.; Corica, B.; Mei, D.A.; Bisson, A.; Boriani, G.; Olshansky, B.; Chao, T.-F.; Huisman, M.V.; Proietti, M.; Lip, G.Y.H.; et al. Patterns of comorbidities in patients with atrial fibrillation and impact on management and long-term prognosis: An analysis from the Prospective Global GLORIA-AF Registry. BMC Med. 2024, 22, 151. [Google Scholar] [CrossRef]
- Volgman, A.S.; Benjamin, E.J.; Curtis, A.B.; Fang, M.C.; Lindley, K.J.; Naccarelli, G.V.; Pepine, C.J.; Quesada, O.; Vaseghi, M.; Waldo, A.L.; et al. American College of Cardiology Committee on Cardiovascular Disease in Women. Women and atrial fibrillation. J. Cardiovasc. Electrophysiol. 2021, 32, 2793–2807. [Google Scholar] [CrossRef]
- Ball, J.; Carrington, M.J.; Wood, K.A.; Stewart, S. Women versus men with chronic atrial fibrillation: Insights from the Standard versus Atrial Fibrillation spEcific managemenT studY (SAFETY). PLoS ONE 2013, 8, e65795. [Google Scholar] [CrossRef]
- Potpara, T.S.; Marinkovic, J.M.; Polovina, M.M.; Stankovic, G.R.; Seferovic, P.M.; Ostojic, M.C.; Lip, G.Y. Gender-related differences in presentation, treatment and long-term outcome in patients with first-diagnosed atrial fibrillation and structurally normal heart: The Belgrade atrial fibrillation study. Int. J. Cardiol. 2012, 161, 39–44. [Google Scholar] [CrossRef]
- Kaze, A.D.; Yuyun, M.F.; Fonarow, G.C.; Echouffo-Tcheugui, J.B. Burden of Microvascular Disease and Risk of Atrial Fibrillation in Adults with Type 2 Diabetes. Am. J. Med. 2022, 135, 1093–1100.e2. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Vinayagamoorthy, M.; Gencer, B.; Ng, C.; Pester, J.; Cook, N.R.; Lee, I.M.; Buring, J.; Manson, J.E.; Albert, C.M. Sex Differences in Atrial Fibrillation Risk: The VITAL Rhythm Study. JAMA Cardiol. 2022, 7, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, B.A.; Li, Z.; O’Brien, E.C.; Pritchard, J.; Chew, D.S.; Bunch, T.J.; Mark, D.B.; Nabutovsky, Y.; Greiner, M.A.; Piccini, J.P. Atrial fibrillation burden and heart failure: Data from 39,710 individuals with cardiac implanted electronic devices. Heart Rhythm. 2021, 18, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Rivard, L.; Friberg, L.; Conen, D.; Healey, J.S.; Berge, T.; Boriani, G.; Brandes, A.; Calkins, H.; Camm, A.J.; Yee Chen, L.; et al. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022, 145, 392–409, Erratum in Circulation 2022, 145, e842. https://doi.org/10.1161/CIR.0000000000001067. [Google Scholar] [CrossRef]
- Passey, S.; Patel, J.; Patail, H.; Aronow, W. Association of Atrial Fibrillation and Cognitive Dysfunction: A Comprehensive Narrative Review of Current Understanding and Recent Updates. J. Clin. Med. 2024, 13, 5581. [Google Scholar] [CrossRef]
- Hassan, I.N.; Ibrahim, M.; Yaqub, S.; Ibrahim, M.; Abdalla, H.; Aljaili, G.; Osman, W.; Abuassa, N.; Ashraf, H.; Shoukat, M. Trends in Atrial Fibrillation-Related Mortality Among Older Adults With Obstructive Sleep Apnea in the United States, 1999–2020. Clin. Cardiol. 2025, 48, e70178. [Google Scholar] [CrossRef]
- Sohail, M.U.; Batool, R.M.; Saad, M.; Waqas, S.A.; Noushad, M.A.; Sohail, M.O.; Bates, M.; Ahmed, R.; Ripley, D. Trends in Mortality Related to Atrial Fibrillation and Dementia in Older Adults in the United States: A 2000–2020 Analysis. J. Cardiovasc. Electrophysiol. 2025, 36, 1234–1243. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, L.; Ali, S.M.E.; Ashraf, S.; Bhimani, S.; Kumar, S.; Raja, A.; Bs, A.; Ayalew, B.D.; Malik, M.H.B.A. Trends in United States mortality among patients with atrial fibrillation/flutter related heart failure (1999–2024): Disparities by gender, race/ethnicity and region. BMC Cardiovasc. Disord. 2025, 25, 558. [Google Scholar] [CrossRef] [PubMed]
- van den Dries, C.J.; van Doorn, S.; Rutten, F.H.; Oudega, R.; van de Leur, S.J.C.M.; Elvan, A.; Oude Grave, L.; Bilo, H.J.G.; Moons, K.G.M.; Hoes, A.W.; et al. Integrated management of atrial fibrillation in primary care: Results of the ALL-IN cluster randomized trial. Eur. Heart J. 2020, 41, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Dickow, J.; Kany, S.; Roth Cardoso, V.; Ellinor, P.T.; Gkoutos, G.V.; Van Houten, H.K.; Kirchhof, P.; Metzner, A.; Noseworthy, P.A.; Yao, X.; et al. Outcomes of Early Rhythm Control Therapy in Patients with Atrial Fibrillation and a High Comorbidity Burden in Large Real-World Cohorts. Circ. Arrhythm. Electrophysiol. 2023, 16, e011585. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.A. Different by Design: Heterogeneity in Models of Risk Prediction and Clinical Decision Support in Screening for Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2025, 18, e012281. [Google Scholar] [CrossRef]
- Veen, D.; Ye, Z.; van Schie, M.S.; Knops, P.; Kavousi, M.; Vos, L.; Yildirim, V.; Taverne, Y.J.H.J.; de Groot, N.M.S. Sex differences in atrial potential morphology. Int. J. Cardiol. Heart Vasc. 2025, 56, 101597. [Google Scholar] [CrossRef]
- Vogel, B.; Acevedo, M.; Appelman, Y.; Bairey Merz, C.N.; Chieffo, A.; Figtree, G.A.; Guerrero, M.; Kunadian, V.; Lam, C.S.P.; Maas, A.H.E.M.; et al. The Lancet women and cardiovascular disease Commission: Reducing the global burden by 2030. Lancet 2021, 397, 2385–2438. [Google Scholar] [CrossRef]
- Salehi Omran, S.; Leppert, M. Female-Specific Risk Factors in Cardiovascular Disease: Important or Superfluous? Circ. Cardiovasc. Qual. Outcomes 2024, 17, e011666. [Google Scholar] [CrossRef]
- Houle, J.; Proietti, M.; Raparelli, V.; Atzema, C.L.; Norris, C.M.; Abrahamowicz, M.; Lip, G.Y.; Boriani, G.; Pilote, L. Gendered social determinants of health and risk of major adverse outcomes in atrial fibrillation. Eur. J. Intern. Med. 2025, 135, 83–90. [Google Scholar] [CrossRef]
- Tan, J.L.; Johnson, L.; Dziubinski, M.; Napiorkowski, N.; Witkowska, O.; Slusarczyk, M.E.; Healey, J.S.; Russo, A.M. Sex differences in presentation of atrial fibrillation: Findings from 30-day ambulatory monitoring in real-world practice. Am. Heart J. Plus 2022, 22, 100208. [Google Scholar] [CrossRef]
- Duarte, F.; Silva-Teixeira, R.; Aguiar-Neves, I.; Almeida, J.G.; Fonseca, P.; Monteiro, A.V.; Oliveira, M.; Gonçalves, H.; Ribeiro, J.; Caramelo, F.; et al. Sex differences in atrial remodeling and atrial fibrillation recurrence after catheter ablation. Heart Rhythm. 2025, 22, e563–e571. [Google Scholar] [CrossRef]
| Variables | Men | (%) | Women | (%) | p | All (%) |
|---|---|---|---|---|---|---|
| All (n %) | 19,531 | 48.7% | 20,548 | 51.3% | - | 40,079 |
| New AF | 1928 | 9.9% | 1442 | 7.0% | <0.001 | 3370 (8.4%) |
| Age average | 77.28 ± 6.56 | 77.6 ± 6.63 | <0.001 | 77.4 ± 6.60 | ||
| CHA2DS2-VA | 2.8 ± 1.1 | 2.6 ± 1.1 | <0.001 | 2.68 ± 1.1 | ||
| Heart failure | 1790 | 9.2% | 1558 | 7.6% | <0.001 | 3348 (8.4%) |
| Hypertension arterial | 11,526 | 59.0% | 12,218 | 59.5% | 0.360 | 23,744 (59.2%) |
| Age 65 to 74 years | 7748 | 39.6% | 7765 | 37.8% | <0.001 | 15,513 (38.7%) |
| Age ≥ 75 years | 11,783 | 60.3% | 12,783 | 62.6% | <0.001 | 24,566 (61.3%) |
| Diabetes mellitus | 5763 | 29.5% | 4498 | 21.9% | <0.001 | 10,261 (25.6%) |
| Stroke/TIA/Systemic embolism | 843 | 4.7% | 724 | 3.5% | <0.001 | 1567 (3.9%) |
| Peripheral vascular disease | 1983 | 10.2% | 798 | 3.9% | <0.001 | 2781 (6.9%) |
| Ischemic heart disease | 2073 | 10.6% | 917 | 4.5% | <0.001 | 2990 (7.5%) |
| BMI 1 (kg/m2) | 28.1 ± 4.5 | 28.4 ± 5.7 | <0.001 | 28.3 ± 5.2 | ||
| Charlson index | 1.5 ± 1.4 | 1.2 ± 1.2 | <0.001 | 1.38 ± 1.9 | ||
| Dementia/cognitive impairment | 1452 | 7.4% | 2225 | 10.8% | <0.001 | 3677 (9.2%) |
| Pfeiffer score | 2.72 ± 3.20 | 3.63 ± 3.35 | <0.001 | 3.23 ± 3.3 | ||
| Chronic Kidney Disease | 3181 | 16.3% | 3080 | 15.0% | <0.001 | 6261 (15.6%) |
| Glomerular filtration rate (mL/min/1.73 m2) | 72.2 ± 18.0 | 73.4 ± 17.6 | <0.001 | 72.9 ± 17.7 | ||
| OSAHS 2 | 966 | 4.9% | 473 | 2.3% | <0.001 | 1439 (3.6%) |
| Dyslipidaemia | 8394 | 43.0% | 10,623 | 51.7% | <0.001 | 19,017 (47.5%) |
| Statins | 6006 | 30.8% | 6326 | 30.8% | 0.940 | 12,332 (30.8%) |
| Antiplatelet therapy | 3411 | 17.5% | 2335 | 11.4% | <0001 | 5746 (14.3%) |
| Anticoagulation | 1977 | 10.1% | 1468 | 7.1% | <0.001 | 3445 (8.6%) |
| Hospital visits | 0.36 ± 1.3 | 0.27 ± 0.95 | <0.001 | 0.31 ± 1.15 | ||
| Active medications | 5.17 ± 4.3 | 5.76 ± 4.40 | <0.001 | 5.48 ± 4.36 | ||
| Death all-causes | 14,492 | 74.2% | 17,173 | 83.6% | <0.001 | 31,665 (79.0%) |
| Variables | Men | (%) | Women | (%) | p | All (%) |
|---|---|---|---|---|---|---|
| All (n %) | 4231 | 43.72% | 5446 | 56.27% | 9677 | |
| Age average | 84.6 ± 6.9 | 84.7 ± 6.7 | 0.474 | 84.66 ± 6.76 | ||
| 65–74 years | 131 | 3.1% | 97 | 1.78% | 228 (2.35%) | |
| ≥75 years | 4100 | (96.90%) | 5349 | 98.21% | 9449 (97.64%) | |
| CHA2DS2-VA | 4.10 ± 0.97 | 3.84 ± 0.88 | <0.001 | 3.96 ± 0.9 | ||
| New AF | 863 | 20.4% | 851 | 15.62% | <0.001 | 1714 (17.7%) |
| Heart failure | 1236 | 29.2% | 1415 | 26.0% | <0.001 | 2651 (27.4%) |
| Hypertension arterial | 3708 | 87.6% | 4916 | 90.3% | <0.001 | 8624 (89.1%) |
| Diabetes mellitus | 2261 | 53.4% | 2414 | 44.3% | <0.001 | 4675 (48.3%) |
| Stroke/TIA/Systemic embolism | 458 | 10.8% | 496 | 9.1% | 0.005 | 954 (9.9%) |
| Peripheral vascular disease | 1025 | 24.2% | 619 | 11.4% | <0.001 | 1644 (17.0%) |
| Ischemic heart disease | 1100 | 26.0% | 714 | 13.1% | <0.001 | 1814 (18.7%) |
| BMI 1 (kg/m2) | 30.2 ± 5.0 | 31.23 ± 5.9 | <0.001 | 30.78 ± 5.5 | ||
| Charlson index | 2.54 ± 1.5 | 1.96 ± 1.3 | <0.001 | 2.21 ± 1.4 | ||
| Dementia/cognitive impairment | 616 | 14.6% | 1173 | 21.5% | <0.001 | 1789 (18.5%) |
| Pfeiffer score | 2.87 ± 3.0 | 3.93 ± 3.1 | <0.001 | 3.54 ± 3.1 | ||
| Chronic Kidney Disease | 1469 | 34.7% | 1881 | 34.5% | 0.863 | 3350 (34.6%) |
| Glomerular filtration rate (mL/min/1.73 m2) | 60.55 ± 19.6 | 60.28 ± 19.6 | 0.623 | 60.4 ± 19.6 | ||
| OSAHS 2 | 274 | 6.5% | 160 | 2.9% | <0.001 | 434 (4.5%) |
| Dyslipidaemia | 2079 | 49.1% | 3104 | 57.0% | <0.001 | 5183 (53.6%) |
| Statins | 1436 | 33.9% | 1664 | 30.6% | <0.001 | 3100 (32.0%) |
| Antiplatelet therapy | 1098 | 26.0% | 1079 | 19.8% | <0.001 | 2177 (22.5%) |
| Anticoagulation | 792 | 18.7% | 772 | 14.2% | <0.001 | 1564 (16.2%) |
| VKAs 3 | 330 | 7.8% | 318 | 5.8% | <0.001 | 648 (6.7%) |
| NOACs 4 | 463 | 10.9% | 457 | 8.4% | <0.001 | 920 (9.5%) |
| Hospital visits | 0.56 ± 1.51 | 0.40 ± 1.21 | <0.001 | 0.48 ± 1.43 | ||
| Active medications | 7.07 ± 4.7 | 7.32 ± 4.6 | 0.009 | 7.38 ± 4.9 | ||
| Death all-causes | 2456 | 58.0% | 3543 | 65.1% | <0.001 | 5999 (62.0%) |
| Variables | Men | Women | ||||
|---|---|---|---|---|---|---|
| Q4th-no AF | AF | p | Q4th-no AF | AF | p | |
| All (n %) | 3151 | 863 (20.4%) | 4249 | 851 (15.6%) | ||
| Age average | 85.50 ± 6.0 | 84.5 ± 5.8 ** | <0.001 | 86.33 ± 5.6 | 86.3 ± 5.5 | 0.884 |
| CHA2DS2-VA | 4.04 ± 0.9 | 4.43 ± 0.9 ** | <0.001 | 3.80 ± 0.8 | 4.18 ± 0.9 | <0.001 |
| Heart failure | 708 (22.5%) | 476 (55.2%) | <0.001 | 882 (20.8%) | 442 (51.9%) | <0.001 |
| Hypertension arterial | 2771 (87.9%) ** | 778 (90.2%) | 0.0823 | 3866 (91.0%) | 764 (89.8%) | 0.294 |
| Diabetes mellitus | 1725 (54.7%) ** | 457 (53.0%) ** | 0.3699 | 1937 (45.6%) | 360 (42.3%) | 0.085 |
| Stroke/TIA/Systemic embolism | 310 (9.8%) ** | 133 (15.4%) | <0.001 | 352 (8.3%) | 125 (14.7%) | <0.001 |
| Vascular peripheral disease | 753 (23.9%) ** | 216 (25.0%) ** | 0.5199 | 470 (11.1%) | 122 (14.3%) | 0.007 |
| Ischemic cardiomyopathy | 816 (25.9%) ** | 235 (27.2%) ** | 0.4556 | 536 (12.6%) | 141 (16.6%) | 0.002 |
| BMI 1 (kg/m2) | 30.25 ± 4.9 ** | 30.46 ± 5.5 ** | 0.3095 | 31.45 ± 5.8 | 31.23 ± 6.1 | 0.379 |
| Charlson index | 2.48 ± 1.5 ** | 2.83 ± 1.4 ** | <0.001 | 1.90 ± 1.38 | 2.30 ± 1.4 | <0.001 |
| Dementia/cognitive impairment | 440 (14.0%) ** | 136 (15.8%) | 0.2013 | 904 (21.3%) | 154 (18.1%) | 0.041 |
| Pfeiffer score | 2.94 ± 3.1 ** | 2.51 ± 2.7 ** | <0.001 | 3.86 ± 3.2 | 3.48 ± 2.9 | 0.001 |
| Chronic Kidney Disease | 1042 (33.1%) | 359 (41.6%) | <0.001 | 1406 (33.1%) | 553 (39.4%) | <0.001 |
| Glomerular Filtration rate (mL/min/1.73 m2) | 61.33 ± 19.5 | 58.5 ± 19.7 | <0.001 | 61.51 ± 19.3 | 56.6 ± 19.8 | <0.001 |
| OSAHS 2 | 190 (6.0%) ** | 82 (9.5%) ** | <0.001 | 121 (2.8%) | 38 (4.5%) | 0.017 |
| Dyslipidaemia | 1551 (49.2%) ** | 454 (52.6%) | 0.0848 | 2456 (57.8%) | 474 (55.7%) | 0.273 |
| Statins | 1086 (34.5%) ** | 326 (37.8%) ** | 0.0777 | 1353 (31.8%) | 259 (30.4%) | 0.443 |
| Antiplatelet therapy | 1015 (32.2%) ** | 55 (6.4%) | <0.001 | 993 (23.4%) | 39 (4.6%) | <0.001 |
| Hospital visits | 0.52 ± 1.6 ** | 0.75 ± 1.7 | <0.001 | 0.38 ± 1.2 | 0.65 ± 1.5 | <0.001 |
| Active medications | 6.76 ± 4.8 ** | 8.8 ± 4.8 | <0.001 | 7.54 ± 4.9 | 8.84 ± 5.2 | <0.001 |
| Death all-causes | 1832 (58.1%) ** | 585 (67.8%) | <0.001 | 2865 (67.4%) | 563 (66.2%) | 0.496 |
| Men | Women | Incidence Rate Ratios Men/Women | ||||
|---|---|---|---|---|---|---|
| Incidence/1000 People per Year (CI95%) | High AF-Risk (Q4th) | New AF | High AF-Risk (Q4th) | New AF | OR Q4th/Q4th (CI95%) | OR AF/AF (CI95%) |
| N | 3151 | 863 | 4249 | 851 | ||
| AF Incidence/1000 people per year (CI95%) | 9.33 (8.72–9.98) | - | 7.24 (6.77–7.75) | 1.28 (1.17–1.41) p < 0.001 | ||
| Stroke/Transient ischemic attack Incidence/1000 people per year (CI95%) | 310 4.27 (3.81–4.77) | 133 6.7 (5.60–7.93) | 352 3.60 (3.23–3.99) | 125 6.37 (5.31–7.6) | 1.18 (1.01–1.38) p < 0.030 | 1.04 (0.82–1.33) p = 0.7444 |
| Heart Failure Incidence/1000 people per year (CI95%) | 708 9.75 (9.05–10.50) | 476 23.94 (21.84–26.2) | 882 8.40 (7.83–8.99) | 442 22.54 (20.5–24.74) | 1.08 (0.98–1.2) p = 0.1224 | 1.06 (0.93–1.20) p = 0.3778 |
| Ischemic Heart Disease Incidence/1000 people per year (CI95%) | 816 11.24 (10.48–12.04) | 235 11.82 (10.36–13.43) | 536 5.48 (5.02–5.96) | 141 7.2 (6.05–8.48) | 2.05 (1.84–2.28) p < 0.001 | 1.64 (1.33–2.02) p < 0.001 |
| Peripheral Arteriopathy Incidence/1000 people per year (CI95%) | 753 10.37 (9.65–11.14) | 216 10.87 (9.46–12.41) | 470 4.80 (4.38–5.26) | 122 6.22 (5.17–7.43) | 2.16 (1.92–2.42) p < 0.001 | 1.74 (1.4–2.18) p < 0.001 |
| Cognitive Impairment Incidence/1000 people per year (CI95%) | 440 6.06 (5.51–6.66) | 136 6.84 (5.74–8.09) | 904 9.24 (8.64–9.86) | 154 7.85 (6.66–9.20) | 0.65 (0.58–0.73) p < 0.001 | 0.87 (0.7–1.1) p = 0.2650 |
| Chronic Kidney Disease Incidence/1000 people per year (CI95%) | 1042 14.36 (13.50–15.26) | 359 18.06 (16.24–20.03) | 1406 14.37 (13.62–15.14) | 553 28.20 (25.9–30.65) | 0.99 (0.90–1.08) p = 0.9965 | 0.64 (0.56–0.73) p < 0.001 |
| Death all-causes Incidence/1000 people per year (CI95%) | 1832 25.24 (24.10–26.46) | 585 29.43 (27.09–31.91) | 2865 29.27 (28.21–30.37) | 563 28.71 (26.4–31.18) | 0.86 (0.81–0.91) p < 0.001 | 1.02 (0.91–1.15) p = 0.6979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clúa-Espuny, J.L.; Panisello-Tafalla, A.; Hernández-Pinilla, A.; Clua-Queralt, J.; Múria-Subirats, E.; Lucas-Noll, J.; Moltó-Balado, P.; Forcadell-Arenas, T.; Reverté-Villarroya, S. Sex Differences in Individuals at High Risk of Atrial Fibrillation: A Primary Care Community Cohort Study, 2015–2024. Biomedicines 2025, 13, 2814. https://doi.org/10.3390/biomedicines13112814
Clúa-Espuny JL, Panisello-Tafalla A, Hernández-Pinilla A, Clua-Queralt J, Múria-Subirats E, Lucas-Noll J, Moltó-Balado P, Forcadell-Arenas T, Reverté-Villarroya S. Sex Differences in Individuals at High Risk of Atrial Fibrillation: A Primary Care Community Cohort Study, 2015–2024. Biomedicines. 2025; 13(11):2814. https://doi.org/10.3390/biomedicines13112814
Chicago/Turabian StyleClúa-Espuny, Jose Luis, Anna Panisello-Tafalla, Alba Hernández-Pinilla, Josep Clua-Queralt, Eulàlia Múria-Subirats, Jorgina Lucas-Noll, Pedro Moltó-Balado, Teresa Forcadell-Arenas, and Silvia Reverté-Villarroya. 2025. "Sex Differences in Individuals at High Risk of Atrial Fibrillation: A Primary Care Community Cohort Study, 2015–2024" Biomedicines 13, no. 11: 2814. https://doi.org/10.3390/biomedicines13112814
APA StyleClúa-Espuny, J. L., Panisello-Tafalla, A., Hernández-Pinilla, A., Clua-Queralt, J., Múria-Subirats, E., Lucas-Noll, J., Moltó-Balado, P., Forcadell-Arenas, T., & Reverté-Villarroya, S. (2025). Sex Differences in Individuals at High Risk of Atrial Fibrillation: A Primary Care Community Cohort Study, 2015–2024. Biomedicines, 13(11), 2814. https://doi.org/10.3390/biomedicines13112814

