Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity
Abstract
1. Introduction
Background
2. Adipose Tissue Structure and Imaging Modalities
2.1. Ultrasound Imaging of Adipose Tissue
2.2. Histological Analysis of Adipose Tissue
2.3. Atomic Force Microscopy (AFM)
3. A Multiscale Imaging Atlas to Guide Adipose Tissue Research in Nephrotic Syndrome
3.1. Ultrasound Reveals Mesoscopic Heterogeneity in Post-Operative Samples
3.2. Histology Identifies Capillary Networks and Structural Detail
- Adipocyte size and shape heterogeneity between depots;
- ECM fiber alignment and density.
3.3. Ultrastructural Features of Fat by AFM
- Adipocyte surface texture;
- ECM topography and stiffness variations;
- Differences in mechanical properties across tissue regions or donor types.
- Flat, grainy regions, characterized by low-amplitude nanoscale texture, interpreted as relatively unstructured interstitial matrix or adipocyte surfaces;
- Small, irregular wrinkles, possibly corresponding to localized tension lines or collapsed ECM components;
- Large, elongated wrinkles, running in continuous paths across the tissue surface.
- Residual proteic aggregates (e.g., perilipin remnants or cytosolic protein complexes);
- Condensed extracellular matrix proteins (e.g., laminin, collagen fragments);
- Possibly crystallized lipid components resistant to complete solvent extraction.
4. Relevance to Nephrotic Syndrome
- Quantitative metrics of adipocyte hypertrophy, cell packing, and vascular density;
- Markers of tissue stiffness or fibrosis inferred from surface wrinkling and nanostructures;
- Microvascular topology that reflects systemic endothelial health.
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hull, R.P.; Goldsmith, D.J.A. Nephrotic syndrome in adults. BMJ 2008, 336, 1185–1189. [Google Scholar] [CrossRef]
- Eddy, A.A.; Symons, J.M. Nephrotic syndrome in childhood. Lancet 2003, 362, 629–639. [Google Scholar] [CrossRef]
- Gertow, J.; Ng, C.Z.; Mamede Branca, R.M.; Werngren, O.; Du, L.; Kjellqvist, S.; Hemmingsson, P.; Bruchfeld, A.; MacLaughlin, H.; Eriksson, P.; et al. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease. Kidney Int. Rep. 2017, 2, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Matyjek, A.; Literacki, S.; Niemczyk, S.; Rymarz, A. Protein energy-wasting associated with nephrotic syndrome-the comparison of metabolic pattern in severe nephrosis to different stages of chronic kidney disease. BMC Nephrol. 2020, 21, 346. [Google Scholar] [CrossRef]
- Huang, G.-S.; Peng, Y.-J.; Hsu, Y.-J.; Lee, H.-S.; Chang, Y.-C.; Chiang, S.-W.; Hsu, Y.-C.; Liu, Y.-C.; Lin, M.-H.; Wang, C.-Y. Hypoperfusion of the infrapatellar fat pad and its relationship to MRI T2* relaxation time changes in a 5/6 nephrectomy model. Sci. Rep. 2021, 11, 9924. [Google Scholar] [CrossRef] [PubMed]
- Kolesnyk, M.; Stepanova, N.; Snisar, L.; Lebid, L.; Nepomnyaschii, V.; Savchenko, S. Uric acid and the risk of kidney failure in primary glomerulonephritis patients with nephrotic syndrome: Preliminary results of an ongoing single-center prospective study. Ukr. J. Nephrol. Dial. 2020, 65, 29–35. [Google Scholar] [CrossRef]
- Song, S.H.; Oh, T.R.; Choi, H.S.; Kim, C.S.; Ryu, D.R.; Kim, S.G.; Park, S.-H.; Ma, S.K.; Kim, S.W.; Bae, E.H. Hyperuricemia is a risk factor for the progression to end-stage renal disease in minimal change disease. Kidney Res. Clin. Pract. 2021, 40, 411–418. [Google Scholar] [CrossRef]
- Li, S.; Feng, L.; Sun, X.; Ding, J.; Zhou, W. Association between serum uric acid and measures of adiposity in Chinese adults: A cross-sectional study. BMJ Open 2023, 13, e072317. [Google Scholar] [CrossRef]
- Tsushima, Y.; Nishizawa, H.; Tochino, Y.; Nakatsuji, H.; Sekimoto, R.; Nagao, H.; Shirakura, T.; Kato, K.; Imaizumi, K.; Takahashi, H.; et al. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity. J. Biol. Chem. 2013, 288, 27138–27149. [Google Scholar] [CrossRef]
- Baldwin, W.; McRae, S.; Marek, G.; Wymer, D.; Pannu, V.; Baylis, C.; Johnson, R.J.; Sautin, Y.Y. Hyperuricemia as a Mediator of the Proinflammatory Endocrine Imbalance in the Adipose Tissue in a Murine Model of the Metabolic Syndrome. Diabetes 2011, 60, 1258–1269. [Google Scholar] [CrossRef]
- Nata, N.; Ninwisut, N.; Inkong, P.; Supasyndh, O.; Satirapoj, B. Effects of febuxostat on markers of endothelial dysfunction and renal progression in patients with chronic kidney disease. Sci. Rep. 2023, 13, 13494. [Google Scholar] [CrossRef]
- Kimura, K.; Hosoya, T.; Uchida, S.; Inaba, M.; Makino, H.; Maruyama, S.; Ito, S.; Yamamoto, T.; Tomino, Y.; Ohno, I.; et al. Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic Hyperuricemia: A Randomized Trial. Am. J. Kidney Dis. 2018, 72, 798–810. [Google Scholar] [CrossRef]
- Viggiano, D.; Gigliotti, G.; Vallone, G.; Giammarino, A.; Nigro, M.; Capasso, G. Urate-Lowering Agents in Asymptomatic Hyperuricemia: Role of Urine Sediment Analysis and Musculoskeletal Ultrasound. Kidney Blood Press. Res. 2018, 43, 606–615. [Google Scholar] [CrossRef]
- Liabeuf, S.; Pepin, M.; Franssen, C.F.M.; Viggiano, D.; Carriazo, S.; Gansevoort, R.T.; Gesualdo, L.; Hafez, G.; Malyszko, J.; Mayer, C.; et al. Chronic kidney disease and neurological disorders: Are uraemic toxins the missing piece of the puzzle? Nephrol. Dial. Transplant. 2021, 37, ii33–ii44. [Google Scholar] [CrossRef] [PubMed]
- Waheed, Y.A.; Yang, F.; Liu, J.; Almayahe, S.; Selvam, K.K.M.; Wang, D.; Sun, D. Efficacy of febuxostat on hyperuricemia and estimated glomerular filtration rate in patients with non-dialysis stage 3/4 chronic kidney disease and assessment of cardiac function: A 12-month interventional study. Front. Nephrol. 2025, 5, 1526182. [Google Scholar] [CrossRef]
- Usalan, Ö.; Şahin, A.Z.; Özdemir, O.; Cingöz, M.; Usalan, C. Effect of allopurinol drug use on GFR and proteinuria in patients with renal transplant recipients (ADOPTR study). Transpl. Immunol. 2022, 72, 101560. [Google Scholar] [CrossRef]
- Kataoka, H.; Mochizuki, T.; Ohara, M.; Tsuruta, Y.; Iwasa, N.; Yoshida, R.; Tsuchiya, K.; Nitta, K.; Kimura, K.; Hosoya, T.; et al. Urate-lowering therapy for CKD patients with asymptomatic hyperuricemia without proteinuria elucidated by attribute-based research in the FEATHER Study. Sci. Rep. 2022, 12, 3784. [Google Scholar] [CrossRef]
- Wen, H.; Yongling, Z.; Shuying, Z.; Jiali, W.; Yanling, Z. Effect of febuxostat on renal function in patients from South China with CKD3 diabetic nephropathy. Braz. J. Nephrol. 2020, 42, 393–399. [Google Scholar] [CrossRef]
- Carvalho, M.F.C.; Viero, R.M.; Scares, V.A. Laboratory Study: Effect of Allopurinol in the Course of Adriamycin Induced Nephropathy. Ren. Fail. 1999, 21, 147–154. [Google Scholar] [CrossRef]
- Omizo, H.; Tamura, Y.; Morimoto, C.; Ueno, M.; Hayama, Y.; Kuribayashi-Okuma, E.; Uchida, S.; Shibata, S. Cardio-renal protective effect of the xanthine oxidase inhibitor febuxostat in the 5/6 nephrectomy model with hyperuricemia. Sci. Rep. 2020, 10, 9326. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, C.; Li, L.; Yang, Y.; Zhang, S.; Wang, X. Human Adipose Tissue-Derived Stromal Cells Ameliorate Adriamycin-Induced Nephropathy by Promoting Angiogenesis. Organogenesis 2024, 20, 2356339. [Google Scholar] [CrossRef]
- de Lima Junior, E.A.; Yamashita, A.S.; Pimentel, G.D.; De Sousa, L.G.O.; Santos, R.V.T.; Gonçalves, C.L.; Streck, E.L.; de Lira, F.S.; Rosa Neto, J.C. Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. J. Cachexia. Sarcopenia Muscle 2016, 7, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Daigeler, A.; Klein-Hitpass, L.; Chromik, A.M.; Müller, O.; Hauser, J.; Homann, H.-H.; Steinau, H.-U.; Lehnhardt, M. Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 2008, 8, 313. [Google Scholar] [CrossRef] [PubMed]
- Iovino, S.; Oriente, F.; Botta, G.; Cabaro, S.; Iovane, V.; Paciello, O.; Viggiano, D.; Perruolo, G.; Formisano, P.; Beguinot, F. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. Cell Death Differ. 2012, 19, 1127–1138. [Google Scholar] [CrossRef]
- Perruolo, G.; Viggiano, D.; Fiory, F.; Cassese, A.; Nigro, C.; Liotti, A.; Miele, C.; Beguinot, F.; Formisano, P. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice. Sci. Rep. 2016, 6, 29967. [Google Scholar] [CrossRef] [PubMed]
- Tscheschner, H.; Meinhardt, E.; Schlegel, P.; Jungmann, A.; Lehmann, L.H.; Müller, O.J.; Most, P.; Katus, H.A.; Raake, P.W. CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS ONE 2019, 14, e0215992. [Google Scholar] [CrossRef]
- Zlomuzica, A.; Viggiano, D.; Degen, I.; Binder, S.; Ruocco, L.A.; Sadile, A.G.A.; Willecke, K.; Huston, J.J.P.; Dere, E.; Degen, J.; et al. Behavioral alterations and changes in Ca/calmodulin kinase II levels in the striatum of connexin36 deficient mice. Behav. Brain Res. 2012, 226, 293–300. [Google Scholar] [CrossRef]
- Dai, W.; Choubey, M.; Patel, S.; Singer, H.A.; Ozcan, L. Adipocyte CAMK2 deficiency improves obesity-associated glucose intolerance. Mol. Metab. 2021, 53, 101300. [Google Scholar] [CrossRef]
- Yıldız, A.B.; Vehbi, S.; Copur, S.; Gurses, B.; Siriopol, D.; Karakaya, B.A.D.; Hasbal, N.B.; Tekin, B.; Akyıldız, M.; van Raalte, D.H.; et al. Kidney and liver fat accumulation: From imaging to clinical consequences. J. Nephrol. 2024, 37, 483–490. [Google Scholar] [CrossRef]
- Spit, K.A.; Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Kramer, M.H.H.; Joles, J.A.; de Boer, A.; van Raalte, D.H. Renal sinus fat and renal hemodynamics: A cross-sectional analysis. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 73–80. [Google Scholar] [CrossRef]
- Aydın, H.; Aydin, H.; Karaibrahimoğlu, A.; Afsar, B. Evaluation of the parenchymal distribution of renal steatosis in chronic kidney disease using chemical shift magnetic resonance imaging. Adv. Clin. Exp. Med. 2023, 33, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.M.; Koh, J.H.; Kim, S.G.; Lee, S.; Kim, Y.; Cho, S.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; et al. Associations of MRI-derived kidney volume, kidney function, body composition and physical performance in ≈38 000 UK Biobank participants: A population-based observational study. Clin. Kidney J. 2024, 17, sfae068. [Google Scholar] [CrossRef] [PubMed]
- Dilaver, R.G.; Demirci, M.; Crescenzi, R.; Pridmore, M.; Ertuglu, L.A.; Guide, A.; Greevy, R.; Roshanravan, B.; Ikizler, T.A.; Gamboa, J.L. Intermuscular adipose tissue and muscle function in patients on maintenance hemodialysis. Physiol. Rep. 2025, 13, e70363. [Google Scholar] [CrossRef] [PubMed]
- Kaysen, G.A. Albumin Metabolism in the Nephrotic Syndrome. Implications for Patient Management. In International Yearbook of Nephrology 1991; Springer: Boston, MA, USA, 1990; pp. 121–138. [Google Scholar]
- Levitt, D.; Levitt, M. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef]
- Vaziri, N.D. Disorders of lipid metabolism in nephrotic syndrome: Mechanisms and consequences. Kidney Int. 2016, 90, 41–52. [Google Scholar] [CrossRef]
- Appel, G.B.; Blum, C.B.; Chien, S.; Kunis, C.L.; Appel, A.S. The Hyperlipidemia of the Nephrotic Syndrome. N. Engl. J. Med. 1985, 312, 1544–1548. [Google Scholar] [CrossRef]
- Hooman, N.; Isa-Tafreshi, R.; Otukesh, H.; Mostafavi, S.-H.; Hallaji, F. Carotid artery function in children with idiopathic nephrotic syndrome. Nefrologia 2013, 33, 650–656. [Google Scholar] [CrossRef]
- Hari, P.; Khandelwal, P.; Smoyer, W.E. Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1601–1619. [Google Scholar] [CrossRef]
- Agrawal, S.; Zaritsky, J.J.; Fornoni, A.; Smoyer, W.E. Dyslipidaemia in nephrotic syndrome: Mechanisms and treatment. Nat. Rev. Nephrol. 2018, 14, 57–70. [Google Scholar] [CrossRef]
- Streather, C.P.; Varghese, Z.; Moorhead, J.P.; Scoble, J.E. Lipiduria in Renal Disease. Am. J. Hypertens. 1993, 6, 353S–357S. [Google Scholar] [CrossRef]
- Brachem, C.; Langenau, J.; Weinhold, L.; Schmid, M.; Nöthlings, U.; Oluwagbemigun, K. Associations of BMI and Body Fat with Urine Metabolome in Adolescents Are Sex-Specific: A Cross-Sectional Study. Metabolites 2020, 10, 330. [Google Scholar] [CrossRef]
- Bruzzone, C.; Gil-Redondo, R.; Seco, M.; Barragán, R.; de la Cruz, L.; Cannet, C.; Schäfer, H.; Fang, F.; Diercks, T.; Bizkarguenaga, M.; et al. A molecular signature for the metabolic syndrome by urine metabolomics. Cardiovasc. Diabetol. 2021, 20, 155. [Google Scholar] [CrossRef] [PubMed]
- Anastasio, P.; Viggiano, D.; Zacchia, M.; Altobelli, C.; Capasso, G.; Gaspare De Santo, N.; De Santo, N. Delay in Renal Hemodynamic Response to a Meat Meal in Severe Obesity. Nephron 2017, 136, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Henegar, J.R.; Dwyer, T.M.; Liu, J.; da Silva, A.A.; Kuo, J.J.; Tallam, L. Is obesity a major cause of chronic kidney disease? Adv. Ren. Replace. Ther. 2004, 11, 41–54. [Google Scholar] [CrossRef]
- Weisinger, J.R.; Kempson, R.L.; Eldridge, F.L.; Swenson, R.S. The nephrotic syndrome: A complication of massive obesity. Ann. Intern. Med. 1974, 81, 440–447. [Google Scholar] [CrossRef]
- Huan, Y.; Tomaszewski, J.E.; Cohen, D.L. Resolution of nephrotic syndrome after successful bariatric surgery in patient with biopsy-proven FSGS. Clin. Nephrol. 2009, 71, 69–73. [Google Scholar] [CrossRef]
- Sharma, I.; Liao, Y.; Zheng, X.; Kanwar, Y.S. New Pandemic: Obesity and Associated Nephropathy. Front. Med. 2021, 8, 673556. [Google Scholar] [CrossRef]
- Beck, L.H.; Bonegio, R.G.B.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-Type Phospholipase A 2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef]
- Hengel, F.E.; Dehde, S.; Lassé, M.; Zahner, G.; Seifert, L.; Schnarre, A.; Kretz, O.; Demir, F.; Pinnschmidt, H.O.; Grahammer, F.; et al. Autoantibodies Targeting Nephrin in Podocytopathies. N. Engl. J. Med. 2024, 391, 422–433. [Google Scholar] [CrossRef]
- Becherucci, F.; Mazzinghi, B.; Provenzano, A.; Murer, L.; Giglio, S.; Romagnani, P. Lessons from genetics: Is it time to revise the therapeutic approach to children with steroid-resistant nephrotic syndrome? J. Nephrol. 2016, 29, 543–550. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhong, J.; Shen, J.; Zeng, Y. The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis. Front. Physiol. 2023, 14, 1179828. [Google Scholar] [CrossRef]
- Padulo, J.; Di Capua, R.; Viggiano, D. Pedaling time variability is increased in dropped riding position. Eur. J. Appl. Physiol. 2012, 112, 3161–3165. [Google Scholar] [CrossRef]
- Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol. 2016, 231, R77–R99. [Google Scholar] [CrossRef] [PubMed]
- Del Genio, G.; Gagner, M.; Limongelli, P.; Tolone, S.; Pournaras, D.; le Roux, C.W.; Brusciano, L.; Licia Mozzillo, A.; Del Genio, F.; Docimo, L. Remission of type 2 diabetes in patients undergoing biliointestinal bypass for morbid obesity: A new surgical treatment. Surg. Obes. Relat. Dis. 2016, 12, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Liu, Y.; Aron-Wisnewsky, J.; Bouillot, J.-L.; Abdennour, M.; Clet, M.; Sandrin, L.; le Naour, G.; Bedossa, P.; Tordjman, J.; et al. AdipoScan: A Novel Transient Elastography-Based Tool Used to Non-Invasively Assess Subcutaneous Adipose Tissue Shear Wave Speed in Obesity. Ultrasound Med. Biol. 2016, 42, 2401–2413. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Briggs, W.; Paschos, G.K.; FitzGerald, G.A.; Griffin, J.L. A metabolomic study of adipose tissue in mice with a disruption of the circadian system. Mol. Biosyst. 2015, 11, 1897–1906. [Google Scholar] [CrossRef]
- Weir, G.; Ramage, L.E.; Akyol, M.; Rhodes, J.K.; Kyle, C.J.; Fletcher, A.M.; Craven, T.H.; Wakelin, S.J.; Drake, A.J.; Gregoriades, M.-L.; et al. Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides. Cell Metab. 2018, 27, 1348–1355.e4. [Google Scholar] [CrossRef]
- Chen, E.J.; Jenkins, W.K.; O’Brien, W.D. Performance of ultrasonic speckle tracking in various tissues. J. Acoust. Soc. Am. 1995, 98, 1273–1278. [Google Scholar] [CrossRef]
- Thompson, B.R.; Lobo, S.; Bernlohr, D.A. Fatty acid flux in adipocytes: The in’s and out’s of fat cell lipid trafficking. Mol. Cell. Endocrinol. 2010, 318, 24–33. [Google Scholar] [CrossRef]
- Kaukinen, A.; Lautenschlager, I.; Helin, H.; Karikoski, R.; Jalanko, H. Peritubular capillaries are rarefied in congenital nephrotic syndrome of the Finnish type. Kidney Int. 2009, 75, 1099–1108. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Zhang, G. Systemic inflammation accelerates the development of focal segmental glomerulosclerosis in a mouse model of adriamycin induced nephrosis. Sci. Rep. 2025, 15, 14304. [Google Scholar] [CrossRef]
- Cho, M.E.; Brunt, V.E.; Shiu, Y.-T.; Bunsawat, K. Endothelial dysfunction in chronic kidney disease: A clinical perspective. Am. J. Physiol. Heart Circ. Physiol. 2025, 329, H135–H153. [Google Scholar] [CrossRef]
- Porrazzo, R.; Luzio, A.; Bellani, S.; Bonacchini, G.E.; Noh, Y.-Y.; Kim, Y.-H.; Lanzani, G.; Antognazza, M.R.; Caironi, M. Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment. ACS Omega 2017, 2, 1–10. [Google Scholar] [CrossRef]
- Barra, M.; Viggiano, D.; Ambrosino, P.; Bloisi, F.; Di Girolamo, F.V.; Soldovieri, M.V.; Taglialatela, M.; Cassinese, A.; Di Girolamo, F.V.; Soldovieri, M.V.; et al. Addressing the use of PDIF-CN 2 molecules in the development of n-type organic field-effect transistors for biosensing applications. Biochim. Biophys. Acta 2013, 1830, 4365–4373. [Google Scholar] [CrossRef]






| Characteristic | Nephrotic Syndrome | Obesity |
|---|---|---|
| Lipidic profile | Increased LDL, VLDL, triglycerides | Increased LDL, VLDL, triglycerides |
| Mechanism of dyslipidemia | Increased hepatic synthesis of albumin (secondary to proteinuria) and lipoproteins | Insulin resistance and consequent increased adipocyte lipolysis |
| Lipiduria | Present, typically HDL | Urinary Decanoilcarnitine is positively associated with BMI [42]; urinary steroid lipids increase in metabolic syndrome [43] |
| Mechanism of lipiduria | Possibly secondary to primitive glomerular damage | Unknown |
| Foamy cells (lipidic degeneration) | Typically, in kidney tubular cells | In atherosclerotic plaques |
| Kidney damage | Proteinuria is usually linked to increased risk of chronic kidney disease | Obesity is linked to increased risk of chronic kidney disease |
| Method | Parameters |
|---|---|
| DXA; bioimpedentiometry; CT; MRI; US B-mode | Estimate of total and regional fat mass |
| US shear-wave elastometry | Fat “hardness” (fibrosis, dyslipidemia) [56] |
| Metabolomics of local adipose tissue | Extensive metabolic characterization of adipose tissue; requires an invasive approach [57] including tissue harvesting or local microdialysis [58] |
| Histology with standard microscopy; SEM and TEM | Gold standard for microscopic and ultrastructural characterization of fat tissue |
| EMERGING METHODS | |
| AFM | Allows for ultrastructural characterization of fat tissue without the limitations of TEM/SEM |
| Speckle characterization of adipose tissue in US | Promising method to gather information about fat structure [59] |
| AI analysis of histological slides with WSI | Allows for detection of features often missed by human eye |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viggiano, D.; Bortone, E.; Tolone, S.; Lucido, F.S.; Gambardella, C.; Nesta, G.; Gigliotti, G.; Nigro, M.; Paolicelli, M.; D'Orlando, V.; et al. Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity. Biomedicines 2025, 13, 2719. https://doi.org/10.3390/biomedicines13112719
Viggiano D, Bortone E, Tolone S, Lucido FS, Gambardella C, Nesta G, Gigliotti G, Nigro M, Paolicelli M, D'Orlando V, et al. Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity. Biomedicines. 2025; 13(11):2719. https://doi.org/10.3390/biomedicines13112719
Chicago/Turabian StyleViggiano, Davide, Erica Bortone, Salvatore Tolone, Francesco Saverio Lucido, Claudio Gambardella, Giusiana Nesta, Giuseppe Gigliotti, Michelangelo Nigro, Maddalena Paolicelli, Vittorio D'Orlando, and et al. 2025. "Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity" Biomedicines 13, no. 11: 2719. https://doi.org/10.3390/biomedicines13112719
APA StyleViggiano, D., Bortone, E., Tolone, S., Lucido, F. S., Gambardella, C., Nesta, G., Gigliotti, G., Nigro, M., Paolicelli, M., D'Orlando, V., & Docimo, L. (2025). Multiscale Imaging of Human Adipose Tissue: A Neglected Partner in Proteinuria Linked to Obesity. Biomedicines, 13(11), 2719. https://doi.org/10.3390/biomedicines13112719

