Branched-Chain Amino Acid Intake and Risk of Incident Type 2 Diabetes: Results from the SUN Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Assessment: Branched-Chain Amino Acids
2.3. Diagnosis of Type 2 Diabetes Incidence
2.4. Covariate Assessment
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association Between BCAAs and Risk of Incident Diabetes
3.3. Exploratory Stratified Analysis by Overweight, Sex and Age Subgroups
3.4. Exploratory Analyses of BCAA Sources and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADA | American Diabetes Association |
| BCAA(s) | Branched-Chain Amino Acid(s) |
| BMI | Body Mass Index (Índice de Masa Corporal, implícito) |
| CVD | Cardiovascular Disease |
| FFQ | Food Frequency Questionnaire |
| HbA1c | Hemoglobin A1c |
| HPFS | Health Professionals Follow-up Study |
| HR | Hazard Ratio |
| IR | Insulin Resistance |
| MET(s) | Metabolic Equivalent(s) of Task |
| mTOR | Mechanistic Target of Rapamycin |
| NHS | Nurses’ Health Study |
| NHS II | Nurses’ Health Study II |
| SUN | Seguimiento Universidad de Navarra |
| T2DM | Type 2 Diabetes Mellitus |
| USDA | United States Department of Agriculture |
| %E | Percentage of Total Energy Intake from BCAAs |
References
- Arroyo-Cerezo, A.; Cerrillo, I.; Ortega, Á.; Fernández-Pachón, M.-S. Intake of Branched Chain Amino Acids Favors Post-Exercise Muscle Recovery and May Improve Muscle Function: Optimal Dosage Regimens and Consumption Conditions. J. Sports Med. Phys. Fit. 2021, 61, 1478–1489. [Google Scholar] [CrossRef]
- Martinho, D.V.; Nobari, H.; Faria, A.; Field, A.; Duarte, D.; Sarmento, H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022, 14, 4002. [Google Scholar] [CrossRef]
- Matsuda, T.; Suzuki, H.; Sugano, Y.; Suzuki, Y.; Yamanaka, D.; Araki, R.; Yahagi, N.; Sekiya, M.; Kawakami, Y.; Osaki, Y.; et al. Effects of Branched-Chain Amino Acids on Skeletal Muscle, Glycemic Control, and Neuropsychological Performance in Elderly Persons with Type 2 Diabetes Mellitus: An Exploratory Randomized Controlled Trial. Nutrients 2022, 14, 3917. [Google Scholar] [CrossRef]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating Branched-chain Amino Acid Concentrations Are Associated with Obesity and Future Insulin Resistance in Children and Adolescents. Pediatr. Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Han, Q.; Liu, Y.; Sun, C.; Gang, X.; Wang, G. The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. J. Diabetes Res. 2016, 2016, 2794591. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martínez-González, M.A.; Salas-Salvadó, J.; Hu, F.B. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef]
- van Nielen, M.; Feskens, E.J.M.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.J.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M. Dietary Protein, Amino Acids and Type 2 Diabetes Mellitus: A Short Review. Front. Nutr. 2024, 11, 1445981. [Google Scholar] [CrossRef]
- Vieira, E.E.S.; Pereira, I.C.; Braz, A.F.; Nascimento-Ferreira, M.V.; de Oliveira Torres, L.R.; de Freitas Brito, A.; do Nascimento Marreiro, D.; de Castro e Sousa, J.M.; da Silva, F.C.C.; Torres-Leal, F.L. Food Consumption of Branched Chain Amino Acids and Insulin Resistance: A Systematic Review of Observational Studies in Humans. Clin. Nutr. ESPEN 2020, 40, 277–281. [Google Scholar] [CrossRef]
- Ramzan, I.; Ardavani, A.; Vanweert, F.; Mellett, A.; Atherton, P.J.; Idris, I. The Association between Circulating Branched Chain Amino Acids and the Temporal Risk of Developing Type 2 Diabetes Mellitus: A Systematic Review & Meta-Analysis. Nutrients 2022, 14, 4411. [Google Scholar] [CrossRef]
- Ancu, O.; Mickute, M.; Guess, N.D.; Hurren, N.M.; Burd, N.A.; Mackenzie, R.W. Does High Dietary Protein Intake Contribute to the Increased Risk of Developing Prediabetes and Type 2 Diabetes? Appl. Physiol. Nutr. Metab. 2021, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; McGarrah, R.W.; Herman, M.A.; Bain, J.R.; Shah, S.H.; Newgard, C.B. Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street. Mol. Metab. 2021, 52, 101261. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, M.; Yuan, J.; Zeleznik, O.A.; Eliassen, A.H.; Chan, A.T.; Hu, F.B.; Hu, Y.; Sun, Q. Amino Acid Intake, Plasma Metabolites, and Incident Type 2 Diabetes Risk: A Systematic Approach in Prospective Cohort Studies. Nutr. J. 2025, 24, 112. [Google Scholar] [CrossRef]
- Martínez-González, M.Á. The SUN Cohort Study (Seguimiento University of Navarra). Public Health Nutr. 2006, 9, 127–131. [Google Scholar] [CrossRef]
- Moreiras, O.; Tuni, O.M. Tablas de Composición de Alimentos: Guía de Prácticas; Ediciones Pirámide: Madrid, Spain, 2009. [Google Scholar]
- de la O, V.; Zazpe, I.; de la Fuente-Arrillaga, C.; Santiago, S.; Goni, L.; Martínez-González, M.Á.; Ruiz-Canela, M. Association between a New Dietary Protein Quality Index and Micronutrient Intake Adequacy: A Cross-Sectional Study in a Young Adult Spanish Mediterranean Cohort. Eur. J. Nutr. 2023, 62, 419–432. [Google Scholar] [CrossRef]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Martínez-González, M.Á.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean Diet and Risk of Developing Diabetes: Prospective Cohort Study. BMJ 2008, 336, 1348–1351. [Google Scholar] [CrossRef]
- Valer-Martinez, A.; Sayon-Orea, C.; Martinez, J.A.; Basterra-Gortari, F.J.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Vitamin D and Risk of Developing Type 2 Diabetes in the SUN Project: A Prospective Cohort Study. J. Endocrinol. Investig. 2024, 47, 2313–2323. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Valdivieso, J.R.; Sanchez-Villegas, A.; Alonso, A.; Martínez-González, M. Validation of Self-Reported Weight and Body Mass Index of the Participants of a Cohort of University Graduates. Rev. Esp. Obes. 2005, 3, 352–358. [Google Scholar]
- Martínez-González, M.A.; López-Fontana, C.; Varo, J.J.; Sánchez-Villegas, A.; Martinez, J.A. Validation of the Spanish Version of the Physical Activity Questionnaire Used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr. 2005, 8, 920–927. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.A.; Sullivan, S.P. Permutation Tests for Experimental Data. Exp. Econ. 2023, 26, 775–812. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Qi, Q.; Hruby, A.; Manson, J.E.; Willett, W.C.; Wolpin, B.M.; Hu, F.B.; Qi, L. Cumulative Consumption of Branched-Chain Amino Acids and Incidence of Type 2 Diabetes. Int. J. Epidemiol. 2016, 45, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-Chain Amino Acid Intake and the Risk of Diabetes in a Japanese Community: The Takayama Study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef]
- Asghari, G.; Farhadnejad, H.; Teymoori, F.; Mirmiran, P.; Tohidi, M.; Azizi, F. High Dietary Intake of Branched-Chain Amino Acids Is Associated with an Increased Risk of Insulin Resistance in Adults. J. Diabetes 2018, 10, 357–364. [Google Scholar] [CrossRef] [PubMed]



| Analysis Type | Description | Purpose | Models/Adjustments | Multiple Testing/Validation |
|---|---|---|---|---|
| Primary analysis | Cox regression by tertiles of baseline BCAA intake (% energy and g/day) | Main test of association with incident T2DM | Models 1–3 (crude, lifestyle/clinical covariates, +BMI and non-BCAA protein) | Bonferroni correction across tertiles; formal power calculation included |
| Permutation analysis | Random reassignment of sex and BMI across participants (1000 permutations) | Test whether observed associations could arise by chance | Main models | Empirical p-values reported |
| Dose–response (trend test) | Median of tertiles modeled as continuous (linear p-trend) | Assess trend across tertiles | Same as primary analysis | Bonferroni correction |
| Repeated measures analysis | Cumulative average of baseline and 10 y FFQ BCAA intake, categorized in tertiles | Capture long-term habitual intake | Models 1–4 (incl. repeated measures) | Linear p-trend across tertiles |
| Stratified analyses | By sex, age (<50/≥50), BMI categories (normal/overweight) | Explore effect modification | Model 3 + interaction terms | Exploratory, no correction |
| Sources of BCAAs | Animal- vs. plant-derived BCAA intake (mutually adjusted) | Assess heterogeneity by source | Model 3 | Exploratory, no correction |
| Sensitivity analyses | Excluding participants with cancer, hypertension, hypertriglyceridemia, implausible energy intake, extreme BCAA values | Robustness of findings | Model 3 | Not adjusted (secondary) |
| Restricted subgroup analyses | Family history of T2DM, overweight, sedentary participants | Check consistency in specific groups | Model 3 | Exploratory, no correction |
| BCAAs Intake (%E) | ||||
|---|---|---|---|---|
| T1 (<3) | T2 (3 to 3.58) | T3 (>3.58) | p | |
| N | 6718 | 6718 | 6718 | |
| BCAAs (g/day) | 18.5 (5.5) | 20.4 (5.7) | 22.6 (7.4) | <0.001 |
| BCAAs (%E*) | 2.6 (0.3) | 3.3 (0.2) | 4.1 (0.5) | <0.001 |
| Isoleucine (g/d) | 4.7 (1.4) | 5.2 (1.5) | 5.8 (1.9) | <0.001 |
| Leucine (g/d) | 8.3 (2.5) | 9.2 (2.6) | 10.1 (3.4) | <0.001 |
| Valine (g/d) | 5.5 (1.6) | 6.0 (1.7) | 6.7 (2.2) | <0.001 |
| Women (%) | 54.2% | 62.4% | 68.8% | <0.001 |
| Age (y) | 37.9 (12.0) | 36.8 (11.8) | 38.2 (12.4) | <0.001 |
| BMI (kg/m2) | 23.3 (3.5) | 23.2 (3.4) | 23.7 (3.6) | <0.001 |
| Smoking (pack-years) | 6.1 (9.8) | 5.0 (8.7) | 5.8 (9.7) | <0.001 |
| Smoking Habit | <0.001 | |||
| Never smokers (%) | 47.2% | 50.9% | 48.6% | |
| Smokers (%) | 27.1% | 25.1% | 24.5% | |
| Ex-smokers (%) | 24.9% | 23.3% | 26.2% | |
| Missing values (%) | 0.7% | 0.7% | 0.7% | |
| Marital Status | <0.001 | |||
| Single (%) | 46.1% | 47.2% | 43.2% | |
| Married (%) | 48.8% | 47.9% | 50.8% | |
| Other (%) | 5.1% | 5.0% | 6.0% | |
| College education (years) | 5.1 (1.5) | 5.0 (1.5) | 5.0 (1.5) | 0.003 |
| Physical activity (METs-h/week) | 21.5 (22.4) | 22.1 (23.2) | 22.7 (24.3) | 0.009 |
| Television viewing (h/d) | 1.6 (1.2) | 1.6 (1.2) | 1.6 (1.1) | 0.647 |
| Family history of T2DM (%) | 13.7% | 14.8% | 17.0% | <0.001 |
| Snacking between meals (%) | 37.0% | 34.7% | 32.0% | <0.001 |
| Weight change (≥+5 kg) 1 (%) | 12.7% | 11.8% | 13.0% | 0.078 |
| Special diet (%) | 5.1% | 5.5% | 12.0% | <0.001 |
| Prevalence of CVD (%) | 1.4% | 1.0% | 1.7% | 0.003 |
| Prevalence of HBP (%) | 10.4% | 8.8% | 11.4% | <0.001 |
| Prevalence of cancer (%) | 2.6% | 2.2% | 2.7% | 0.174 |
| Prevalence of hypercholesterolemia (%) | 15.9% | 15.3% | 18.0% | <0.001 |
| Prevalence of hypertriglyceridemia (%) | 5.9% | 6.1% | 6.8% | 0.077 |
| Trichopoulou Mediterranean Diet Scale | 0.023 | |||
| 0–3 points (%) | 34.5% | 36.3% | 35.9% | |
| 4–5 points (%) | 39.0% | 38.7% | 39.8% | |
| 6–9 points (%) | 26.5% | 25.0% | 24.3% | |
| Diet | ||||
| Energy intake (kcal/d) | 2802 (816) | 2492 (698) | 2197 (686) | <0.001 |
| Carbohydrates (%E*) | 46.6 (7.3) | 43.7 (6.5) | 40.6 (7.4) | <0.001 |
| Proteins (%E*) | 14.7 (1.7) | 18.1 (0.9) | 22.5 (2.8) | <0.001 |
| Lipids (%E*) | 36.1 (6.9) | 36.6 (6.2) | 36.3 (6.7) | <0.001 |
| Monounsaturated fatty acids (%E*) | 15.9 (4.0) | 15.9 (3.5) | 15.5 (3.5) | <0.001 |
| Polyunsaturated fatty acids (%E*) | 5.7 (1.8) | 5.2 (1.4) | 4.8 (1.3) | <0.001 |
| Saturated fatty acids (%E*) | 12.0 (3.1) | 12.7 (3.0) | 12.9 (3.6) | <0.001 |
| Glycemic load | 179.0 (65.7) | 144.3 (50.0) | 111.8 (44.3) | <0.001 |
| Dairy products (g/day) | 226.5 (207.9) | 219.6 (217.1) | 179.7 (217.6) | <0.001 |
| Red meat (g/day) | 71.6 (43.8) | 83.6 (46.7) | 84.2 (58.2) | <0.001 |
| Vegetables (g/day) | 502.7 (350.6) | 544.2 (351.0) | 602.3 (392.9) | <0.001 |
| Fruit (g/day) | 319.3 (333.6) | 304.6 (266.6) | 292.3 (242.7) | <0.001 |
| Fish (g/day) | 76.1 (44.2) | 98.2 (50.8) | 130.2 (87.5) | <0.001 |
| Legumes (g/day) | 24.8 (23.1) | 24.2 (19.6) | 22.3 (16.9) | <0.001 |
| Cereals (g/day) | 134.5 (95.7) | 111.3 (74.2) | 81.8 (59.4) | <0.001 |
| Fiber (g/day) | 26.5 (13.0) | 23.9 (10.7) | 21.6 (9.9) | <0.001 |
| Olive oil (g/day) | 23.6 (18.8) | 19.2 (14.5) | 15.4 (12.0) | <0.001 |
| Coffee (g/day) | 64.2 (66.2) | 59.0 (60.9) | 59.5 (64.6) | <0.001 |
| Sweetened beverages (servings/day) | 60.0 (120.1) | 40.3 (69.2) | 28.3 (63.2) | <0.001 |
| HR (IC 95%) | ||||||
|---|---|---|---|---|---|---|
| Model | n | Cases/Person-Years | T1 | T2 | T3 | p-Interaction |
| BCAA (%E) | ||||||
| Overweight | 5827 | 181/80,793 | 1 (Ref.) | 1.14 (0.74–1.77) | 0.93 (0.52–1.66) | 0.521 |
| Normoweight | 14,327 | 39/207,626 | 1 (Ref.) | 0.55 (0.22–1.41) | 0.33 (0.08–1.34) | |
| Women | 12,458 | 56/177,484 | 1 (Ref.) | 0.88 (0.36–2.15) | 1.34 (0.46–3.94) | 0.308 |
| Men | 7696 | 164/110,934 | 1 (Ref.) | 1.09 (0.67–1.77) | 1.15 (0.60–2.19) | |
| Age ≥ 50 years | 3459 | 131/47,026 | 1 (Ref.) | 0.88 (0.54–1.44) | 0.65 (0.33–1.27) | 0.741 |
| Age < 50 years | 16,695 | 89/241,393 | 1 (Ref.) | 1.56 (0.79–3.06) | 1.63 (0.66–4.03) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la O, V.; Bretos-Azcona, T.; Basterra-Gortari, F.J.; de la Fuente-Arrillaga, C.; Ruiz-Canela, M.; Martínez-González, M.Á.; Bes-Rastrollo, M. Branched-Chain Amino Acid Intake and Risk of Incident Type 2 Diabetes: Results from the SUN Cohort. Biomedicines 2025, 13, 2561. https://doi.org/10.3390/biomedicines13102561
de la O V, Bretos-Azcona T, Basterra-Gortari FJ, de la Fuente-Arrillaga C, Ruiz-Canela M, Martínez-González MÁ, Bes-Rastrollo M. Branched-Chain Amino Acid Intake and Risk of Incident Type 2 Diabetes: Results from the SUN Cohort. Biomedicines. 2025; 13(10):2561. https://doi.org/10.3390/biomedicines13102561
Chicago/Turabian Stylede la O, Víctor, Telmo Bretos-Azcona, Francisco Javier Basterra-Gortari, Carmen de la Fuente-Arrillaga, Miguel Ruiz-Canela, Miguel Ángel Martínez-González, and Maira Bes-Rastrollo. 2025. "Branched-Chain Amino Acid Intake and Risk of Incident Type 2 Diabetes: Results from the SUN Cohort" Biomedicines 13, no. 10: 2561. https://doi.org/10.3390/biomedicines13102561
APA Stylede la O, V., Bretos-Azcona, T., Basterra-Gortari, F. J., de la Fuente-Arrillaga, C., Ruiz-Canela, M., Martínez-González, M. Á., & Bes-Rastrollo, M. (2025). Branched-Chain Amino Acid Intake and Risk of Incident Type 2 Diabetes: Results from the SUN Cohort. Biomedicines, 13(10), 2561. https://doi.org/10.3390/biomedicines13102561

