Bolus MPTP Injection in Aged Mice to Mimic Parkinson Disease: Effects of Low-Dose Antioxidant Treatment with Fullerene (C60) and Fullerenol (C60(OH)24)
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Design
2.3. Drug Administration and Evaluation of Diet and Liquid Intake
2.4. Assessment of Vegetative Parkinsonian-like Response to MPTP
2.5. Motor and Behavioural Tests
2.5.1. Walking Path Assessment
2.5.2. Pole Test
2.5.3. Rotarod
2.5.4. Open Field
2.5.5. Dark–Light Box
2.6. Killing of Mice and Tissue Collection
2.7. High-Performance Liquid Chromatography (HPLC) Assay
2.8. RNA Extraction, cDNA Synthesis, and Real-Time Polymerase Chain Reaction
2.9. Statistical Analysis
3. Results
3.1. Effects of Different C60(OH)24 Doses on Behavioral Outcomes in Naïve Mice
3.2. Motor Functions and Vegetative Outcomes in Mice Subjected to Dosing with C60 or C60(OH)24 and MPTP Injection
3.3. MPTP-Induced Neurochemical Changes in the Striatum and Effects of Dosing with C60 or C60(OH)24
3.4. A Sensitivity Statistical Analysis of Effect Sizes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MPTP | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
| PD | Parkinson’s disease |
| PCR | Polymerase chain reaction |
| NO | Nitric oxide |
| iNOS | Inducible nitric oxide synthase |
| nNOS | Neuronal nitric oxide synthase |
| eNOS | Endothelial nitric oxide synthase |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| HPLC | High-pressure liquid chromatography |
| DA | Dopamine |
| DOPAC | 3,4-Dihydroxyphenylacetic acid |
| HVA | Homovanillic acid |
| 3-MT | 3-Methoxytyramine |
| BBB | Blood–brain barrier |
| GFAP | Glial fibrillary acidic protein |
| IL | Interleukin |
| MAO-A | Monoamine oxidase A |
| MAO-B | Monoamine oxidase B |
| COMT | Catechol-O-methyltransferase |
| TH | Tyrosine hydroxylase |
| RNA | Ribonucleic acid |
| cDNA | Complementary deoxyribonucleic acid |
| GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
| ANOVA | Analysis of variance |
| CNS | Central nervous system |
| NRF2 | Nuclear factor erythroid 2-related Factor 2 |
| GCL | Glutamate–cysteine ligase |
References
- Rocha, G.S.; Freire, M.A.M.; Falcao, D.; Outeiro, T.F.; Lima, R.R.; Santos, J.R. Neurodegeneration in Parkinson’s Disease: Are We Looking at the Right Spot? Mol. Brain 2025, 18, 68. [Google Scholar] [CrossRef]
- Bugalho, P.; Ladeira, F.; Barbosa, R.; Marto, J.P.; Borbinha, C.; da Conceição, L.; Salavisa, M.; Saraiva, M.; Meira, B.; Fernandes, M. Progression in Parkinson’s Disease: Variation in Motor and Non-Motor Symptoms Severity and Predictors of Decline in Cognition, Motor Function, Disability, and Health-Related Quality of Life as Assessed by Two Different Methods. Mov. Disord. Clin. Pract. 2021, 8, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Blesa, J.; Foffani, G.; Dehay, B.; Bezard, E.; Obeso, J.A. Motor and Non-Motor Circuit Disturbances in Early Parkinson Disease: Which Happens First? Nat. Rev. Neurosci. 2022, 23, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Elkouzi, A.; Vedam-Mai, V.; Eisinger, R.S.; Okun, M.S. Emerging Therapies in Parkinson Disease—Repurposed Drugs and New Approaches. Nat. Rev. Neurol. 2019, 15, 204–223. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.R.; Saadabadi, A. Levodopa (L-Dopa). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Hartung, H.; Tan, S.K.H.; Steinbusch, H.M.W.; Temel, Y.; Sharp, T. High-Frequency Stimulation of the Subthalamic Nucleus Inhibits the Firing of Juxtacellular Labelled 5-HT-Containing Neurones. Neuroscience 2011, 186, 135–145. [Google Scholar] [CrossRef]
- Riederer, P.; Müller, T. Monoamine Oxidase-B Inhibitors in the Treatment of Parkinson’s Disease: Clinical-Pharmacological Aspects. J. Neural Transm. 2018, 125, 1751–1757. [Google Scholar] [CrossRef]
- Simoni, S.; Paoletti, F.P.; Eusebi, P.; Cappelletti, G.; Filidei, M.; Brahimi, E.; Nigro, P.; Santangelo, V.; Parnetti, L.; Calabresi, P.; et al. Impulse Control Disorders and Levodopa-Induced Dyskinesias in Parkinson’s Disease: Pulsatile versus Continuous Dopaminergic Stimulation. J. Park. Dis. 2020, 10, 927–934. [Google Scholar] [CrossRef]
- Koszła, O.; Stępnicki, P.; Zięba, A.; Grudzińska, A.; Matosiuk, D.; Kaczor, A.A. Current Approaches and Tools Used in Drug Development against Parkinson’s Disease. Biomolecules 2021, 11, 897. [Google Scholar] [CrossRef]
- Dovonou, A.; Bolduc, C.; Soto Linan, V.; Gora, C.; Peralta Iii, M.R.; Lévesque, M. Animal Models of Parkinson’s Disease: Bridging the Gap between Disease Hallmarks and Research Questions. Transl. Neurodegener. 2023, 12, 36. [Google Scholar] [CrossRef]
- Burova, A.E.; Aradzhyan, G.M.; Unanyan, O.A.; Gorlova, A.V.; Svirin, E.P.; Strekalova, T.V. Toxic models of Parkinson’s disease in vivo as test systems for primary screening of antioxidant compounds. Pathogenesis 2025, 23, 14–21. [Google Scholar] [CrossRef]
- Chegão, A.; Guarda, M.; Alexandre, B.M.; Shvachiy, L.; Temido-Ferreira, M.; Marques-Morgado, I.; Fernandes Gomes, B.; Matthiesen, R.; Lopes, L.V.; Florindo, P.R.; et al. Glycation Modulates Glutamatergic Signaling and Exacerbates Parkinson’s Disease-like Phenotypes. npj Park. Dis. 2022, 8, 51. [Google Scholar] [CrossRef]
- Schober, A. Classic Toxin-Induced Animal Models of Parkinson’s Disease: 6-OHDA and MPTP. Cell Tissue Res. 2004, 318, 215–224. [Google Scholar] [CrossRef]
- Tat, J.; Heskett, K.; Boss, G.R. Acute Rotenone Poisoning: A Scoping Review. Heliyon 2024, 10, e28334. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, R.E.; Nicklas, W.J.; Vyas, I.; Duvoisin, R.C. Dopaminergic Toxicity of Rotenone and the 1-Methyl-4-Phenylpyridinium Ion after Their Stereotaxic Administration to Rats: Implication for the Mechanism of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Toxicity. Neurosci. Lett. 1985, 62, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Thompson, M.; Xu, Y.-H. Multifactorial Theory Applied to the Neurotoxicity of Paraquat and Paraquat-Induced Mechanisms of Developing Parkinson’s Disease. Lab. Investig. 2016, 96, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Leão, A.H.F.F.; Sarmento-Silva, A.J.; Santos, J.R.; Ribeiro, A.M.; Silva, R.H. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson’s Disease: New Perspectives to a Long-Standing Model. Brain Pathol. 2015, 25, 377–390. [Google Scholar] [CrossRef]
- Patterson, J.R.; Kochmanski, J.; Stoll, A.C.; Kubik, M.; Kemp, C.J.; Duffy, M.F.; Thompson, K.; Howe, J.W.; Cole-Strauss, A.; Kuhn, N.C.; et al. Transcriptomic Profiling of Early Synucleinopathy in Rats Induced with Preformed Fibrils. npj Park. Dis. 2024, 10, 7. [Google Scholar] [CrossRef]
- Van der Perren, A.; Van den Haute, C.; Baekelandt, V. Viral Vector-Based Models of Parkinson’s Disease. Curr. Top. Behav. Neurosci. 2015, 22, 271–301. [Google Scholar] [CrossRef]
- Prasad, E.M.; Hung, S.-Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease. Antioxidants 2020, 9, 1007. [Google Scholar] [CrossRef]
- Mustapha, M.; Mat Taib, C.N. MPTP-Induced Mouse Model of Parkinson’s Disease: A Promising Direction of Therapeutic Strategies. Bosn. J. Basic Med. Sci. 2021, 21, 422–433. [Google Scholar] [CrossRef]
- Gogna, T.; Housden, B.E.; Houldsworth, A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer’s and Parkinson’s Disease and the Efficacy of Antioxidant Treatment. Antioxidants 2024, 13, 1138. [Google Scholar] [CrossRef]
- Talebi, S.; Ghoreishy, S.M.; Jayedi, A.; Travica, N.; Mohammadi, H. Dietary Antioxidants and Risk of Parkinson’s Disease: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Adv. Nutr. 2022, 13, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Klemann, C.J.H.M.; Martens, G.J.M.; Poelmans, G.; Visser, J.E. Validity of the MPTP-Treated Mouse as a Model for Parkinson’s Disease. Mol. Neurobiol. 2016, 53, 1625–1636. [Google Scholar] [CrossRef] [PubMed]
- Kolacheva, A.; Bannikova, A.; Pavlova, E.; Bogdanov, V.; Ugrumov, M. Modeling of the Progressive Degradation of the Nigrostriatal Dopaminergic System in Mice to Study the Mechanisms of Neurodegeneration and Neuroplasticity in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 24, 683. [Google Scholar] [CrossRef] [PubMed]
- Sanfeliu, C.; Bartra, C.; Suñol, C.; Rodríguez-Farré, E. New Insights in Animal Models of Neurotoxicity-Induced Neurodegeneration. Front. Neurosci. 2023, 17, 1248727. [Google Scholar] [CrossRef]
- Klæstrup, I.H.; Just, M.K.; Holm, K.L.; Alstrup, A.K.O.; Romero-Ramos, M.; Borghammer, P.; Van Den Berge, N. Impact of Aging on Animal Models of Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 909273. [Google Scholar] [CrossRef]
- Gil-Martinez, A.L.; Cuenca-Bermejo, L.; Gallo-Soljancic, P.; Sanchez-Rodrigo, C.; Izura, V.; Steinbusch, H.W.M.; Fernandez-Villalba, E.; Herrero, M.T. Study of the Link Between Neuronal Death, Glial Response, and MAPK Pathway in Old Parkinsonian Mice. Front. Aging Neurosci. 2020, 12, 214. [Google Scholar] [CrossRef]
- Battaglia, G.; Busceti, C.L.; Molinaro, G.; Biagioni, F.; Traficante, A.; Nicoletti, F.; Bruno, V. Pharmacological Activation of mGlu4 Metabotropic Glutamate Receptors Reduces Nigrostriatal Degeneration in Mice Treated with 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. J. Neurosci. 2006, 26, 7222–7229. [Google Scholar] [CrossRef]
- Haaxma, C.A.; Bloem, B.R.; Borm, G.F.; Oyen, W.J.G.; Leenders, K.L.; Eshuis, S.; Booij, J.; Dluzen, D.E.; Horstink, M.W.I.M. Gender Differences in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef]
- Russillo, M.C.; Andreozzi, V.; Erro, R.; Picillo, M.; Amboni, M.; Cuoco, S.; Barone, P.; Pellecchia, M.T. Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sci. 2022, 12, 917. [Google Scholar] [CrossRef]
- Abhilash, P.L.; Bharti, U.; Rashmi, S.K.; Philip, M.; Raju, T.R.; Kutty, B.M.; Sagar, B.K.C.; Alladi, P.A. Aging and MPTP Sensitivity Depend on Molecular and Ultrastructural Signatures of Astroglia and Microglia in Mice Substantia Nigra. Cell. Mol. Neurobiol. 2025, 45, 13. [Google Scholar] [CrossRef] [PubMed]
- Antzoulatos, E.; Jakowec, M.W.; Petzinger, G.M.; Wood, R.I. Sex Differences in Motor Behavior in the MPTP Mouse Model of Parkinson’s Disease. Pharmacol. Biochem. Behav. 2010, 95, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Masilamoni, G.J.; Smith, Y. Chronic MPTP Administration Regimen in Monkeys: A Model of Dopaminergic and Non-Dopaminergic Cell Loss in Parkinson’s Disease. J. Neural Transm. 2018, 125, 337–363. [Google Scholar] [CrossRef] [PubMed]
- Bezard, E.; Dovero, S.; Bioulac, B.; Gross, C. Effects of Different Schedules of MPTP Administration on Dopaminergic Neurodegeneration in Mice. Exp. Neurol. 1997, 148, 288–292. [Google Scholar] [CrossRef]
- Ma, Y.; Rong, Q. Effect of Different MPTP Administration Intervals on Mouse Models of Parkinson’s Disease. Contrast Media Mol. Imaging 2022, 2022, 2112146. [Google Scholar] [CrossRef]
- Cai, X.; Jia, H.; Liu, Z.; Hou, B.; Luo, C.; Feng, Z.; Li, W.; Liu, J. Polyhydroxylated Fullerene Derivative C60(OH)24 Prevents Mitochondrial Dysfunction and Oxidative Damage in an MPP+-Induced Cellular Model of Parkinson’s Disease. J. Neurosci. Res. 2008, 86, 3622–3634. [Google Scholar] [CrossRef]
- Vani, J.R.; Mohammadi, M.T.; Foroshani, M.S.; Jafari, M. Polyhydroxylated Fullerene Nanoparticles Attenuate Brain Infarction and Oxidative Stress in Rat Model of Ischemic Stroke. EXCLI J. 2016, 15, 378–390. [Google Scholar] [CrossRef]
- Sun, Y.; Kakinen, A.; Zhang, C.; Yang, Y.; Faridi, A.; Davis, T.P.; Cao, W.; Ke, P.C.; Ding, F. Amphiphilic Surface Chemistry of Fullerenols Is Necessary for Inhibiting the Amyloid Aggregation of Alpha-Synuclein NACore. Nanoscale 2019, 11, 11933–11945. [Google Scholar] [CrossRef]
- Kazemzadeh, H.; Mozafari, M. Fullerene-Based Delivery Systems. Drug Discov. Today 2019, 24, 898–905. [Google Scholar] [CrossRef]
- Golomidov, I.; Bolshakova, O.; Komissarov, A.; Sharoyko, V.; Slepneva, E.; Slobodina, A.; Latypova, E.; Zherebyateva, O.; Tennikova, T.; Sarantseva, S. The Neuroprotective Effect of Fullerenols on a Model of Parkinson’s Disease in Drosophila Melanogaster. Biochem. Biophys. Res. Commun. 2020, 523, 446–451. [Google Scholar] [CrossRef]
- Li, X.; Deng, R.; Li, J.; Li, H.; Xu, Z.; Zhang, L.; Feng, L.; Shu, C.; Zhen, M.; Wang, C. Oral [60]Fullerene Reduces Neuroinflammation to Alleviate Parkinson’s Disease via Regulating Gut Microbiome. Theranostics 2023, 13, 4936–4951. [Google Scholar] [CrossRef]
- Askarova, A.; Yaa, R.M.; Marzi, S.J.; Nott, A. Genetic risk for neurodegenerative conditions is linked to disease-specific microglial pathways. PLoS Genet. 2025, 21, e1011407. [Google Scholar] [CrossRef] [PubMed]
- Andalib, S.; Nikpour, M.; Hamidi, M.; Javadi, R.; Mohammadpour, H. Evaluation and Comparison of Fullerene (C60) Aqueous Suspension Administration Effects with Memantine HCL in Rat Model of Alzheimer’s Disease Considering Behavioral Patterns and Spatial Memory. J. Microbiota 2024, 1, E146755. [Google Scholar] [CrossRef]
- Dai, W.; Zhao, M.; Chen, C.; Zhou, C.; Wang, P.; Yang, Z.; Gao, S.; Lu, Y.; Zhang, J.; Liu, X. Nano C60 Promotes Synaptic Distribution of Phosphorylated CaMKIIα and Improves Cognitive Function in APP/PS1 Transgenic Mice. ACS Chem. Neurosci. 2022, 13, 3534–3543. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Podolski, I.; Makarova, E.; Deev, A.; Mugantseva, E.; Khutsyan, S.; Sengpiel, F.; Murashev, A.; Vorobyov, V. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms Are Affected by Intracerebral Infusions of Amyloid-Β25-35 Peptide and Hydrated Fullerene C60 in Rats. J. Alzheimers Dis. JAD 2017, 58, 711–724. [Google Scholar] [CrossRef]
- Seke, M.; Stankovic, A.; Zivkovic, M. Capacity of Fullerenols to Modulate Neurodegeneration Induced by Ferroptosis: Focus on Multiple Sclerosis. Mult. Scler. Relat. Disord. 2025, 97, 106378. [Google Scholar] [CrossRef]
- Semenov, K.N.; Ivanova, D.A.; Ageev, S.V.; Petrov, A.V.; Podolsky, N.E.; Volochaeva, E.M.; Fedorova, E.M.; Meshcheriakov, A.A.; Zakharov, E.E.; Murin, I.V.; et al. Evaluation of the C60 Biodistribution in Mice in a Micellar ExtraOx Form and in an Oil Solution. Sci. Rep. 2021, 11, 8362. [Google Scholar] [CrossRef]
- Ji, Z.Q.; Sun, H.; Wang, H.; Xie, Q.; Liu, Y.; Wang, Z. Biodistribution and Tumor Uptake of C60(OH)x in Mice. J. Nanoparticle Res. 2006, 8, 53–63. [Google Scholar] [CrossRef]
- Gul, G.; Ileri-Ercan, N. Fullerene Translocation through Peroxidized Lipid Membranes. RSC Adv. 2021, 11, 7575–7586. [Google Scholar] [CrossRef]
- Caffo, M.; Curcio, A.; Rajiv, K.; Caruso, G.; Venza, M.; Germanò, A. Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers 2023, 15, 2575. [Google Scholar] [CrossRef]
- Khudhur, O.Z.; Maad, A.H.; Ghanimi, H.A.; Abdolmaleki, A. Fullerene Nanoparticle as New Therapeutic Agent for the Nervous System Disorders. Nanomed. J. 2024, 11, 342–359. [Google Scholar] [CrossRef]
- Yamago, S.; Tokuyama, H.; Nakamura, E.; Kikuchi, K.; Kananishi, S.; Sueki, K.; Nakahara, H.; Enomoto, S.; Ambe, F. In Vivo Biological Behavior of a Water-Miscible Fullerene: 14C Labeling, Absorption, Distribution, Excretion and Acute Toxicity. Chem. Biol. 1995, 2, 385–389. [Google Scholar] [CrossRef]
- Yamawaki, H.; Iwai, N. Cytotoxicity of Water-Soluble Fullerene in Vascular Endothelial Cells. Am. J. Physiol. Cell Physiol. 2006, 290, C1495–C1502. [Google Scholar] [CrossRef] [PubMed]
- Kotelnikova, R.A.; Smolina, A.V.; Grigoryev, V.V.; Faingold, I.I.; Mischenko, D.V.; Rybkin, A.Y.; Poletayeva, D.A.; Vankin, G.I.; Zamoyskiy, V.L.; Voronov, I.I.; et al. Influence of Water-Soluble Derivatives of [60]Fullerene on Therapeutically Important Targets Related to Neurodegenerative Diseases. MedChemComm 2014, 5, 1664–1668. [Google Scholar] [CrossRef]
- Baati, T.; Bourasset, F.; Gharbi, N.; Njim, L.; Abderrabba, M.; Kerkeni, A.; Szwarc, H.; Moussa, F. The Prolongation of the Lifespan of Rats by Repeated Oral Administration of [60]Fullerene. Biomaterials 2012, 33, 4936–4946. [Google Scholar] [CrossRef] [PubMed]
- Perovic, M.; Ciric, J.; Matovic, V.; Srbovan, M.; Koruga, D.; Kanazir, S.; Ivkovic, S. The Presymptomatic Treatment with 3HFWC Nanosubstance Decreased Plaque Load in 5XFAD Mouse Model of Alzheimer’s Disease. CNS Neurosci. Ther. 2024, 30, e14188. [Google Scholar] [CrossRef]
- Owen, A.M. Cognitive Dysfunction in Parkinson’s Disease: The Role of Frontostriatal Circuitry. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2004, 10, 525–537. [Google Scholar] [CrossRef]
- Foffani, G.; Obeso, J.A. A Cortical Pathogenic Theory of Parkinson’s Disease. Neuron 2018, 99, 1116–1128. [Google Scholar] [CrossRef]
- de la Fuente-Fernández, R. Frontostriatal Cognitive Staging in Parkinson’s Disease. Park. Dis. 2012, 2012, 561046. [Google Scholar] [CrossRef]
- Przedborski, S.; Jackson-Lewis, V.; Yokoyama, R.; Shibata, T.; Dawson, V.L.; Dawson, T.M. Role of Neuronal Nitric Oxide in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Dopaminergic Neurotoxicity. Proc. Natl. Acad. Sci. USA 1996, 93, 4565–4571. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, Q.; Du, X.; Jiang, H. Sirt1/FoxO1-Associated MAO-A Upregulation Promotes Depressive-Like Behavior in Transgenic Mice Expressing Human A53T α-Synuclein. ACS Chem. Neurosci. 2020, 11, 3838–3848. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Kopin, I.J.; Sharabi, Y. Catecholamine Autotoxicity. Implications for Pharmacology and Therapeutics of Parkinson Disease and Related Disorders. Pharmacol. Ther. 2014, 144, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Nagatsu, T.; Sawada, M. Molecular Mechanism of the Relation of Monoamine Oxidase B and Its Inhibitors to Parkinson’s Disease: Possible Implications of Glial Cells. In Oxidative Stress and Neuroprotection; Journal of Neural Transmission. Supplementa; Springer: Vienna, Austria, 2006; pp. 53–65. [Google Scholar] [CrossRef]
- Roostalu, U.; Salinas, C.B.G.; Thorbek, D.D.; Skytte, J.L.; Fabricius, K.; Barkholt, P.; John, L.M.; Jurtz, V.I.; Knudsen, L.B.; Jelsing, J.; et al. Quantitative Whole-Brain 3D Imaging of Tyrosine Hydroxylase-Labeled Neuron Architecture in the Mouse MPTP Model of Parkinson’s Disease. Dis. Model. Mech. 2019, 12, dmm042200. [Google Scholar] [CrossRef] [PubMed]
- Tagliafierro, L.; Chiba-Falek, O. Up-Regulation of SNCA Gene Expression: Implications to Synucleinopathies. Neurogenetics 2016, 17, 145–157. [Google Scholar] [CrossRef]
- Vila, M.; Jackson-Lewis, V.; Guégan, C.; Wu, D.C.; Teismann, P.; Choi, D.-K.; Tieu, K.; Przedborski, S. The Role of Glial Cells in Parkinson’s Disease. Curr. Opin. Neurol. 2001, 14, 483–489. [Google Scholar] [CrossRef]
- McMeekin, L.J.; Fox, S.N.; Boas, S.M.; Cowell, R.M. Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021, 10, 352. [Google Scholar] [CrossRef]
- Strekalova, T.; Evans, M.; Chernopiatko, A.; Couch, Y.; Costa-Nunes, J.; Cespuglio, R.; Chesson, L.; Vignisse, J.; Steinbusch, H.; Anthony, D.; et al. Deuterium Content of Water Increases Depression Susceptibility: The Potential Role of a Serotonin-Related Mechanism. Behav. Brain Res. 2015, 277, 237–244. [Google Scholar] [CrossRef]
- Markova, N.; Bazhenova, N.; Anthony, D.C.; Vignisse, J.; Svistunov, A.; Lesch, K.-P.; Bettendorff, L.; Strekalova, T. Thiamine and Benfotiamine Improve Cognition and Ameliorate GSK-3β-Associated Stress-Induced Behaviours in Mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 75, 148–156. [Google Scholar] [CrossRef]
- Vignisse, J.; Sambon, M.; Gorlova, A.; Pavlov, D.; Caron, N.; Malgrange, B.; Shevtsova, E.; Svistunov, A.; Anthony, D.C.; Markova, N.; et al. Thiamine and Benfotiamine Prevent Stress-Induced Suppression of Hippocampal Neurogenesis in Mice Exposed to Predation without Affecting Brain Thiamine Diphosphate Levels. Mol. Cell. Neurosci. 2017, 82, 126–136. [Google Scholar] [CrossRef]
- Sayes, C.M.; Fortner, J.D.; Guo, W.; Lyon, D.; Boyd, A.M.; Ausman, K.D.; Tao, Y.J.; Sitharaman, B.; Wilson, L.J.; Hughes, J.B.; et al. The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Lett. 2004, 4, 1881–1887. [Google Scholar] [CrossRef]
- Sedelis, M.; Schwarting, R.K.; Huston, J.P. Behavioral Phenotyping of the MPTP Mouse Model of Parkinson’s Disease. Behav. Brain Res. 2001, 125, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Haobam, R.; Sindhu, K.M.; Chandra, G.; Mohanakumar, K.P. Swim-Test as a Function of Motor Impairment in MPTP Model of Parkinson’s Disease: A Comparative Study in Two Mouse Strains. Behav. Brain Res. 2005, 163, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Wertman, V.; Gromova, A.; La Spada, A.R.; Cortes, C.J. Low-Cost Gait Analysis for Behavioral Phenotyping of Mouse Models of Neuromuscular Disease. J. Vis. Exp. JoVE 2019, 149, e59878. [Google Scholar] [CrossRef]
- de Munter, J.P.J.M.; Shafarevich, I.; Liundup, A.; Pavlov, D.; Wolters, E.C.; Gorlova, A.; Veniaminova, E.; Umriukhin, A.; Kalueff, A.; Svistunov, A.; et al. Neuro-Cells Therapy Improves Motor Outcomes and Suppresses Inflammation during Experimental Syndrome of Amyotrophic Lateral Sclerosis in Mice. CNS Neurosci. Ther. 2020, 26, 504–517. [Google Scholar] [CrossRef]
- Malatynska, E.; Steinbusch, H.W.M.; Redkozubova, O.; Bolkunov, A.; Kubatiev, A.; Yeritsyan, N.B.; Vignisse, J.; Bachurin, S.; Strekalova, T. Anhedonic-like Traits and Lack of Affective Deficits in 18-Month-Old C57BL/6 Mice: Implications for Modeling Elderly Depression. Exp. Gerontol. 2012, 47, 552–564. [Google Scholar] [CrossRef]
- Strekalova, T.; Steinbusch, H.W.M. Measuring Behavior in Mice with Chronic Stress Depression Paradigm. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 348–361. [Google Scholar] [CrossRef]
- Gorlova, A.; Pavlov, D.; Anthony, D.C.; Ponomarev, E.D.; Sambon, M.; Proshin, A.; Shafarevich, I.; Babaevskaya, D.; Lesch, K.-P.; Bettendorff, L.; et al. Thiamine and Benfotiamine Counteract Ultrasound-Induced Aggression, Normalize AMPA Receptor Expression and Plasticity Markers, and Reduce Oxidative Stress in Mice. Neuropharmacology 2019, 156, 107543. [Google Scholar] [CrossRef]
- Vorobyov, V.; Deev, A.; Morozova, O.; Oganesyan, Z.; Krayushkina, A.M.; Ivanova, T.A.; Chaprov, K. Early Effects of Alpha-Synuclein Depletion by Pan-Neuronal Inactivation of Encoding Gene on Electroencephalogram Coherence between Different Brain Regions in Mice. Biomedicines 2023, 11, 3282. [Google Scholar] [CrossRef]
- Scott, S.J.; Olson, C.V.; Lad, P.M. Peptide Mapping Studies of the Pertussis Toxin Substrate in Human Neutrophils, Platelets and Erythrocytes. Mol. Immunol. 1988, 25, 305–311. [Google Scholar] [CrossRef]
- Pileblad, E.; Slivka, A.; Bratvold, D.; Cohen, G. Studies on the Autoxidation of Dopamine: Interaction with Ascorbate. Arch. Biochem. Biophys. 1988, 263, 447–452. [Google Scholar] [CrossRef]
- Khakimova, G.R.; Kozina, E.A.; Sapronova, A.Y.; Ugryumov, M.V. Dopamine Release in the Substantia Nigra and Striatum at Presymptomatic and Early Symptomatic Stages in Parkinsonian Mice. Neurochem. J. 2011, 5, 35–41. [Google Scholar] [CrossRef]
- Hurley, L.L.; Akinfiresoye, L.; Kalejaiye, O.; Tizabi, Y. Antidepressant Effects of Resveratrol in an Animal Model of Depression. Behav. Brain Res. 2014, 268, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.; Rampulla, F.; Reali, G.M.; Spanò, S.M.; Trovato Salinaro, A.; Calabrese, V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants 2024, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dawson, V.L.; Dawson, T.M. Role of Nitric Oxide in Parkinson’s Disease. Pharmacol. Ther. 2006, 109, 33–41. [Google Scholar] [CrossRef]
- Bogdanović, V.; Stankov, K.; Icević, I.; Zikic, D.; Nikolić, A.; Solajić, S.; Djordjević, A.; Bogdanović, G. Fullerenol C60(OH)24 Effects on Antioxidative Enzymes Activity in Irradiated Human Erythroleukemia Cell Line. J. Radiat. Res. 2008, 49, 321–327. [Google Scholar] [CrossRef]
- Injac, R.; Prijatelj, M.; Strukelj, B. Fullerenol Nanoparticles: Toxicity and Antioxidant Activity. Methods Mol. Biol. 2013, 1028, 75–100. [Google Scholar]
- Hao, L.N.; Zhang, X.D.; Wang, M.; Yang, T.; He, S.Z. Peroxynitrite-induced expression of inducible nitric oxide synthase and activated apoptosis via nuclear factor-kappa B pathway in retinal pigment epithelial cells and antagonism of cholecystokinin octapeptide-8 in vitro. Int. J. Ophthalmol. 2011, 4, 474–479. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Wang, W.; Trieu, B.H.; Palmer, L.C.; Jia, Y.; Pham, D.T.; Jung, K.-M.; Karsten, C.A.; Merrill, C.B.; Mackie, K.; Gall, C.M.; et al. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016, 3, ENEURO.0160-16.2016. [Google Scholar] [CrossRef]
- Dionísio, P.A.; Amaral, J.D.; Rodrigues, C.M.P. Oxidative Stress and Regulated Cell Death in Parkinson’s Disease. Ageing Res. Rev. 2021, 67, 101263. [Google Scholar] [CrossRef]
- Kupsch, A.; Sautter, J.; Götz, M.E.; Breithaupt, W.; Schwarz, J.; Youdim, M.B.; Riederer, P.; Gerlach, M.; Oertel, W.H. Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: Comparison of rasagiline (TVP 1012) with selegiline. J. Neural. Transm. 2021, 108, 985–1009. [Google Scholar] [CrossRef]
- Rudenok, M.M.; Alieva, A.K.; Starovatykh, J.S.; Nesterov, M.S.; Stanishevskaya, V.A.; Kolacheva, A.A.; Ugryumov, M.V.; Slominsky, P.A.; Shadrina, M.I. Expression Analysis of Genes Involved in Mitochondrial Biogenesis in Mice with MPTP-Induced Model of Parkinson’s Disease. Mol. Genet. Metab. Rep. 2020, 23, 100584. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.; Vukosavic, S.; Jackson-Lewis, V.; Neystat, M.; Jakowec, M.; Przedborski, S. Alpha-Synuclein up-Regulation in Substantia Nigra Dopaminergic Neurons Following Administration of the Parkinsonian Toxin MPTP. J. Neurochem. 2000, 74, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, Y.; Sun, Z.; Tai, W.; Li, H.; Yin, Y.; Jiang, L.-H.; Wang, J.-Z. Effectiveness and Mechanisms of Combined Use of Antioxidant Nutrients in Protecting against Oxidative Stress-Induced Neuronal Loss and Related Neurological Deficits. CNS Neurosci. Ther. 2024, 30, e14886. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhao, X.-Y.; Meng, Q.-P.; Teng, D.; Deng, K.; Lin, N. Resveratrol Activates the SIRT1/PGC-1 Pathway in Mice to Improve Synaptic-Related Cognitive Impairment after TBI. Brain Res. 2022, 1796, 148109. [Google Scholar] [CrossRef]
- Meredith, G.E.; Rademacher, D.J. MPTP Mouse Models of Parkinson’s Disease: An Update. J. Parkinson’s Dis. 2011, 1, 19–33. [Google Scholar] [CrossRef]
- Santoro, M.; Fadda, P.; Klephan, K.J.; Hull, C.; Teismann, P.; Platt, B.; Riedel, G. Neurochemical, Histological, and Behavioral Profiling of the Acute, Sub-Acute, and Chronic MPTP Mouse Model of Parkinson’s Disease. J. Neurochem. 2023, 164, 121–142. [Google Scholar] [CrossRef]
- Bezard, E.; Gross, C.E.; Brotchie, J.M. Presymptomatic Compensation in Parkinson’s Disease Is Not Dopamine-Mediated. Trends Neurosci. 2003, 26, 215–221. [Google Scholar] [CrossRef]
- Cheng, H.C.; Ulane, C.M.; Burke, R.E. Clinical Progression in Parkinson Disease and the Neurobiology of Axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef]
- Shi, S.; Klotz, U. Age-Related Changes in Pharmacokinetics. Curr. Drug Metab. 2011, 12, 601–610. [Google Scholar] [CrossRef]
- McLean, A.J.; Le Couteur, D.G. Aging Biology and Geriatric Clinical Pharmacology. Pharmacol. Rev. 2004, 56, 163–184. [Google Scholar] [CrossRef]
- Brinton, R. Minireview: Translational Animal Models of Human Menopause: Challenges and Emerging Opportunities. Endocrinology 2012, 153, 3571–3578. [Google Scholar] [CrossRef] [PubMed]
- Waxman, D.J.; Holloway, M.G. Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes. Mol. Pharmacol. 2009, 76, 215–228. [Google Scholar] [CrossRef]
- Bake, S.; Sohrabji, F. 17beta-Estradiol Differentially Regulates Blood-Brain Barrier Permeability in Young and Aging Female Rats. Endocrinology 2004, 145, 5471–5475. [Google Scholar] [CrossRef]
- Mahringer, A.; Fricker, G. ABC Transporters at the Blood-Brain Barrier. Expert Opin. Drug Metab. Toxicol. 2016, 12, 499–508. [Google Scholar] [CrossRef]
- Malm, T.; Koistinaho, J.; Kanninen, K. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer’s Disease: Focus on Gene Therapy and Cell-Based Therapy Applications. Int. J. Alzheimers Dis. 2011, 2011, 517160. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strekalova, T.; Burova, A.; Gorlova, A.; Chaprov, K.; Khizeva, A.; Coelho, J.E.; Svirin, E.; Novikova, P.; Ohanyan, L.; de Munter, J.J.M.P.; et al. Bolus MPTP Injection in Aged Mice to Mimic Parkinson Disease: Effects of Low-Dose Antioxidant Treatment with Fullerene (C60) and Fullerenol (C60(OH)24). Biomedicines 2025, 13, 2425. https://doi.org/10.3390/biomedicines13102425
Strekalova T, Burova A, Gorlova A, Chaprov K, Khizeva A, Coelho JE, Svirin E, Novikova P, Ohanyan L, de Munter JJMP, et al. Bolus MPTP Injection in Aged Mice to Mimic Parkinson Disease: Effects of Low-Dose Antioxidant Treatment with Fullerene (C60) and Fullerenol (C60(OH)24). Biomedicines. 2025; 13(10):2425. https://doi.org/10.3390/biomedicines13102425
Chicago/Turabian StyleStrekalova, Tatyana, Alisa Burova, Anna Gorlova, Kirill Chaprov, Anastasia Khizeva, Joana E. Coelho, Evgeniy Svirin, Polina Novikova, Lia Ohanyan, Johannes J. M. P. de Munter, and et al. 2025. "Bolus MPTP Injection in Aged Mice to Mimic Parkinson Disease: Effects of Low-Dose Antioxidant Treatment with Fullerene (C60) and Fullerenol (C60(OH)24)" Biomedicines 13, no. 10: 2425. https://doi.org/10.3390/biomedicines13102425
APA StyleStrekalova, T., Burova, A., Gorlova, A., Chaprov, K., Khizeva, A., Coelho, J. E., Svirin, E., Novikova, P., Ohanyan, L., de Munter, J. J. M. P., Ayvazyan, N., Lopes, L. V., Umriukhin, A., Arajyan, G., & Steinbusch, H. W. M. (2025). Bolus MPTP Injection in Aged Mice to Mimic Parkinson Disease: Effects of Low-Dose Antioxidant Treatment with Fullerene (C60) and Fullerenol (C60(OH)24). Biomedicines, 13(10), 2425. https://doi.org/10.3390/biomedicines13102425

