Decoding Early Clues: Immune Mechanisms, Prevention, Diagnosis, and Treatment of IgE-Mediated Peanut and Tree Nut Allergy in Children
Abstract
1. Introduction
2. Mechanisms of IgE-Mediated Food Allergy
2.1. General Immunopathogenesis and Pathways of Peanut and Tree Nut Allergy
2.2. Distinct Endotypes in Children with Peanut and Tree Nut Allergy
3. Risk Factors and Early Prediction of Peanut and Tree Nut IgE-Mediated Food Allergy Development
4. Peanut and Tree Nut IgE-Mediated Food Allergy Prevention Strategies
5. Prevalence of Peanut and Tree Nut IgE-Mediated Food Allergy in Children
5.1. Peanut Allergy
5.2. Tree Nut Allergy
5.3. Peanut and Tree Nut Co-Allergy
5.4. Tree Nut Co-Allergy
6. Natural History
6.1. Peanut IgE-Mediated Allergy
6.2. Tree Nut IgE-Mediated Allergy
6.3. Peanut and Tree Nut IgE-Mediated Allergy
7. Clinical Manifestations of IgE-Mediated Reactions to Peanuts and Tree Nuts
7.1. Localized Reactions
7.2. Pollen-Food Allergy Syndrome (PFAS)
7.3. Anaphylaxis
7.4. Allergic Reactions from Inhalation Exposure
8. Diagnosis
9. Treatment
10. Discussion
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | atopic dermatitis |
BAT | basophil activation test |
CRD | component-resolved diagnostics |
EAT | Enquiring About Tolerance study |
EPIT | epicutaneous immunotherapy |
FA | food allergy |
(s)IgE | (specific) immunoglobulin E |
IL | interleukin |
LEAP | Learning Early About Peanut Allergy study |
LTPs | lipid transfer proteins |
OIT | oral immunotherapy |
PAS | Peanut Allergy Sensitization |
PFAS | pollen food allergy syndrome |
SLIT | sublingual immunotherapy |
SPT | skin prick test |
TEWL | transepidermal water loss |
UK | United Kingdom |
U.S. | United States |
References
- Forero Molina, M.A.; Kram, Y.E.; Lanser, B.J. The Global Burden of Food Allergy. Immunol. Allergy Clin. N. Am. 2025, 45, 325–337. [Google Scholar] [CrossRef]
- Luccioli, S.; Seabol, L. Anaphylaxis in Children: Latest Insights. Allergy Asthma Proc. 2025, 46, 168–184. [Google Scholar] [CrossRef]
- Walker, M.T.; Green, J.E.; Ferrie, R.P.; Queener, A.M.; Kaplan, M.H.; Cook-Mills, J.M. Mechanism for Initiation of Food Allergy: Dependence on Skin Barrier Mutations and Environmental Allergen Costimulation. J. Allergy Clin. Immunol. 2018, 141, 1711–1725.e9. [Google Scholar] [CrossRef]
- Hornikova, T.; Jelinkova, A.; Jiraskova Zakostelska, Z.; Thon, T.; Coufal, S.; Polouckova, A.; Kopelentova, E.; Kverka, M.; Makovicky, P.; Tlaskalova-Hogenova, H.; et al. Genetic Background and Microbiome Drive Susceptibility to Epicutaneous Sensitization and Food Allergy in Adjuvant-Free Mouse Model. Front. Immunol. 2025, 15, 1509691. [Google Scholar] [CrossRef]
- Lukacs, N.W.; Hogan, S.P. Food Allergy: Begin at the Skin, End at the Mast Cell? Nat. Rev. Immunol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Castillo, J.M.; Das, M.; Strakosha, M.; McGurk, A.; Artru, E.; Kam, C.; Alasharee, M.; Wesemann, D.R.; Tomura, M.; Karasuyama, H.; et al. IL-4 Acts on Skin-Derived Dendritic Cells to Promote the TH2 Response to Cutaneous Sensitization and the Development of Allergic Skin Inflammation. J. Allergy Clin. Immunol. 2024, 154, 1462–1471.e3. [Google Scholar] [CrossRef]
- Leyva-Castillo, J.M.; Galand, C.; Kam, C.; Burton, O.; Gurish, M.; Musser, M.A.; Goldsmith, J.D.; Hait, E.; Nurko, S.; Brombacher, F.; et al. Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity 2019, 50, 1262–1275.e4. [Google Scholar] [CrossRef]
- Bartnikas, L.M.; Gurish, M.F.; Burton, O.T.; Leisten, S.; Janssen, E.; Oettgen, H.C.; Beaupré, J.; Lewis, C.N.; Austen, K.F.; Schulte, S.; et al. Epicutaneous Sensitization Results in IgE-Dependent Intestinal Mast Cell Expansion and Food-Induced Anaphylaxis. J. Allergy Clin. Immunol. 2013, 131, 451–460.e6. [Google Scholar] [CrossRef]
- Noti, M.; Kim, B.S.; Siracusa, M.C.; Rak, G.D.; Kubo, M.; Moghaddam, A.E.; Sattentau, Q.A.; Comeau, M.R.; Spergel, J.M.; Artis, D. Exposure to Food Allergens through Inflamed Skin Promotes Intestinal Food Allergy through the Thymic Stromal Lymphopoietin-Basophil Axis. J. Allergy Clin. Immunol. 2014, 133, 1390–1399.e6. [Google Scholar] [CrossRef] [PubMed]
- Galand, C.; Leyva-Castillo, J.M.; Yoon, J.; Han, A.; Lee, M.S.; McKenzie, A.N.J.; Stassen, M.; Oyoshi, M.K.; Finkelman, F.D.; Geha, R.S. IL-33 Promotes Food Anaphylaxis in Epicutaneously Sensitized Mice by Targeting Mast Cells. J. Allergy Clin. Immunol. 2016, 138, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Brandt, E.B.; Ruff, B.P.; Filuta, A.L.; Chang, W.C.; Shik, D.; Khurana Hershey, G.K. Thymic Stromal Lymphopoietin Rather than IL-33 Drives Food Allergy after Epicutaneous Sensitization to Food Allergen. J. Allergy Clin. Immunol. 2023, 151, 1660–1666.e4. [Google Scholar] [CrossRef]
- Khodoun, M.V.; Tomar, S.; Tocker, J.E.; Wang, Y.H.; Finkelman, F.D. Prevention of Food Allergy Development and Suppression of Established Food Allergy by Neutralization of Thymic Stromal Lymphopoietin, IL-25, and IL-33. J. Allergy Clin. Immunol. 2018, 141, 171–179.e1. [Google Scholar] [CrossRef]
- Benor, S.; Shani, N.; Etkin, S.; Bondar, E.; Kivity, S.; Langier, S. Epicutaneous Exposure to Peanut Oil Induces Systemic and Pulmonary Allergic Reaction in Mice. Int. Arch. Allergy Immunol. 2019, 179, 187–191. [Google Scholar] [CrossRef]
- Krempski, J.W.; Lama, J.K.; Iijima, K.; Kobayashi, T.; Matsunaga, M.; Kita, H. A Mouse Model of the LEAP Study Reveals a Role for CTLA-4 in Preventing Peanut Allergy Induced by Environmental Peanut Exposure. J. Allergy Clin. Immunol. 2022, 150, 425–439.e3. [Google Scholar] [CrossRef] [PubMed]
- Immormino, R.M.; Smeekens, J.M.; Mathai, P.I.; Clough, K.M.; Nguyen, J.T.; Ghio, A.J.; Cook, D.N.; Kulis, M.D.; Moran, T.P. Different Airborne Particulates Trigger Distinct Immune Pathways Leading to Peanut Allergy in a Mouse Model. Allergy 2024, 79, 432–444. [Google Scholar] [CrossRef]
- Dolence, J.J.; Kobayashi, T.; Iijima, K.; Krempski, J.; Drake, L.Y.; Dent, A.L.; Kita, H. Airway Exposure Initiates Peanut Allergy by Involving the IL-1 Pathway and T Follicular Helper Cells in Mice. J. Allergy Clin. Immunol. 2018, 142, 1144–1158.e8. [Google Scholar] [CrossRef] [PubMed]
- Smeekens, J.M.; Immormino, R.M.; Balogh, P.A.; Randell, S.H.; Kulis, M.D.; Moran, T.P. Indoor Dust Acts as an Adjuvant to Promote Sensitization to Peanut through the Airway. Clin. Exp. Allergy 2019, 49, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, N.P.; Parvataneni, S.; Hassan, H.M.A.; Harkema, J.; Samineni, S.; Navuluri, L.; Kelly, C.J.; Gangur, V. An Adjuvant-Free Mouse Model of Tree Nut Allergy Using Hazelnut as a Model Tree Nut. Int. Arch. Allergy Immunol. 2007, 144, 203–210. [Google Scholar] [CrossRef]
- Birmingham, N.; Gangur, V.; Samineni, S.; Navuluri, L.; Kelly, C. Hazelnut Allergy: Evidence That Hazelnut Can Directly Elicit Specific IgE Antibody Response via Activating Type 2 Cytokines in Mice. Int. Arch. Allergy Immunol. 2005, 137, 295–302. [Google Scholar] [CrossRef]
- Gonipeta, B.; Duriancik, D.; Kim, E.; Gardner, E.; Gangur, V. Identification of T- and B-Cell Subsets That Expand in the Central and Peripheral Lymphoid Organs during the Establishment of Nut Allergy in an Adjuvant-Free Mouse Model. Int. Sch. Res. Not. 2013, 2013, 509427. [Google Scholar] [CrossRef]
- Chen, C.; Sang, Z.; Xie, Q.; Xue, W. Effects of Hazelnut Protein Isolate-Induced Food Allergy on the Gut Microenvironment in a BALB/c Mouse Model. Food Funct. 2023, 14, 8761–8774. [Google Scholar] [CrossRef]
- Pelletier, B.; Perrin, A.; Assoun, N.; Plaquet, C.; Oreal, N.; Gaulme, L.; Bouzereau, A.; Labernardière, J.L.; Ligouis, M.; Dioszeghy, V.; et al. Epicutaneous Immunotherapy Protects Cashew-Sensitized Mice from Anaphylaxis. Allergy 2021, 76, 1213–1222. [Google Scholar] [CrossRef]
- Lack, G.; Fox, D.; Northstone, K.; Golding, J. Factors Associated with the Development of Peanut Allergy in Childhood. N. Engl. J. Med. 2003, 348, 977–985. [Google Scholar] [CrossRef]
- Fox, A.T.; Sasieni, P.; du Toit, G.; Syed, H.; Lack, G. Household Peanut Consumption as a Risk Factor for the Development of Peanut Allergy. J. Allergy Clin. Immunol. 2009, 123, 417–423. [Google Scholar] [CrossRef]
- Brough, H.A.; Liu, A.H.; Sicherer, S.; Makinson, K.; Douiri, A.; Brown, S.J.; Stephens, A.C.; Irwin McLean, W.H.; Turcanu, V.; Wood, R.A.; et al. Atopic Dermatitis Increases the Effect of Exposure to Peanut Antigen in Dust on Peanut Sensitization and Likely Peanut Allergy. J. Allergy Clin. Immunol. 2015, 135, 164–170.e4. [Google Scholar] [CrossRef]
- Brough, H.A.; Simpson, A.; Makinson, K.; Hankinson, J.; Brown, S.; Douiri, A.; Belgrave, D.C.M.; Penagos, M.; Stephens, A.C.; McLean, W.H.I.; et al. Peanut Allergy: Effect of Environmental Peanut Exposure in Children with Filaggrin Loss-of-Function Mutations. J. Allergy Clin. Immunol. 2014, 134, 867–875.e1. [Google Scholar] [CrossRef] [PubMed]
- Gubbels, L.; Saffery, R.; Neeland, M.R. New Insights into the Mechanisms of Childhood Food Allergies. Pediatr. Allergy Immunol. 2025, 36, e70069. [Google Scholar] [CrossRef] [PubMed]
- Neeland, M.R.; Andorf, S.; Manohar, M.; Dunham, D.; Lyu, S.C.; Dang, T.D.; Peters, R.L.; Perrett, K.P.; Tang, M.L.K.; Saffery, R.; et al. Mass Cytometry Reveals Cellular Fingerprint Associated with IgE+ Peanut Tolerance and Allergy in Early Life. Nat. Commun. 2020, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, W.; Lyu, S.C.; Macaubas, C.; Bunning, B.; He, Z.; Mellins, E.D.; Nadeau, K.C. A Positive Feedback Loop Reinforces the Allergic Immune Response in Human Peanut Allergy. J. Exp. Med. 2021, 218, e20201793. [Google Scholar] [CrossRef]
- Lee, K.H.; Bosco, A.; O’Sullivan, M.; Song, Y.; Metcalfe, J.; Yu, K.; Mullins, B.J.; Loh, R.; Zhang, G. Identifying Gene Network Patterns and Associated Cellular Immune Responses in Children with or without Nut Allergy. World Allergy Organ. J. 2022, 15, 100631. [Google Scholar] [CrossRef]
- Leung, D.Y.M.; Calatroni, A.; Zaramela, L.S.; LeBeau, P.K.; Dyjack, N.; Brar, K.; David, G.; Johnson, K.; Leung, S.; Ramirez-Gama, M.; et al. The Nonlesional Skin Surface Distinguishes Atopic Dermatitis with Food Allergy as a Unique Endotype. Sci. Transl. Med. 2019, 11, eaav2685. [Google Scholar] [CrossRef] [PubMed]
- Goleva, E.; Calatroni, A.; LeBeau, P.; Berdyshev, E.; Taylor, P.; Kreimer, S.; Cole, R.N.; Leung, D.Y.M. Skin Tape Proteomics Identifies Pathways Associated with Transepidermal Water Loss and Allergen Polysensitization in Atopic Dermatitis. J. Allergy Clin. Immunol. 2020, 146, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Keet, C.; Pistiner, M.; Plesa, M.; Szelag, D.; Shreffler, W.; Wood, R.; Dunlop, J.; Peng, R.; Dantzer, J.; Togias, A. Age and Eczema Severity, but Not Family History, Are Major Risk Factors for Peanut Allergy in Infancy. J. Allergy Clin. Immunol. 2021, 147, 984–991.e5. [Google Scholar] [CrossRef]
- Koplin, J.J.; Peters, R.L.; Dharmage, S.; Gurrin, L.; Tang, M.; Ponsonby, A.L.; Matheson, M.; Togias, A.; Lack, G.; Allen, K.; et al. Understanding the Feasibility and Implications of Implementing Early Peanut Introduction for Prevention of Peanut Allergy. J. Allergy Clin. Immunol. 2016, 138, 1131–1141.e2. [Google Scholar] [CrossRef] [PubMed]
- Shoda, T.; Futamura, M.; Yang, L.; Yamamoto-Hanada, K.; Narita, M.; Saito, H.; Ohya, Y. Timing of Eczema Onset and Risk of Food Allergy at 3 Years of Age: A Hospital-Based Prospective Birth Cohort Study. J. Dermatol. Sci. 2016, 84, 144–148. [Google Scholar] [CrossRef]
- Roduit, C.; Frei, R.; Depner, M.; Karvonen, A.M.; Renz, H.; Braun-Fahrländer, C.; Schmausser-Hechfellner, E.; Pekkanen, J.; Riedler, J.; Dalphin, J.C.; et al. Phenotypes of Atopic Dermatitis Depending on the Timing of Onset and Progression in Childhood. JAMA Pediatr. 2017, 171, 655–662. [Google Scholar] [CrossRef]
- Yamamoto-Hanada, K.; Suzuki, Y.; Yang, L.; Saito-Abe, M.; Sato, M.; Mezawa, H.; Nishizato, M.; Kato, N.; Ito, Y.; Hashimoto, K.; et al. Persistent Eczema Leads to Both Impaired Growth and Food Allergy: JECS Birth Cohort. PLoS ONE 2021, 16, e0260447. [Google Scholar] [CrossRef]
- Hu, C.; Nijsten, T.; Van Meel, E.R.; Erler, N.S.; Piketty, C.; De Jong, N.W.; Pasmans, S.G.M.A.; De Jongste, J.C.; Duijts, L. Eczema Phenotypes and Risk of Allergic and Respiratory Conditions in School Age Children. Clin. Transl. Allergy 2020, 10, 7. [Google Scholar] [CrossRef]
- Arnau-Soler, A.; Tremblay, B.L.; Sun, Y.; Madore, A.M.; Simard, M.; Kersten, E.T.G.; Ghauri, A.; Marenholz, I.; Eiwegger, T.; Simons, E.; et al. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025, 80, 106–131. [Google Scholar] [CrossRef]
- Huffaker, M.F.; Kanchan, K.; Bahnson, H.T.; Ruczinski, I.; Shankar, G.; Leung, D.Y.M.; Baloh, C.; Du Toit, G.; Lack, G.; Nepom, G.T.; et al. Epidermal Differentiation Complex Genetic Variation in Atopic Dermatitis and Peanut Allergy. J. Allergy Clin. Immunol. 2023, 151, 1137–1142.e4. [Google Scholar] [CrossRef]
- Suaini, N.H.A.; Wang, Y.; Soriano, V.X.; Martino, D.J.; Allen, K.J.; Ellis, J.A.; Koplin, J.J. Genetic Determinants of Paediatric Food Allergy: A Systematic Review. Allergy 2019, 74, 1631–1648. [Google Scholar] [CrossRef]
- Kanchan, K.; Grinek, S.; Bahnson, H.T.; Ruczinski, I.; Shankar, G.; Larson, D.; Du Toit, G.; Barnes, K.C.; Sampson, H.A.; Suarez-Farinas, M.; et al. HLA Alleles and Sustained Peanut Consumption Promote IgG4 Responses in Subjects Protected from Peanut Allergy. J. Clin. Investig. 2022, 132, e152070. [Google Scholar] [CrossRef]
- Winters, A.; Bahnson, H.T.; Ruczinski, I.; Boorgula, M.P.; Malley, C.; Keramati, A.R.; Chavan, S.; Larson, D.; Cerosaletti, K.; Sayre, P.H.; et al. The MALT1 Locus and Peanut Avoidance in the Risk for Peanut Allergy. J. Allergy Clin. Immunol. 2019, 143, 2326–2329. [Google Scholar] [CrossRef]
- Zhou, X.; Han, X.; Lyu, S.C.; Bunning, B.; Kost, L.; Chang, I.; Cao, S.; Sampath, V.; Nadeau, K.C. Targeted DNA Methylation Profiling Reveals Epigenetic Signatures in Peanut Allergy. JCI Insight 2021, 6, e143058. [Google Scholar] [CrossRef] [PubMed]
- Do, A.N.; Watson, C.T.; Cohain, A.T.; Griffin, R.S.; Grishin, A.; Wood, R.A.; Wesley Burks, A.; Jones, S.M.; Scurlock, A.; Leung, D.Y.M.; et al. Dual Transcriptomic and Epigenomic Study of Reaction Severity in Peanut-Allergic Children. J. Allergy Clin. Immunol. 2020, 145, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, J.E.; Clarke, A.; Dery, A.; De Schryver, S.; Shand, G.; Huhtala, H.; Mäkelä, M.J.; Asai, Y.; Nadeau, K.; Harada, L.; et al. Genetic and Environmental Susceptibility to Food Allergy in a Registry of Twins. J. Allergy Clin. Immunol. Pract. 2019, 7, 2916–2918. [Google Scholar] [CrossRef]
- Zhang, Y.; Collier, F.; Naselli, G.; Saffery, R.; Tang, M.L.; Allen, K.J.; Ponsonby, A.L.; Harrison, L.C.; Vuillermin, P.; Ranganathan, S.; et al. Cord Blood Monocyte-Derived Inflammatory Cytokines Suppress IL-2 and Induce Nonclassic “TH2-Type” Immunity Associated with Development of Food Allergy. Sci. Transl. Med. 2016, 8, 321ra8. [Google Scholar] [CrossRef]
- Berdyshev, E.; Kim, J.; Kim, B.E.; Goleva, E.; Lyubchenko, T.; Bronova, I.; Bronoff, A.S.; Xiao, O.; Jang, S.; Shin, S.; et al. Skin Biomarkers Predict the Development of Food Allergy in Early Life. J. Allergy Clin. Immunol. 2024, 153, 1456–1463.e4. [Google Scholar] [CrossRef] [PubMed]
- Brough, H.A.; Lanser, B.J.; Sindher, S.B.; Teng, J.M.C.; Leung, D.Y.M.; Venter, C.; Chan, S.M.; Santos, A.F.; Bahnson, H.T.; Guttman-Yassky, E.; et al. Early Intervention and Prevention of Allergic Diseases. Allergy 2022, 77, 416–441. [Google Scholar] [CrossRef]
- Du Toit, G.; Katz, Y.; Sasieni, P.; Mesher, D.; Maleki, S.J.; Fisher, H.R.; Fox, A.T.; Turcanu, V.; Amir, T.; Zadik-Mnuhin, G.; et al. Early Consumption of Peanuts in Infancy Is Associated with a Low Prevalence of Peanut Allergy. J. Allergy Clin. Immunol. 2008, 122, 984–991. [Google Scholar] [CrossRef]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy. N. Engl. J. Med. 2015, 372, 803–813. [Google Scholar] [CrossRef]
- Krejner-Bienias, A.; Łyżwa, K.; Krupa-Łaska, A.; Zielińska, J.; Kulus, M.; Grzela, K. Peanut Allergy in Children-Is Prevention Better than Cure? Nutrients 2024, 16, 3237. [Google Scholar] [CrossRef]
- Perkin, M.R.; Logan, K.; Marrs, T.; Radulovic, S.; Craven, J.; Flohr, C.; Lack, G. Enquiring About Tolerance (EAT) Study: Feasibility of an Early Allergenic Food Introduction Regimen. J. Allergy Clin. Immunol. 2016, 137, 1477. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.X.; Peters, R.L.; Moreno-Betancur, M.; Ponsonby, A.L.; Gell, G.; Odoi, A.; Perrett, K.P.; Tang, M.L.K.; Gurrin, L.C.; Allen, K.J.; et al. Association Between Earlier Introduction of Peanut and Prevalence of Peanut Allergy in Infants in Australia. JAMA 2022, 328, 48–56. [Google Scholar] [CrossRef]
- Abrams, E.M.; Shaker, M.; Stukus, D.; Mack, D.P.; Greenhawt, M. Updates in Food Allergy Prevention in Children. Pediatrics 2023, 152, e2023062836. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.L.; Guarnieri, I.; Tang, M.L.K.; Lowe, A.J.; Dharmage, S.C.; Perrett, K.P.; Gurrin, L.C.; Koplin, J.J. The Natural History of Peanut and Egg Allergy in Children up to Age 6 Years in the HealthNuts Population-Based Longitudinal Study. J. Allergy Clin. Immunol. 2022, 150, 657–665.e13. [Google Scholar] [CrossRef]
- Brettig, T.; Soriano, V.X.; Dharmage, S.C.; McWilliam, V.; Peters, R.L.; Perrett, K.; Koplin, J.J. Cashew Allergy Prevalence and Sensitization in 1-Year-Old Infants. J. Allergy Clin. Immunol. Pract. 2023, 11, 3478–3484.e5. [Google Scholar] [CrossRef]
- Kelleher, M.M.; Phillips, R.; Brown, S.J.; Cro, S.; Cornelius, V.; Carlsen, K.C.L.; Skjerven, H.O.; Rehbinder, E.M.; Lowe, A.J.; Dissanayake, E.; et al. Skin Care Interventions in Infants for Preventing Eczema and Food Allergy. Cochrane Database Syst. Rev. 2022, 11, CD013534. [Google Scholar] [CrossRef]
- Skjerven, H.O.; Rehbinder, E.M.; Vettukattil, R.; LeBlanc, M.; Granum, B.; Haugen, G.; Hedlin, G.; Landrø, L.; Marsland, B.J.; Rudi, K.; et al. Skin Emollient and Early Complementary Feeding to Prevent Infant Atopic Dermatitis (PreventADALL): A Factorial, Multicentre, Cluster-Randomised Trial. Lancet 2020, 395, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.R.; Haines, R.H.; Bradshaw, L.E.; Montgomery, A.A.; Thomas, K.S.; Brown, S.J.; Ridd, M.J.; Lawton, S.; Simpson, E.L.; Cork, M.J.; et al. Daily Emollient during Infancy for Prevention of Eczema: The BEEP Randomised Controlled Trial. Lancet 2020, 395, 962–972. [Google Scholar] [CrossRef]
- Perkin, M.R.; Logan, K.; Marrs, T.; Radulovic, S.; Craven, J.; Boyle, R.J.; Chalmers, J.R.; Williams, H.C.; Versteeg, S.A.; van Ree, R.; et al. Association of Frequent Moisturizer Use in Early Infancy with the Development of Food Allergy. J. Allergy Clin. Immunol. 2021, 147, 967–976.e1. [Google Scholar] [CrossRef]
- Sindher, S.; Alkotob, S.S.; Shojinaga, M.N.; Brough, H.A.; Bahnson, H.T.; Chan, S.; Lack, G.; Leung, D.Y.M.; Nadeau, K.C. Pilot Study Measuring Transepidermal Water Loss (TEWL) in Children Suggests Trilipid Cream Is More Effective than a Paraffin-Based Emollient. Allergy 2020, 75, 2662–2664. [Google Scholar] [CrossRef] [PubMed]
- Ní Chaoimh, C.; Lad, D.; Nico, C.; Puppels, G.J.; Wong, X.F.C.C.; Common, J.E.; Murray, D.M.; Irvine, A.D.; Hourihane, J.O. Early Initiation of Short-Term Emollient Use for the Prevention of Atopic Dermatitis in High-Risk Infants-The STOP-AD Randomised Controlled Trial. Allergy 2023, 78, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Hanada, K.; Kobayashi, T.; Mikami, M.; Williams, H.C.; Saito, H.; Saito-Abe, M.; Sato, M.; Irahara, M.; Miyaji, Y.; Ishikawa, F.; et al. Enhanced Early Skin Treatment for Atopic Dermatitis in Infants Reduces Food Allergy. J. Allergy Clin. Immunol. 2023, 152, 126–135. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Gupta, R.S.; Knibb, R.C.; Haselkorn, T.; Tilles, S.; Mack, D.P.; Pouessel, G. The Global Burden of Illness of Peanut Allergy: A Comprehensive Literature Review. Allergy 2021, 76, 1367–1384. [Google Scholar] [CrossRef]
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Report of the NIAID-Sponsored Expert Panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [Google Scholar] [CrossRef]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Blumenstock, J.A.; Jiang, J.; Davis, M.M.; Nadeau, K.C. The Public Health Impact of Parent-Reported Childhood Food Allergies in the United States. Pediatrics 2018, 142, e20181235. [Google Scholar] [CrossRef]
- Spolidoro, G.C.I.; Ali, M.M.; Amera, Y.T.; Nyassi, S.; Lisik, D.; Ioannidou, A.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Prevalence Estimates of Eight Big Food Allergies in Europe: Updated Systematic Review and Meta-Analysis. Allergy 2023, 78, 2361–2417. [Google Scholar] [CrossRef]
- Kojima, R.; Shinohara, R.; Kushima, M.; Yui, H.; Otawa, S.; Horiuchi, S.; Miyake, K.; Yokomichi, H.; Akiyama, Y.; Ooka, T.; et al. Infantile Peanut Introduction and Peanut Allergy in Regions With a Low Prevalence of Peanut Allergy: The Japan Environment and Children’s Study (JECS). J. Epidemiol. 2024, 34, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Mahr, T.A.; Lieberman, J.A.; Haselkorn, T.; Damle, V.; Ali, Y.; Chidambaram, A.; Griffin, N.M.; Sublett, J.W. Characteristics of Peanut Allergy Diagnosis in a US Health Care Claims Database (2011–2017). J. Allergy Clin. Immunol. Pract. 2021, 9, 1683–1694.e5. [Google Scholar] [CrossRef] [PubMed]
- Kotz, D.; Simpson, C.R.; Sheikh, A. Incidence, Prevalence, and Trends of General Practitioner-Recorded Diagnosis of Peanut Allergy in England, 2001 to 2005. J. Allergy Clin. Immunol. 2011, 127, 623–630.e1. [Google Scholar] [CrossRef]
- Scott, L.A.; Jones, B.I.; Berni, T.R.; Berni, E.R.; De Vries, J.; Currie, C.J. Evaluation of the Epidemiology of Peanut Allergy in the United Kingdom. Expert. Rev. Clin. Immunol. 2019, 15, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoshan, M.; Kagan, R.S.; Alizadehfar, R.; Joseph, L.; Turnbull, E.; St Pierre, Y.; Clarke, A.E. Is the Prevalence of Peanut Allergy Increasing? A 5-Year Follow-up Study in Children in Montreal. J. Allergy Clin. Immunol. 2009, 123, 783–788. [Google Scholar] [CrossRef]
- Clarke, A.E.; Elliott, S.J.; St. Pierre, Y.; Soller, L.; La Vieille, S.; Ben-Shoshan, M. Temporal Trends in Prevalence of Food Allergy in Canada. J. Allergy Clin. Immunol. Pract. 2020, 8, 1428–1430.e5. [Google Scholar] [CrossRef]
- Mullins, R.J.; Dear, K.B.G.; Tang, M.L.K. Characteristics of Childhood Peanut Allergy in the Australian Capital Territory, 1995 to 2007. J. Allergy Clin. Immunol. 2009, 123, 689–693. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Muñoz-Furlong, A.; Godbold, J.H.; Sampson, H.A. US Prevalence of Self-Reported Peanut, Tree Nut, and Sesame Allergy: 11-Year Follow-Up. J. Allergy Clin. Immunol. 2010, 125, 1322–1326. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Furlong, T.J.; Muñoz-Furlong, A.; Burks, A.W.; Sampson, H.A. A Voluntary Registry for Peanut and Tree Nut Allergy: Characteristics of the First 5149 Registrants. J. Allergy Clin. Immunol. 2001, 108, 128–132. [Google Scholar] [CrossRef]
- Spolidoro, G.C.I.; Lisik, D.; Nyassi, S.; Ioannidou, A.; Ali, M.M.; Amera, Y.T.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Prevalence of Tree Nut Allergy in Europe: A Systematic Review and Meta-Analysis. Allergy 2024, 79, 302–323. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Koplin, J.J.; Dharmage, S.C.; Field, M.J.; Sawyer, S.M.; McWilliam, V.; Peters, R.L.; Gurrin, L.C.; Vuillermin, P.J.; Douglass, J.; et al. Prevalence of Clinic-Defined Food Allergy in Early Adolescence: The SchoolNuts Study. J. Allergy Clin. Immunol. 2018, 141, 391–398.e4. [Google Scholar] [CrossRef]
- McWilliam, V.L.; Perrett, K.P.; Dang, T.; Peters, R.L. Prevalence and Natural History of Tree Nut Allergy. Ann. Allergy Asthma Immunol. 2020, 124, 466–472. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, V.; Peters, R.; Tang, M.L.K.; Dharmage, S.; Ponsonby, A.L.; Gurrin, L.; Perrett, K.; Koplin, J.; Allen, K.J.; Dwyer, T.; et al. Patterns of Tree Nut Sensitization and Allergy in the First 6 Years of Life in a Population-Based Cohort. J. Allergy Clin. Immunol. 2019, 143, 644–650.e5. [Google Scholar] [CrossRef] [PubMed]
- Shek, L.P.C.; Cabrera-Morales, E.A.; Soh, S.E.; Gerez, I.; Ng, P.Z.; Yi, F.C.; Ma, S.; Lee, B.W. A Population-Based Questionnaire Survey on the Prevalence of Peanut, Tree Nut, and Shellfish Allergy in 2 Asian Populations. J. Allergy Clin. Immunol. 2010, 126, 324–331.e7. [Google Scholar] [CrossRef]
- Gupta, R.S.; Springston, E.E.; Warrier, M.R.; Smith, B.; Kumar, R.; Pongracic, J.; Holl, J.L. The Prevalence, Severity, and Distribution of Childhood Food Allergy in the United States. Pediatrics 2011, 128, e9–e17. [Google Scholar] [CrossRef] [PubMed]
- Ball, H.; Luyt, D.; Bravin, K.; Kirk, K. Single Nut or Total Nut Avoidance in Nut Allergic Children: Outcome of Nut Challenges to Guide Exclusion Diets. Pediatr. Allergy Immunol. 2011, 22, 808–812. [Google Scholar] [CrossRef]
- Couch, C.; Franxman, T.; Greenhawt, M. Characteristics of Tree Nut Challenges in Tree Nut Allergic and Tree Nut Sensitized Individuals. Ann. Allergy Asthma Immunol. 2017, 118, 591–596.e3. [Google Scholar] [CrossRef]
- Maloney, J.M.; Rudengren, M.; Ahlstedt, S.; Bock, S.A.; Sampson, H.A. The Use of Serum-Specific IgE Measurements for the Diagnosis of Peanut, Tree Nut, and Seed Allergy. J. Allergy Clin. Immunol. 2008, 122, 145–151. [Google Scholar] [CrossRef]
- Chojnowska-Wójtowicz, M.; Łyżwa, K.; Zielińska, J.; Zagórska, W.; Grzela, K. Prevalence of Nut Allergen Sensitization among Children in Central Poland. Adv. Dermatol. Allergol./Postȩpy Dermatol. Alergol. 2023, 40, 40–46. [Google Scholar] [CrossRef]
- Łyżwa, K.; Chojnowska-Wójtowicz, M.; Zielińska, J.; Zagórska, W.; Kulus, M.; Grzela, K. Sensitization to Nut Allergens in Children with Food Allergy and Other Atopic Diseases—Just a Coexistence? Postep. Dermatol. Alergol. 2023, 40, 402–410. [Google Scholar] [CrossRef]
- De Leon, M.P.; Glaspole, I.N.; Drew, A.C.; Rolland, J.M.; O’Hehir, R.E.; Suphioglu, C. Immunological Analysis of Allergenic Cross-Reactivity between Peanut and Tree Nuts. Clin. Exp. Allergy 2003, 33, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Borres, M.P.; Block, W.; Tupa, D.; Bollyky, J.B.; Sampath, V.; Elizur, A.; Lidholm, J.; Jones, J.E.; Galli, S.J.; et al. Association of Clinical Reactivity with Sensitization to Allergen Components in Multifood-Allergic Children. J. Allergy Clin. Immunol. Pract. 2017, 5, 1325–1334.e4. [Google Scholar] [CrossRef]
- Goetz, D.W.; Whisman, B.A.; Goetz, A.D. Cross-Reactivity among Edible Nuts: Double Immunodiffusion, Crossed Immunoelectrophoresis, and Human Specific IgE Serologic Surveys. Ann. Allergy Asthma Immunol. 2005, 95, 45–52. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Conover-Walker, M.K.; Matsui, E.C.; Wood, R.A. The Natural History of Tree Nut Allergy. J. Allergy Clin. Immunol. 2005, 116, 1087–1093. [Google Scholar] [CrossRef]
- Clark, A.T.; Ewan, P.W. The Development and Progression of Allergy to Multiple Nuts at Different Ages. Pediatr. Allergy Immunol. 2005, 16, 507–511. [Google Scholar] [CrossRef]
- Roux, K.H.; Teuber, S.S.; Sathe, S.K. Tree Nut Allergens. Int. Arch. Allergy Immunol. 2003, 131, 234–244. [Google Scholar] [CrossRef]
- Cox, A.L.; Eigenmann, P.A.; Sicherer, S.H. Clinical Relevance of Cross-Reactivity in Food Allergy. J. Allergy Clin. Immunol. Pract. 2021, 9, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Elizur, A.; Appel, M.Y.; Nachshon, L.; Levy, M.B.; Epstein-Rigbi, N.; Golobov, K.; Goldberg, M.R. NUT Co Reactivity—ACquiring Knowledge for Elimination Recommendations (NUT CRACKER) Study. Allergy 2018, 73, 593–601. [Google Scholar] [CrossRef]
- Brough, H.A.; Caubet, J.C.; Mazon, A.; Haddad, D.; Bergmann, M.M.; Wassenberg, J.; Panetta, V.; Gourgey, R.; Radulovic, S.; Nieto, M.; et al. Defining Challenge-Proven Coexistent Nut and Sesame Seed Allergy: A Prospective Multicenter European Study. J. Allergy Clin. Immunol. 2020, 145, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, H.S.; Conover-Walker, M.K.; Koerner, C.B.; Sampson, H.A.; Burks, W.; Wood, R.A. The Natural History of Peanut Allergy. J. Allergy Clin. Immunol. 2001, 107, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.M.; Dang, T.D.; Wijesuriya, R.; Soriano, V.X.; Lowe, A.J.; Dharmage, S.C.; Loke, P.; Tang, M.L.K.; Allen, K.J.; Koplin, J.J.; et al. Longitudinal Peanut and Ara h 2 Specific-IgE, -IgG4, and -IgG4/-IgE Ratios Are Associated with the Natural Resolution of Peanut Allergy in Childhood. Allergy 2024, 79, 1868–1880. [Google Scholar] [CrossRef]
- Foong, R.X.; Bahnson, H.T.; Du Toit, G.; Huffaker, M.; Sampson, H.A.; Suárez-Fariñas, M.; Logan, K.; Perkin, M.; van Ree, R.; Santos, A.F.; et al. Kinetics of Early Peanut Allergy Development and Resolution in the EAT, LEAP, and PAS Cohorts. J. Allergy Clin. Immunol. 2025, in press. [Google Scholar] [CrossRef]
- Bager, J.; Tedner, S.G.; Andersson, N.; Ballardini, N.; Borres, M.P.; Konradsen, J.R.; Nilsson, C.; Westman, M.; Kull, I.; Bergström, A.; et al. Prevalence and Early-Life Risk Factors for Tree Nut Sensitization and Allergy in Young Adults. Clin. Exp. Allergy 2021, 51, 1429–1437. [Google Scholar] [CrossRef]
- Gupta, R.S.; Lau, C.H.; Sita, E.E.; Smith, B.; Greenhawt, M.J. Factors Associated with Reported Food Allergy Tolerance among US Children. Ann. Allergy Asthma Immunol. 2013, 111, 194–198.e4. [Google Scholar] [CrossRef]
- Wainstein, B.K.; Saad, R.A. Repeat Oral Food Challenges in Peanut and Tree Nut Allergic Children with a History of Mild/Moderate Reactions. Asia Pac. Allergy 2015, 5, 170–176. [Google Scholar] [CrossRef]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI Guidelines on the Diagnosis of IgE-Mediated Food Allergy. Allergy 2023, 78, 3057–3076. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, P.A.; Zamora, S.A. An Internet-Based Survey on the Circumstances of Food-Induced Reactions Following the Diagnosis of IgE-Mediated Food Allergy. Allergy 2002, 57, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Furlong, T.J.; DeSimone, J.; Sampson, H.A. The US Peanut and Tree Nut Allergy Registry: Characteristics of Reactions in Schools and Day Care. J. Pediatr. 2001, 138, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.M.; Sher, M.R.; Good, R.A.; Bahna, S.L. Severe Food Allergies by Skin Contact. Ann. Allergy Asthma Immunol. 2001, 86, 583–586. [Google Scholar] [CrossRef]
- Wainstein, B.K.; Yee, A.; Jelley, D.; Ziegler, M.; Ziegler, J.B. Combining Skin Prick, Immediate Skin Application and Specific-IgE Testing in the Diagnosis of Peanut Allergy in Children. Pediatr. Allergy Immunol. 2007, 18, 231–239. [Google Scholar] [CrossRef]
- Simonte, S.J.; Ma, S.; Mofidi, S.; Sicherer, S.H. Relevance of Casual Contact with Peanut Butter in Children with Peanut Allergy. J. Allergy Clin. Immunol. 2003, 112, 180–182. [Google Scholar] [CrossRef]
- Maloney, J.M.; Chapman, M.D.; Sicherer, S.H. Peanut Allergen Exposure through Saliva: Assessment and Interventions to Reduce Exposure. J. Allergy Clin. Immunol. 2006, 118, 719–724. [Google Scholar] [CrossRef]
- Hallett, R.; Haapanen, L.A.D.; Teuber, S.S. Food Allergies and Kissing. N. Engl. J. Med. 2002, 346, 1833–1834. [Google Scholar] [CrossRef]
- Carlson, G.; Coop, C. Pollen Food Allergy Syndrome (PFAS): A Review of Current Available Literature. Ann. Allergy Asthma Immunol. 2019, 123, 359–365. [Google Scholar] [CrossRef]
- Jeon, Y.H. Pollen-Food Allergy Syndrome in Children. Clin. Exp. Pediatr. 2020, 63, 463–468. [Google Scholar] [CrossRef]
- Skypala, I.J.; Hunter, H.; Krishna, M.T.; Rey-Garcia, H.; Till, S.J.; du Toit, G.; Angier, E.; Baker, S.; Stoenchev, K.V.; Luyt, D.K. BSACI Guideline for the Diagnosis and Management of Pollen Food Syndrome in the UK. Clin. Exp. Allergy 2022, 52, 1018–1034. [Google Scholar] [CrossRef]
- Giovannini, M.; Skypala, I.J.; Caubet, J.C.; Du Toit, G.; Nowak-Wegrzyn, A. Diagnosis and Management of Pollen Food Allergy Syndrome to Nuts. J. Allergy Clin. Immunol. Pract. 2024, 12, 599–604. [Google Scholar] [CrossRef]
- Midun, E.; Radulovic, S.; Brough, H.; Caubet, J.C. Recent Advances in the Management of Nut Allergy. World Allergy Organ. J. 2021, 14, 100491. [Google Scholar] [CrossRef]
- Bock, S.A.; Muoz-Furlong, A.; Sampson, H.A. Fatalities Due to Anaphylactic Reactions to Foods. J. Allergy Clin. Immunol. 2001, 107, 191–193. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Burks, A.W.; Sampson, H.A. Clinical Features of Acute Allergic Reactions to Peanut and Tree Nuts in Children. Pediatrics 1998, 102, e6. [Google Scholar] [CrossRef]
- Motosue, M.S.; Bellolio, M.F.; Van Houten, H.K.; Shah, N.D.; Campbell, R.L. National Trends in Emergency Department Visits and Hospitalizations for Food-Induced Anaphylaxis in US Children. Pediatr. Allergy Immunol. 2018, 29, 538–544. [Google Scholar] [CrossRef]
- Grabenhenrich, L.B.; Dölle, S.; Moneret-Vautrin, A.; Köhli, A.; Lange, L.; Spindler, T.; Ruëff, F.; Nemat, K.; Maris, I.; Roumpedaki, E.; et al. Anaphylaxis in Children and Adolescents: The European Anaphylaxis Registry. J. Allergy Clin. Immunol. 2016, 137, 1128–1137.e1. [Google Scholar] [CrossRef]
- McWilliam, V.L.; Koplin, J.J.; Field, M.J.; Sasaki, M.; Dharmage, S.C.; Tang, M.L.K.; Sawyer, S.M.; Peters, R.L.; Allen, K.J. Self-Reported Adverse Food Reactions and Anaphylaxis in the SchoolNuts Study: A Population-Based Study of Adolescents. J. Allergy Clin. Immunol. 2018, 141, 982–990. [Google Scholar] [CrossRef]
- Pouessel, G.; Alonzo, S.; Divaret-Chauveau, A.; Dumond, P.; Bradatan, E.; Liabeuf, V.; Beaumont, P.; Tscheiller, S.; Diesnis, R.; Renaudin, J.M.; et al. Fatal and Near-Fatal Anaphylaxis: The Allergy-Vigilance® Network Data (2002–2020). Allergy 2023, 78, 1628–1638. [Google Scholar] [CrossRef]
- Lieberman, J.; Muraro, A.; Blaiss, M. How to Diagnose IgE-Mediated Food Allergy. Arch. Dis. Child. Educ. Pract. Ed. 2024, 109, 247–251. [Google Scholar] [CrossRef]
- Dramburg, S.; Hilger, C.; Santos, A.F.; de las Vecillas, L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI Molecular Allergology User’s Guide 2.0. Pediatr. Allergy Immunol. 2023, 34 (Suppl. 28), e13854. [Google Scholar] [CrossRef]
- Santos, A.F.; Shreffler, W.G. Road Map for the Clinical Application of the Basophil Activation Test in Food Allergy. Clin. Exp. Allergy 2017, 47, 1115–1124. [Google Scholar] [CrossRef]
- Riggioni, C.; Ricci, C.; Moya, B.; Wong, D.; van Goor, E.; Bartha, I.; Buyuktiryaki, B.; Giovannini, M.; Jayasinghe, S.; Jaumdally, H.; et al. Systematic Review and Meta-Analyses on the Accuracy of Diagnostic Tests for IgE-Mediated Food Allergy. Allergy 2024, 79, 324–352. [Google Scholar] [CrossRef]
- Santos, A.F.; Bergmann, M.; Brough, H.A.; Couto-Francisco, N.; Kwok, M.; Panetta, V.; Haddad, D.; Lack, G.; Eigenmann, P.; Caubet, J.C. Basophil Activation Test Reduces Oral Food Challenges to Nuts and Sesame. J. Allergy Clin. Immunol. Pract. 2021, 9, 2016. [Google Scholar] [CrossRef]
- Chu, D.K.; Wood, R.A.; French, S.; Fiocchi, A.; Jordana, M.; Waserman, S.; Brożek, J.L.; Schünemann, H.J. Oral Immunotherapy for Peanut Allergy (PACE): A Systematic Review and Meta-Analysis of Efficacy and Safety. Lancet 2019, 393, 2222–2232. [Google Scholar] [CrossRef]
- Scurlock, A.M.; Burks, A.W.; Sicherer, S.H.; Leung, D.Y.M.; Kim, E.H.; Henning, A.K.; Dawson, P.; Lindblad, R.W.; Berin, M.C.; Cho, C.B.; et al. Epicutaneous Immunotherapy for Treatment of Peanut Allergy: Follow-up from the Consortium for Food Allergy Research. J. Allergy Clin. Immunol. 2021, 147, 992–1003.e5. [Google Scholar] [CrossRef]
- Zhang, W.; Sindher, S.B.; Sampath, V.; Nadeau, K. Comparison of Sublingual Immunotherapy and Oral Immunotherapy in Peanut Allergy. Allergo J. Int. 2018, 27, 153–161. [Google Scholar] [CrossRef]
- Elizur, A.; Appel, M.Y.; Nachshon, L.; Levy, M.B.; Epstein-Rigbi, N.; Pontoppidan, B.; Lidholm, J.; Goldberg, M.R. Walnut Oral Immunotherapy for Desensitisation of Walnut and Additional Tree Nut Allergies (Nut CRACKER): A Single-Centre, Prospective Cohort Study. Lancet Child Adolesc. Health 2019, 3, 312–321. [Google Scholar] [CrossRef]
- Elizur, A.; Koren, Y.; Appel, M.Y.; Nachshon, L.; Levy, M.B.; Epstein-Rigbi, N.; Mattsson, L.; Holmqvist, M.; Lidholm, J.; Goldberg, M.R. Hazelnut Oral Immunotherapy Desensitizes Hazelnut But Not Other Tree Nut Allergies (Nut CRACKER Study). J. Allergy Clin. Immunol. Pract. 2025, 13, 833–841.e4. [Google Scholar] [CrossRef]
- Elizur, A.; Appel, M.Y.; Nachshon, L.; Levy, M.B.; Epstein-Rigbi, N.; Koren, Y.; Holmqvist, M.; Porsch, H.; Lidholm, J.; Goldberg, M.R. Cashew Oral Immunotherapy for Desensitizing Cashew-Pistachio Allergy (NUT CRACKER Study). Allergy 2022, 77, 1863–1872. [Google Scholar] [CrossRef]
- Jacobs, S.R.; Shah, A.; Agyemang, A.; Cox, A.L.; Groetch, M.; Kattan, J.D.; Schaible, A.; Sicherer, S.H.; Tsuang, A.; Wang, J.; et al. Safety and Efficacy of Cashew Oral Immunotherapy in Children Under Age 3. J. Allergy Clin. Immunol. Pract. 2025, in press. [Google Scholar] [CrossRef]
- Csonka, P.; Lee, B.; Kuitunen, I. Epicutaneous Immunotherapy for Food Allergy: A Systematic Review and Meta-Analysis. Clin. Transl. Allergy 2025, 15, e70045. [Google Scholar] [CrossRef]
- Szczukocka, A.; Pietrzyk-Kozińska, M.; Zielińska, J.; Krupa-Łaska, A.; Krejner-Bienias, A.; Kulus, M.; Grzela, K. Efficacy of Cashew Nut Protein Immunotherapy: Protocol for a Single-Centre Randomised Controlled Trial in a Polish Paediatric Population. BMJ Open 2025, 15, e101139. [Google Scholar] [CrossRef]
- Du Toit, G.; Brown, K.R.; Vereda, A.; Irani, A.-M.; Tilles, S.; Ratnayake, A.; Jones, S.M.; Vickery, B.P. Oral Immunotherapy for Peanut Allergy in Children 1 to Less Than 4 Years of Age. NEJM Evid. 2023, 2, EVIDoa2300145. [Google Scholar] [CrossRef]
- Brough, H.A.; Kim, E.H.; Anagnostou, A.; Lanser, B.J.; Chinthrajah, R.S.; Sindher, S.B. Treatment of Food Allergy: Immunotherapy, Omalizumab, or Both. J. Allergy Clin. Immunol. Pract. 2025, 13, 731–739. [Google Scholar] [CrossRef]
- Zuberbier, T.; Wood, R.A.; Bindslev-Jensen, C.; Fiocchi, A.; Chinthrajah, R.S.; Worm, M.; Deschildre, A.; Fernandez-Rivas, M.; Santos, A.F.; Jaumont, X.; et al. Omalizumab in IgE-Mediated Food Allergy: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2023, 11, 1134–1146. [Google Scholar] [CrossRef]
- Grzeskowiak, L.E.; Tao, B.; Aliakbari, K.; Chegeni, N.; Morris, S.; Chataway, T. Oral Immunotherapy Using Boiled Peanuts for Treating Peanut Allergy: An Open-Label, Single-Arm Trial. Clin. Exp. Allergy 2023, 53, 327–336. [Google Scholar] [CrossRef]
- McCann, W.A.; Nowak-Wegrzyn, A.; Hass, S.L.; Huang, D.; Donelson, S.M. Peanut Allergy Burden Survey: Factors Associated with Health-Related Quality of Life in Adolescents. Clin. Transl. Allergy 2023, 13, e12234. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Wegrzyn, A.; Hass, S.L.; Donelson, S.M.; Robison, D.; Cameron, A.; Etschmaier, M.; Duhig, A.; McCann, W.A. The Peanut Allergy Burden Study: Impact on the Quality of Life of Patients and Caregivers. World Allergy Organ. J. 2021, 14, 100512. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Ogulur, I.; Mitamura, Y.; Yazici, D.; Pat, Y.; Bu, X.; Li, M.; Zhu, X.; Babayev, H.; Ardicli, S.; et al. The Epithelial Barrier Theory and Its Associated Diseases. Allergy 2024, 79, 3192–3237. [Google Scholar] [CrossRef] [PubMed]
- Devonshire, A.; Gautam, Y.; Johansson, E.; Mersha, T.B. Multi-Omics Profiling Approach in Food Allergy. World Allergy Organ. J. 2023, 16, 100777. [Google Scholar] [CrossRef]
- Sindher, S.B.; Chin, A.R.; Aghaeepour, N.; Prince, L.; Maecker, H.; Shaw, G.M.; Stevenson, D.K.; Nadeau, K.C.; Snyder, M.; Khatri, P.; et al. Advances and Potential of Omics Studies for Understanding the Development of Food Allergy. Front. Allergy 2023, 4, 1149008. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Ahn, K.; Leung, D.Y.M. Skin Predictive Biomarkers for the Development of Atopic Dermatitis and Food Allergy in Infants. Allergy Asthma Immunol. Res. 2024, 16, 323–337. [Google Scholar] [CrossRef]
Nut | Material | Distinct Immune or Barrier Features |
---|---|---|
Peanut [28] | Peripheral blood (B cells, T cells, DCs) | Peanut-allergic infants: ↑ CD19highHLA-DRhigh B cells, ↑ TNF-α production; Peanut-sensitized but tolerant: ↑ plasmacytoid DCs, ↑ IL-2–producing naïve CD4+ T cells; Both allergic & tolerant: ↓ IFN-γ in effector memory T cells → impaired Th1 regulation |
Peanut [29] | PBMCs | Upon peanut protein stimulation: ↑ MCP-1, MIP-1α, IL-6, IL-10; ↑ differentiation of CD11c+CD209+ DCs (IL-4/IL-13 dependent) with reciprocal Th2 interactions |
Peanut/Tree nuts [30] | PBMCs (RNA-seq) | Transcriptomics: ↑ type I interferon signaling; ↓ humoral immunity; immune profile: ↑ neutrophils, ↓ regulatory T cells |
Peanut (with AD) [31] | Non-lesional skin | ↑ TEWL, ↓ filaggrin & sphingolipids, ↑ S. aureus colonization, ↑ keratins (K5, K14, K16); transcriptomics: enrichment of DC markers & Th2 pathways |
Peanut (with AD) [32] | Non-lesional skin proteome—proteomic analysis | ↑ inflammatory proteins (S100 family, alarmins, protease inhibitors), ↑ glycolytic enzymes, ↑ antioxidant defense proteins |
Nut (or Allergy Type) | Region/Country | Prevalence/Key Findings |
---|---|---|
Peanut | U.S., Canada, Australia | 0.6–2% overall prevalence; ~1.6 million U.S. children affected |
U.S. | 1.7%→5.2% (2001–2017) rise in annual incidence of peanut allergy in one-year-old individuals | |
Europe (overall) | Lifetime prevalence 1.5%, point prevalence 2.1% (self-reported); challenge-confirmed ~0.1% | |
UK | Increasing prevalence; in the UK, prevalence in all ages doubled 2001–2005 (0.024%→0.051%), incidence >2-fold increase in children 2000–2015 (0.116%→0.635%) | |
Canada | Stable prevalence (2000–2007 in Montreal (1.34%→1.62%); increase in nationwide study 2010–2017 (2.7–3.5%) | |
Australia | Increase from 0.73% (2001) to 1.15% (2004) in children aged 0–6 years | |
Tree Nuts (general) | U.S. | 0.4–1.1%; ~0.9 million children affected |
Europe | 0.03–8.5%; hazelnut most common (linked to birch pollen); pistachio least common | |
Australia | Cashew most common; confirmed tree nut allergy up to 3.0% at age 6, 2.3% at age 10–14 | |
U.S. (FAAN study, >5000 individuals) | Walnut 34%, Cashew 20%, Almond 15%, Pecan 9%, Pistachio 7%; Hazelnut, Brazil nut, Macadamia < 5% | |
Peanut + Tree Nut Co-Allergy | U.S. | Sensitization to tree nuts in peanut-allergic: 65–86%, but clinical allergy only 20–34% |
UK | 7.4% of children with peanut allergy also allergic to ≥1 tree nut | |
Australia | 30–40% of peanut-allergic children also allergic to tree nuts | |
Central Europe (Poland) | 35% of peanut-sensitized children are also sensitized to walnuts | |
Tree Nut Co-Allergy | U.S. | 12–37% prevalence of multiple tree nut allergy |
Australia (HealthNuts) | 47% of children with tree nut allergy allergic to >1 nut; 36% cashew-allergic also allergic to pistachio; Walnut–Pecan clustering less pronounced | |
Israel (NutCracker study) | High clinical allergy among sensitized: Walnut 74.6%, Cashew 65.6%; strong clustering Walnut–Pecan, Cashew–Pistachio | |
Europe (multicenter study) | 60.7% allergic to >1 nut/seed; clustering Walnut–Pecan, Cashew–Pistachio, co-occurrence of Hazelnut and Macadamia allergy |
Component | Protein Type | Clinical Function |
---|---|---|
Ara h 1 | Seed-storage protein (7S globulin) | Major peanut allergen |
Ara h 2 | Seed-storage protein (2S albumin) | Most predictive of clinical peanut allergy; responsible for most severe reactions |
Ara h 3 | Seed-storage protein (11S globulin) | Major peanut allergen |
Ara h 4 | Isoform of Ara h 3 | Potential major peanut allergen |
Ara h 5 | Profilin | Labile protein, not usually associated with severe reactions; associated with pollen sensitization (grass, birch, or sagebrush) |
Ara h 6 | Seed-storage protein (2S albumin) | Major peanut allergen, responsible for severe reactions |
Ara h 8 | Birch pollen homologue (Bet v1 homologue) | Labile protein, not usually associated with severe reactions; associated with pollen sensitization (birch) |
Ara h 9 Ara h 16 Ara h 17 | Lipid-transfer proteins | Stable protein; associated with more severe symptoms in Mediterranean region especially with cofactors; associated with peach allergy |
Ara h 10 Ara h 11 Ara h 14 Ara h 15 | Oleosins | Stable proteins; associated with anaphylactic reactions, especially after consumption of roasted peanuts; hydrophobic allergens and are not present in the aqueous allergen extracts used for diagnosis; Isolated sensitization to oleosins is possible |
Ara h 12 Ara h 13 | Defensins | Stable proteins; associated with pollen sensitization (sagebrush); cross-reactions with sunflower (Hel a 4) and soybean (Gly m 2) allergens are possible. |
Component | Protein Type | Clinical Role |
---|---|---|
Hazelnut | ||
Cor a 1.04 | Birch pollen homologue (Bet v 1-homologue) | Labile protein, not usually associated with severe reactions; associated with pollen sensitization |
Cor a 2 | Profilin | Labile protein, not usually associated with severe reactions; associated with pollen sensitization (grass, birch or sagebrush) |
Cor a 8 | Lipid-transfer protein | Stable protein; associated with more-severe symptoms in Mediterranean region especially with cofactors; associated with peach allergy |
Cor a 9 | Seed-storage protein (11S globulin) | Major hazelnut allergen |
Cor a 11 Cor a 16 | Seed-storage protein (7S globulin) | Stable proteins; Associated with anaphylactic reactions |
Cor a 12 Cor a 13 Cor a 15 | Oleosins | Stable proteins; associated with anaphylactic reactions; hydrophobic allergens and are not present in the aqueous allergen extracts used for diagnosis; isolated sensitization to oleosins is possible; |
Co a 14 | Seed-storage protein (2S albumin) | Major hazelnut allergen; antibodies against Cor a 14 have the highest sensitivity, specificity, and predictive value in the diagnosis hazelnut allergy and monitoring of hazelnut tolerance |
Walnut | ||
Jug r 1 | Seed-storage protein (2S albumin) | Major walnut allergen; associated with anaphylactic reactions; shows extremely high (87%) homology with the phylogenetically related pecan allergen Car i 1 and black walnut (Jug n 1) and slightly lower (66%) with Cor a 14 from hazelnut |
Jug r 2 | Seed-storage protein (7S globulin) | Shows a high degree of cross-reactivity with the major peanut allergen Ara h 2 despite the low homology of both allergens. |
Jug r 3 Jug r 8 | Lipid-transfer protein | Stable protein; associated with more severe symptoms in Mediterranean region especially with cofactors; associated with peach allergy |
Jug r 4 | Seed-storage protein (11S globulin) | Minor walnut allergen; sIgE against Jug r 4 has a very high (90%) positive predictive value for allergic symptoms after walnut consumption, Jug r 4 is highly homologous to pecan 11S globulin (95%) |
Jug r 6 | Seed-storage protein (7S globulin) | Shows a high degree of homology with 7S globulins from hazelnut Cor a 11 (76%), pistachio (62%) and sesame (58%) |
Jug r 7 | Profilin | Labile protein, not usually associated with severe reactions; associated with pollen sensitization (grass, birch or sagebrush) |
Cashew | ||
Ana o 1 | Seed-storage protein (7S globulin) | Highly homologous to Pis v 3 in pistachio nut, Cor a 11 in hazelnut and Jug r 2 in walnut |
Ana o 2 | Seed-storage protein (11S globulin) | Highly homologous to Pis v 5 in pistachio; high similarity of the conformational epitope of Ara h 3 from peanuts has also been demonstrated, despite low primary sequence homology; cross-reactions with Cor a 9 (hazelnut) and Jug r 4 (walnut) are also possible. |
Ana o 3 | Seed-storage protein (2S albumin) | Major cashew allergen; associated with severe allergic reaction; monosensitization to Ana o 3 is associated with the most severe anaphylactic reactions; responsible for cross reactions with pistachio (Pis v 1), sesame (Ses i 1), walnut (Jug r 1), allergens found in citrus fruit seeds (oranges, mandarins), Sichuan pepper, pomegranates and mangoes. |
Pistachio nut | ||
Pis v 1 | Seed-storage protein (2S albumin) | Major pistachio nut allergen; homologue to Ana o 3 |
Pis v 2 Pis v 5 | Seed-storage proteins (11S globulins) | Major pistachio nut allergens; homologues to Ana o 2 |
Pis v 3 | Seed-storage protein (7S globulin) | Homologue to Ana o 1 |
Almond | ||
Pru du 1 | Birch pollen homologue (Bet v 1-homologue) | Labile protein, not usually associated with severe reactions; associated with pollen sensitization |
Pru du 3 | Lipid transfer protein | Stable protein; associated with more-severe symptoms in Mediterranean region especially with cofactors; associated with peach allergy |
Pru du 4 | Profilin | Labile protein, not usually associated with severe reactions; associated with pollen sensitization (grass, birch or sagebrush) |
Pru du 6 (Amandin) | Seed-storage protein (11S globulin) | Major almond allergen; associated with severe reactions |
Pecan | ||
Car i 1 | Seed-storage protein (2S albumin) | Shows extremely high (87%) homology with the phylogenetically related walnut allergen Jug r 1 |
Car i 2 | Seed-storage protein (7S globulin) | Homologue to Jug r 2 |
Car i 4 | Seed-storage protein (11S globulin) | Shows extremely high (95%) homology with the phylogenetically related walnut allergen Jug r 4 |
Diagnostic Test | Peanut | Cashew | Hazelnut |
---|---|---|---|
Skin prick test | |||
Cut-offs (mm) | 4 (3–8) | 5 (4–6) | 5 (3–7) |
Sensitivity | 0.84 (0.69–0.92) | 0.93 (0.89–0.96) | 0.82 (0.68–0.91) |
Specificity | 0.86 (0.79–0.91) | 0.92 (0.82; 0.96) | 0.78 (0.44–0.94) |
Specific IgE of allergen extracts | |||
Cut-offs (kU/L) | 4.3 (0.35–10) | 1.1 (0.6–3.1) | 2.34 (0.6–6.3) |
Sensitivity | 0.81 (0.71–0.88) | 0.94 (0.89–0.97) | 0.79 (0.71–0.85) |
Specificity | 0.83 (0.71–0.90) | 0.64 (0.54–0.74) | 0.62 (0.38–0.81) |
Specific IgE of allergen-components | |||
Cut-offs (kU/L) | Ara h 2 0.44 (0.3–1.3) | Ana o 3 0.4 (0.2–0.6) | Cor a 14 0.64 (0.35–3.5) |
Sensitivity | 0.82 (0.77–0.86) | 0.96 (0.91–0.98) | 0.73 (0.53–0.87) |
Specificity | 0.92 (0.87–0.95) | 0.94 (0.88–0.97) | 0.95 (0.90–0.98) |
Basophil activation test | |||
Cut-offs (%CD63+ Basophils) | 5.0 (4.7–7.1) | - | - |
Sensitivity | 0.84 (0.76–0.90) | - | - |
Specificity | 0.90 (0.83–0.94) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumycz, K.; Szczukocka, A.; Wawszczak, M.; Grzela, K.; Feleszko, W.; Kulus, M. Decoding Early Clues: Immune Mechanisms, Prevention, Diagnosis, and Treatment of IgE-Mediated Peanut and Tree Nut Allergy in Children. Biomedicines 2025, 13, 2377. https://doi.org/10.3390/biomedicines13102377
Dumycz K, Szczukocka A, Wawszczak M, Grzela K, Feleszko W, Kulus M. Decoding Early Clues: Immune Mechanisms, Prevention, Diagnosis, and Treatment of IgE-Mediated Peanut and Tree Nut Allergy in Children. Biomedicines. 2025; 13(10):2377. https://doi.org/10.3390/biomedicines13102377
Chicago/Turabian StyleDumycz, Karolina, Agnieszka Szczukocka, Maria Wawszczak, Katarzyna Grzela, Wojciech Feleszko, and Marek Kulus. 2025. "Decoding Early Clues: Immune Mechanisms, Prevention, Diagnosis, and Treatment of IgE-Mediated Peanut and Tree Nut Allergy in Children" Biomedicines 13, no. 10: 2377. https://doi.org/10.3390/biomedicines13102377
APA StyleDumycz, K., Szczukocka, A., Wawszczak, M., Grzela, K., Feleszko, W., & Kulus, M. (2025). Decoding Early Clues: Immune Mechanisms, Prevention, Diagnosis, and Treatment of IgE-Mediated Peanut and Tree Nut Allergy in Children. Biomedicines, 13(10), 2377. https://doi.org/10.3390/biomedicines13102377