Increased CX3CL1/CX3CR1 Axis Is Related to Atherosclerosis in Subjects with Familial Combined Hyperlipidaemia, Which Is Modulated by Insulin Resistance but Not by Sex
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric Parameters
2.3. Biochemical Parameters
2.4. CX3CL1 and CX3CR1 Determination
2.4.1. Enzyme-Linked ImmunoSorbent Assay (ELISA) for CX3CL1 Detection
2.4.2. Gene Expression Analysis via Quantitative Real-Time PCR (qPCR) for CX3CR1
2.5. Carotid Ultrasound
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Apo B | Apolipoprotein B |
BMI | Body mass index |
DBP | Diastolic blood pressure |
FCH | Familial combined hyperlipidaemia |
HDL-C | High density lipoprotein cholesterol |
HOMA | Homeostasis model assessment |
hs-CRP | High-sensitivity C-reactive protein |
IMT | Intima–media thickness |
IR | Insulin resistance |
LDL-C | Low-density lipoprotein cholesterol |
SBP | Systolic blood pressure |
References
- de Graaf, J.; van der Vleuten, G.; Stalenhoef, A.F.H. Diagnostic Criteria in Relation to the Pathogenesis of Familial Combined Hyperlipidemia. Semin. Vasc. Med. 2004, 4, 229–240. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Gebhard, C. Gender Medicine: Effects of Sex and Gender on Cardiovascular Disease Manifestation and Outcomes. Nat. Rev. Cardiol. 2023, 20, 236–247. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in Atherosclerosis: Pathophysiology and Mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef] [PubMed]
- Kottilil, S.; Mathur, P. The Influence of Inflammation on Cardiovascular Disease in Women. Front. Glob. Womens Health 2022, 3, 979708. [Google Scholar] [CrossRef] [PubMed]
- Apostolakis, S.; Amanatidou, V.; Papadakis, E.G.; Spandidos, D.A. Genetic Diversity of CX3CR1 Gene and Coronary Artery Disease: New Insights through a Meta-Analysis. Atherosclerosis 2009, 207, 8–15. [Google Scholar] [CrossRef]
- Damås, J.K.; Boullier, A.; Waehre, T.; Smith, C.; Sandberg, W.J.; Green, S.; Aukrust, P.; Quehenberger, O. Expression of Fractalkine (CX3CL1) and Its Receptor, CX3CR1, Is Elevated in Coronary Artery Disease and Is Reduced during Statin Therapy. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2567–2572. [Google Scholar] [CrossRef]
- Ludwig, A.; Weber, C. Transmembrane Chemokines: Versatile “special Agents” in Vascular Inflammation. Thromb. Haemost. 2007, 97, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Rius, C.; Piqueras, L.; González-Navarro, H.; Albertos, F.; Company, C.; López-Ginés, C.; Ludwig, A.; Blanes, J.-I.; Morcillo, E.J.; Sanz, M.-J. Arterial and Venous Endothelia Display Differential Functional Fractalkine (CX3CL1) Expression by Angiotensin-II. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Carratala, A.; Martinez-Hervas, S.; Rodriguez-Borja, E.; Benito, E.; Real, J.T.; Saez, G.T.; Carmena, R.; Ascaso, J.F. PAI-1 Levels Are Related to Insulin Resistance and Carotid Atherosclerosis in Subjects with Familial Combined Hyperlipidemia. J. Investig. Med. 2018, 66, 17–21. [Google Scholar] [CrossRef]
- Martinez-Hervas, S.; Artero, A.; Martinez-Ibañez, J.; Tormos, M.C.; Gonzalez-Navarro, H.; Priego, A.; Martinez-Valls, J.F.; Saez, G.T.; Real, J.T.; Carmena, R.; et al. Increased Thioredoxin Levels Are Related to Insulin Resistance in Familial Combined Hyperlipidaemia. Eur. J. Clin. Investig. 2016, 46, 636–642. [Google Scholar] [CrossRef]
- Martinez-Hervas, S.; Real, J.T.; Ivorra, C.; Priego, A.; Chaves, F.J.; Pallardo, F.V.; Viña, J.R.; Redon, J.; Carmena, R.; Ascaso, J.F. Increased Plasma Xanthine Oxidase Activity Is Related to Nuclear Factor Kappa Beta Activation and Inflammatory Markers in Familial Combined Hyperlipidemia. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 734–739. [Google Scholar] [CrossRef]
- Martínez-Hervás, S.; Vinué, A.; Núñez, L.; Andrés-Blasco, I.; Piqueras, L.; Real, J.T.; Ascaso, J.F.; Burks, D.J.; Sanz, M.J.; González-Navarro, H. Insulin Resistance Aggravates Atherosclerosis by Reducing Vascular Smooth Muscle Cell Survival and Increasing CX3CL1/CX3CR1 Axis. Cardiovasc. Res. 2014, 103, 324–336. [Google Scholar] [CrossRef]
- Castro Cabezas, M.; de Bruin, T.W.; Erkelens, D.W. Familial Combined Hyperlipidaemia: 1973–1991. Neth. J. Med. 1992, 40, 83–95. [Google Scholar]
- Martinez-Hervas, S.; Fandos, M.; Real, J.T.; Espinosa, O.; Chaves, F.J.; Saez, G.T.; Salvador, A.; Cerdá, C.; Carmena, R.; Ascaso, J.F. Insulin Resistance and Oxidative Stress in Familial Combined Hyperlipidemia. Atherosclerosis 2008, 199, 384–389. [Google Scholar] [CrossRef]
- Ascaso, J.F.; Romero, P.; Real, J.T.; Priego, A.; Valdecabres, C.; Carmena, R. Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population. Med. Clin. 2001, 117, 530–533. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; Hernandez Hernandez, R.; Kownator, S.; et al. Mannheim Intima-Media Thickness Consensus. Cerebrovasc. Dis. 2004, 18, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Aday, A.W.; Ridker, P.M. Antiinflammatory Therapy in Clinical Care: The CANTOS Trial and Beyond. Front. Cardiovasc. Med. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- White, G.E.; Tan, T.C.C.; John, A.E.; Whatling, C.; McPheat, W.L.; Greaves, D.R. Fractalkine Has Anti-Apoptotic and Proliferative Effects on Human Vascular Smooth Muscle Cells via Epidermal Growth Factor Receptor Signalling. Cardiovasc. Res. 2010, 85, 825–835. [Google Scholar] [CrossRef]
- Loh, S.X.; Ekinci, Y.; Spray, L.; Jeyalan, V.; Olin, T.; Richardson, G.; Austin, D.; Alkhalil, M.; Spyridopoulos, I. Fractalkine Signalling (CX3CL1/CX3CR1 Axis) as an Emerging Target in Coronary Artery Disease. J. Clin. Med. 2023, 12, 4821. [Google Scholar] [CrossRef] [PubMed]
- Lesnik, P.; Haskell, C.A.; Charo, I.F. Decreased Atherosclerosis in CX3CR1-/- Mice Reveals a Role for Fractalkine in Atherogenesis. J. Clin. Investig. 2003, 111, 333–340. [Google Scholar] [CrossRef]
- Teupser, D.; Pavlides, S.; Tan, M.; Gutierrez-Ramos, J.-C.; Kolbeck, R.; Breslow, J.L. Major Reduction of Atherosclerosis in Fractalkine (CX3CL1)-Deficient Mice Is at the Brachiocephalic Artery, Not the Aortic Root. Proc. Natl. Acad. Sci. USA 2004, 101, 17795–17800. [Google Scholar] [CrossRef] [PubMed]
- Combadière, C.; Potteaux, S.; Gao, J.-L.; Esposito, B.; Casanova, S.; Lee, E.J.; Debré, P.; Tedgui, A.; Murphy, P.M.; Mallat, Z. Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice. Circulation 2003, 107, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Ikejima, H.; Imanishi, T.; Tsujioka, H.; Kashiwagi, M.; Kuroi, A.; Tanimoto, T.; Kitabata, H.; Ishibashi, K.; Komukai, K.; Takeshita, T.; et al. Upregulation of Fractalkine and Its Receptor, CX3CR1, Is Associated with Coronary Plaque Rupture in Patients with Unstable Angina Pectoris. Circ. J. 2010, 74, 337–345. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Luan, X.; Qi, T.; Li, D.; Chen, Y.; Ji, X.; Zhang, Y.; Chen, W. Independent Roles of Monocyte Chemoattractant Protein-1, Regulated on Activation, Normal T-Cell Expressed and Secreted and Fractalkine in the Vulnerability of Coronary Atherosclerotic Plaques. Circ. J. 2012, 76, 2167–2173. [Google Scholar] [CrossRef]
- Veerkamp, M.J.; de Graaf, J.; Stalenhoef, A.F.H. Role of Insulin Resistance in Familial Combined Hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Brie, A.D.; Christodorescu, R.M.; Popescu, R.; Adam, O.; Tîrziu, A.; Brie, D.M. Atherosclerosis and Insulin Resistance: Is There a Link Between Them? Biomedicines 2025, 13, 1291. [Google Scholar] [CrossRef]
- Vakhtangadze, T.; Singh Tak, R.; Singh, U.; Baig, M.S.; Bezsonov, E. Gender Differences in Atherosclerotic Vascular Disease: From Lipids to Clinical Outcomes. Front. Cardiovasc. Med. 2021, 8, 707889. [Google Scholar] [CrossRef] [PubMed]
- Lakoski, S.G.; Cushman, M.; Criqui, M.; Rundek, T.; Blumenthal, R.S.; D’Agostino, R.B.; Herrington, D.M. Gender and C-Reactive Protein: Data from the Multiethnic Study of Atherosclerosis (MESA) Cohort. Am. Heart J. 2006, 152, 593–598. [Google Scholar] [CrossRef]
- Rogowski, O.; Zeltser, D.; Shapira, I.; Burke, M.; Zakut, V.; Mardi, T.; Ben-Assayag, E.; Serov, J.; Rozenblat, M.; Berliner, S. Gender Difference in C-Reactive Protein Concentrations in Individuals with Atherothrombotic Risk Factors and Apparently Healthy Ones. Biomarkers 2004, 9, 85–92. [Google Scholar] [CrossRef]
- Rubtsov, A.V.; Rubtsova, K.; Kappler, J.W.; Marrack, P. Genetic and Hormonal Factors in Female-Biased Autoimmunity. Autoimmun. Rev. 2010, 9, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Hollan, I.; Meroni, P.L.; Ahearn, J.M.; Cohen Tervaert, J.W.; Curran, S.; Goodyear, C.S.; Hestad, K.A.; Kahaleh, B.; Riggio, M.; Shields, K.; et al. Cardiovascular Disease in Autoimmune Rheumatic Diseases. Autoimmun. Rev. 2013, 12, 1004–1015. [Google Scholar] [CrossRef]
FCH Group | Control Group | |||||
---|---|---|---|---|---|---|
Men (n = 21) | Women (n = 26) | All (n = 47) | Men (n = 18) | Women (n = 20) | All (n = 38) | |
Age (years old) | 56.2 ± 7.2 | 58.4 ± 9.1 | 57.4 ± 8.3 | 53.1 ± 7.6 | 57.2 ± 9.2 | 55.3 ± 8.6 |
BMI (kg/m2) | 29.8 ± 3.4 * | 32.7 ± 6.6 * | 31.4 ± 5.6 * | 24.8 ± 3.2 | 25.7 ± 3.4 | 25.3 ± 3.3 |
Waist circumference (cm) | 103.3 ± 9.8 * | 100.3 ± 16.3 * | 100.3 ± 16.3 * | 88.9 ± 10.0 | 85.3 ± 9.5 | 86.9 ± 9.8 |
SBP (mmHg) | 135.9 ± 9.6 * | 138.9 ± 15.1 * | 137.6 ± 12.9 * | 120.5 ± 15.4 | 123.7 ± 18.3 | 122.2 ± 16.9 |
DBP (mmHg) | 84.3 ± 7.2 * | 88.0 ± 9.9 * | 86.4 ± 8.9 * | 73.6 ± 9.1 | 75.0 ± 10.5 | 74.4 ± 9.8 |
Glucose (mg/dL) | 126.2 ± 36.8 * | 111.0 ± 27.8 * | 117.8 ± 32.7 * | 89.3 ± 8.8 | 88.2 ± 7.7 | 88.7 ± 8.1 |
Insulin (μU/mL) | 15.7 ± 6.8 * | 15.2 ± 9.1 * | 15.4 ± 8.1 * | 6.2 ± 2.3 | 6.0 ± 2.6 | 6.1 ± 2.4 |
HOMA index | 4.9 ± 2.6 * | 4.3 ± 2.9 * | 4.6 ± 2.8 * | 1.4 ± 4.9 | 1.3 ± 0.6 | 1.3 ± 0.5 |
Total cholesterol (mg/dL) | 226.9 ± 43.1 * | 240.1 ± 47.2 * | 234.2 ± 45.4 * | 203.7 ± 16.7 | 212.0 ± 28.2 | 208.1 ± 23.6 |
HDL-C (mg/dL) | 45.8 ± 10.1 * | 58.1 ± 10.7 | 52.6 ± 12.1 * | 55.6 ± 13.4 | 62.7 ± 9.6 | 59.3 ± 11.9 |
LDL-C (mg/dL) | 141.9 ± 24.9 | 150.7 ± 39.5 | 146.8 ± 33.8 * | 134.2 ± 16.4 | 135.2 ± 24.9 | 134.8 ± 21.1 |
Triglycerides (mg/dL) | 213.7 ± 106.9 * | 170.6 ± 88.8 * | 189.9 ± 98.6 * | 80.6 ± 26.2 | 84.5 ± 23.2 | 82.6 ± 24.4 |
Apo B (mg/dL) | 114.6 ± 20.4 * | 111.5 ± 24.3 * | 112.8 ± 22.4 * | 92.2 ± 10.7 | 91.9 ± 12.4 | 92.1 ± 11.5 |
hs-CRP (mg/L) | 2.4 ± 2.2 | 3.4 ± 2.7 * | 2.9 ± 2.5 * | 1.5 ± 1.4 | 1.7 ± 2.2 | 1.6 ± 1.8 |
CX3CL1 (pM/L) | 33.8 ± 40.0 | 35.9 ± 40.0 | 35.2 ± 39.2 * | 18.9 ± 11.2 | 17.6 ± 8.3 | 18.3 ± 9.7 |
CX3CR1 mRNA levels (relative quantification, RQ) | 3.3 ± 0.7 * | 1.5 ± 1.4 * | 2.1 ± 2.5 * | 0.2 ± 0.3 | 0.9 ± 1.9 | 0.6 ± 1.4 |
Carotid IMT (mm) | 0.764 ± 0.193 * | 0.636 ± 0.145 * | 0.693 ± 0.178 * | 0.535 ± 0.116 | 0.546 ± 0.094 | 0.541 ± 0.104 |
Atheroma plaque (n (%)) | 8 (38.1) * | 6 (23.1) | 14 (29.8) * | 2 (11.1) | 3 (15) | 5 (13.2) |
IR FCH (n = 18) | Non-IR FCH (n = 20) | Control (n = 38) | |
---|---|---|---|
Age (years old) | 56.4 ± 8.2 | 59.4 ± 8.5 | 55.3 ± 8.6 |
Sex (female/male) | 12/18 + | 14/3 * | 20/18 |
BMI (kg/m2) | 32.1 ± 5.4 * | 30.3 ± 5.6 * | 25.3 ± 3.3 |
Waist circumference (cm) | 103.9 ± 12.8 * | 97.4 ± 14.6 * | 86.9 ± 9.8 |
SBP (mmHg) | 138.9 ± 11.8 * | 135.3 ± 14.9 * | 122.2 ± 16.9 |
DBP (mmHg) | 87.4 ± 9.2 * | 84.5 ± 8.5 * | 74.4 ± 9.8 |
Glucose (mg/dL) | 127.8 ± 34.2 *+ | 98.5 ± 18.3 | 88.7 ± 8.1 |
Insulin (μU/mL) | 18.8 ± 7.8 *+ | 8.8 ± 2.6 | 6.1 ± 2.4 |
HOMA index | 5.8 ± 2.6 *+ | 2.1 ± 0.7 | 1.3 ± 0.5 |
Total cholesterol (mg/dL) | 237.5 ± 42.7 * | 227.8 ± 51.0 | 208.1 ± 23.6 |
HDL-C (mg/dL) | 49.3 ± 9.6 *+ | 58.9 ± 13.6 | 59.3 ± 11.9 |
LDL-C (mg/dL) | 149.6 ± 28.4 | 141.4 ± 42.9 | 134.8 ± 21.1 |
Triglycerides (mg/dL) | 215.0 ± 108.3 *+ | 141.2 ± 50.3 * | 82.6 ± 24.4 |
Apo B (mg/dL) | 116.7 ± 21.8 * | 105.4 ± 22.3 * | 92.1 ± 11.5 |
hs-CRP (mg/L) | 3.2 ± 2.7 * | 2.6 ± 2.1 | 1.6 ± 1.8 |
CX3CL1 (pM/L) | 40.4 ± 43.5 * | 25.8 ± 29.9 | 18.3 ± 9.7 |
CX3CR1 mRNA levels (relative quantification, RQ) | 2.7 ± 2.8 *+ | 0.9 ± 0.6 | 0.6 ± 1.4 |
Carotid IMT (mm) | 0.738 ± 0.259 * | 0.627 ± 0.146 | 0.541 ± 0.104 |
Atheroma plaque (n (%)) | 11 (36.7) *+ | 3 (17.6) | 5 (13.2) |
IR FCH | Non-IR FCH | Control Group | ||||
---|---|---|---|---|---|---|
Men (n = 18) | Women (n = 12) | Men (n = 3) | Women (n = 14) | Men (n = 18) | Women (n = 20) | |
Age (years old) | 56.5 ± 7.4 | 58.9 ± 9.3 | 54.3 ± 7.5 | 58.3 ± 9.3 | 53.1 ± 7.6 | 57.2 ± 9.2 |
BMI (kg/m2) | 30.6 ± 3.0 ≠¥ | 35.2 ± 6.7 * | 25.3 ± 1.2 | 30.5 ± 5.9 * | 24.8 ± 3.2 | 25.7 ± 3.4 |
Waist circumference (cm) | 104 ± 9.9 ≠ | 106.9 ± 15.9 *+ | 99.0 ± 8.5 | 94.2 ± 14.7 | 88.9 ± 10.0 | 85.3 ± 9.5 |
SBP (mmHg) | 137.6 ± 9.1 ≠ | 138.9 ± 15.1 * | 126.7 ± 8.1 | 138.9 ± 15.6 * | 120.5 ± 15.4 | 123.7 ± 18.3 |
DBP (mmHg) | 85.2 ± 7.2 ≠ | 89.1 ± 11.4 * | 79.1 ± 5.0 | 87.1 ± 8.8 * | 73.6 ± 9.1 | 75.0 ± 10.5 |
Glucose (mg/dL) | 130.3 ±37.6 ≠ | 124.2 ± 32.8 * | 101.7 ± 23.0 | 99.7 ± 16.5 * | 89.3 ± 8.8 | 88.2 ± 7.7 |
Insulin (μU/mL) | 16.4 ± 6.6 ≠¥ | 21.9 ± 9.1 * | 8.3 ± 0.7 | 9.4 ± 3.3 * | 6.2 ± 2.3 | 6.0 ± 2.6 |
HOMA index | 5.4 ± 2.4 ≠¥ | 6.5 ± 3.0 * | 2.1 ± 0.7 | 2.3 ± 0.9 * | 1.4 ± 4.9 | 1.3 ± 0.6 |
Total cholesterol (mg/dL) | 227.6 ± 41.1 ≠ | 244.8 ± 42.1 * | 222.7 ± 64.3 | 236.0 ± 52.4 | 203.7 ± 16.7 | 212.0 ± 28.2 |
HDL-C (mg/dL) | 44.7 ± 6.4 ≠ | 52.9 ± 8.5 * | 52.3 ± 24.4 | 62.5 ± 10.6 | 55.6 ± 13.4 | 62.7 ± 9.6 |
LDL-C (mg/dL) | 142.3 ± 21.9 | 155.7 ± 34.1 * | 139.7 ± 46.2 | 146.4 ± 44.5 | 134.2 ± 16.4 | 135.2 ± 24.9 |
Triglycerides (mg/dL) | 223.8 ± 112.5 ≠ | 206.0 ± 106.3 * | 153.0 ± 34.8 ≠ | 140.3 ± 58.8 * | 80.6 ± 26.2 | 84.5 ± 23.2 |
Apo B (mg/dL) | 115.3 ± 21.0 ≠ | 117.7 ± 24.6 * | 110.0 ± 19.1 | 106.1 ± 23.5 | 92.2 ± 10.7 | 91.9 ± 12.4 |
hs-CRP (mg/L) | 2.5 ± 2.4 | 4.3 ± 2.9 * | 2.1 ± 0.5 | 2.7 ± 2.3 | 1.5 ± 1.4 | 1.7 ± 2.2 |
CX3CL1 (pM/L) | 36.4 ± 35.3 ≠ | 44.3 ± 50.5 | 28.7 ± 21.9 ≠ | 23.5 ± 10.4 | 18.9 ± 11.2 | 17.6 ± 8.3 |
CX3CR1 mRNA levels (relative quantification, RQ) | 3.5 ± 3.3 ≠ | 2.1 ± 1.6 * | 0.6 ± 0.4 | 1.0 ± 0.9 | 0.2 ± 0.3 | 0.9 ± 1.9 |
Carotid IMT (mm) | 0.768 ± 0.203 ≠ | 0.675 ± 0.137 * | 0.693 ± 0.136 | 0.602 ± 0.147 | 0.535 ± 0.116 | 0.546 ± 0.094 |
Atheroma plaque (n (%)) | 7 (38.9) ≠ | 4 (33.3) * | 1 (33.3) | 2 (14.3) | 2 (11.1) | 3 (15) |
CX3CR1 mRNA Levels (Relative Quantification, RQ) | CX3CL1 (pM/L) | |||
---|---|---|---|---|
p Value | r | p Value | r | |
Age (years old) | 0.182 | −0.150 | 0.419 | 0.106 |
Sex | 0.554 | 0.067 | 0.771 | −0.038 |
BMI (kg/m2) | 0.302 | 0.116 | 0.567 | 0.077 |
Waist circumference (cm) | 0.143 | 0.17 | 0.603 | 0.072 |
SBP (mmHg) | 0.266 | 0.127 | 0.493 | 0.091 |
DBP (mmHg) | 0.079 | 0.199 | 0.127 | 0.201 |
Glucose (mg/dL) | 0.009 | 0.289 | <0.001 | 0.407 |
Insulin (μU/mL) | <0.001 | 0.482 | 0.05 | 0.254 |
HOMA index | <0.001 | 0.47 | 0.017 | 0.307 |
Total cholesterol (mg/dL) | 0.021 | 0.256 | 0.012 | 0.324 |
HDL-C (mg/dL) | 0.009 | −0.288 | 0.664 | −0.057 |
LDL-C (mg/dL) | 0.074 | 0.2 | 0.018 | 0.304 |
Triglycerides (mg/dL) | <0.001 | 0.409 | 0.126 | 0.2 |
Apo B (mg/dL) | <0.001 | 0.395 | 0.128 | 0.167 |
hs-CRP (mg/L) | 0.267 | 0.128 | 0.537 | 0.083 |
Carotid IMT (mm) | <0.001 | 0.403 | 0.547 | 0.079 |
Atheroma plaque (n (%)) | 0.854 | 0.021 | 0.048 | 0.257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Martí, E.; Espinosa-Bellido, C.; Alabadi, B.; Hurtado-Genovés, G.; Enrique-Medina, A.; Martín-Vañó, S.; Casas, V.; Nadal, E.A.C.; Real, J.T.; González-Navarro, H.; et al. Increased CX3CL1/CX3CR1 Axis Is Related to Atherosclerosis in Subjects with Familial Combined Hyperlipidaemia, Which Is Modulated by Insulin Resistance but Not by Sex. Biomedicines 2025, 13, 2378. https://doi.org/10.3390/biomedicines13102378
Jiménez-Martí E, Espinosa-Bellido C, Alabadi B, Hurtado-Genovés G, Enrique-Medina A, Martín-Vañó S, Casas V, Nadal EAC, Real JT, González-Navarro H, et al. Increased CX3CL1/CX3CR1 Axis Is Related to Atherosclerosis in Subjects with Familial Combined Hyperlipidaemia, Which Is Modulated by Insulin Resistance but Not by Sex. Biomedicines. 2025; 13(10):2378. https://doi.org/10.3390/biomedicines13102378
Chicago/Turabian StyleJiménez-Martí, Elena, Clara Espinosa-Bellido, Blanca Alabadi, Gema Hurtado-Genovés, Antonio Enrique-Medina, Susana Martín-Vañó, Víctor Casas, Eduardo A. Cortés Nadal, José T. Real, Herminia González-Navarro, and et al. 2025. "Increased CX3CL1/CX3CR1 Axis Is Related to Atherosclerosis in Subjects with Familial Combined Hyperlipidaemia, Which Is Modulated by Insulin Resistance but Not by Sex" Biomedicines 13, no. 10: 2378. https://doi.org/10.3390/biomedicines13102378
APA StyleJiménez-Martí, E., Espinosa-Bellido, C., Alabadi, B., Hurtado-Genovés, G., Enrique-Medina, A., Martín-Vañó, S., Casas, V., Nadal, E. A. C., Real, J. T., González-Navarro, H., & Martínez-Hervás, S. (2025). Increased CX3CL1/CX3CR1 Axis Is Related to Atherosclerosis in Subjects with Familial Combined Hyperlipidaemia, Which Is Modulated by Insulin Resistance but Not by Sex. Biomedicines, 13(10), 2378. https://doi.org/10.3390/biomedicines13102378