Role of Adipokines Chemerin, Visfatin, and Omentin in Obesity and Their Inflammatory and Metabolic Implications
Abstract
1. Introduction
2. Adipose Tissue as an Endocrine Organ in Obesity
3. Chemerin: A Pro-Inflammatory Adipokine and Obesity
4. Visfatin: A Complex Profile in Obesity and Inflammation
5. Omentin-1: An Anti-Inflammatory Adipokine and Its Role in Obesity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T2DM | Type 2 diabetes mellitus |
| VAT | visceral adipose tissue |
| WAT | White adipose tissue |
| TNF-α | Tumor necrosis factor alpha |
| IL | Interleukin |
| NAD | Nicotinamide-adenine dinucleotide |
| NAMPT | Nicotinamide phosphoribosyl transferase |
| BMI | Body mass index |
References
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas 2023; World Obesity Federation: London, UK, 2023; Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 16 May 2025).
- Özdemir, S.; Baltaci, F. Comparative determination of factors affecting attitude level towards healthy nutrition. Sci. Rep. 2025, 15, 5026. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. i–xii+1–253. [Google Scholar]
- Lam, T.M.; Aarestrup, J.; van den Akker, E.L.T.; Baker, J.L.; Banik, A.; Berntzen, B.J.; Bertoni, L.; Beulens, J.W.J.; Bjørnsbo, K.; Bryant, S.; et al. Advancing knowledge, maps and tools to address obesity and related socio-economic disparities in Europe: The OBCT project. Glob. Health Action 2025, 18, 2517492. [Google Scholar] [CrossRef]
- Zhang, X.; Ha, S.; Lau, H.C.H.; Yu, J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin. Cancer Biol. 2023, 89, 10–18. [Google Scholar] [CrossRef]
- Salama, M.; Balagopal, B.; Fennoy, I.; Kumar, S. Childhood Obesity, Diabetes, and Cardiovascular Disease Risk. J. Clin. Endocrinol. Metab. 2023, 108, e1112–e1118. [Google Scholar] [CrossRef] [PubMed]
- Kloock, S.; Ziegler, C.G.; Dischinger, U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol. Ther. 2023, 254, 108549. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, S.; Parlak Özer, Z.; Türkoğlu, M.; Kardaş Kin, Ö. Determination of obesity prejudice levels of health professionals working in Gaziantep province. J. Health Sci. Med. 2025, 8, 469–475. [Google Scholar]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef]
- Felipe, L.A.; Bachi, A.L.L.; Oliveira, M.C.; Moreira, S.M.B.P.; Afonso, J.P.R.; Lino, M.E.M.; Paixão, V.; Silva, C.H.M.; Vieira, R.P.; Vencio, S.; et al. Effects of Roux-en-Y gastric bypass on the metabolic profile and systemic inflammatory status of women with metabolic syndrome: Randomized controlled clinical trial. Diabetol. Metab. Syndr. 2023, 15, 19. [Google Scholar] [CrossRef]
- An, S.M.; Cho, S.H.; Yoon, J.C. Adipose Tissue and Metabolic Health. Diabetes Metab. J. 2023, 47, 595–611. [Google Scholar] [CrossRef]
- Hagberg, C.E.; Spalding, K.L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 2024, 25, 270–289. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Alam, R.; Ahsan, H.; Khan, S. Role of adipokines (omentin and visfatin) in coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 483–493. [Google Scholar] [CrossRef]
- Sell, H.; Divoux, A.; Poitou, C.; Basdevant, A.A.; Bouillot, J.L.; Bedossa, P.; Tordjman, J.; Eckel, J.; Clément, K. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 2010, 95, 2892–2896. [Google Scholar] [CrossRef]
- Ross, C.; Tschoner, A.; Engl, J.; Klaus, A.; Tilg, H.; Ebenbichler, C.F.; Patsch, J.R.; Kaser, S. Effect of bariatric surgery on circulating Chemerin levels. Eur. J. Clin. Investig. 2010, 40, 277–280. [Google Scholar] [CrossRef]
- Huang, D.; Kidd, J.M.; Zou, Y.; Wu, X.; Gehr, T.W.B.; Li, P.L.; Li, G. Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity. Inflammation 2023, 46, 2037–2054. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Moosavian, S.P.; Hadi, A.; Karimi, E.; Nasirian, M. The association between serum omentin level and bodyweight: A systematic review and meta-analysis of observational studies. Clin. Nutr. ESPEN 2020, 39, 22–29. [Google Scholar] [CrossRef]
- Askin, L.; Duman, H.; Ozyıldız, A.; Tanriverdi, O.; Turkmen, S. Association between omentin-1 and coronary artery disease: Pathogenesis and clinical research. Curr. Cardiol. Rev. 2020, 16, 198–201. [Google Scholar] [CrossRef]
- Bozaoglu, K.; Bolton, K.; McMillan, J.; Zimmet, P.; Jowett, J.; Collier, G.; Walder, K.; Segal, D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007, 148, 4687–4694. [Google Scholar] [CrossRef] [PubMed]
- Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef]
- Fatima, S.S.; Bozaoglu, K.; Rehman, R.; Alam, F.; Memon, A.S. Elevated chemerin levels in Pakistani men: An interrelation with metabolic syndrome phenotypes. PLoS ONE 2013, 8, e57113. [Google Scholar]
- Jung, H.N.; Jung, C.H. The role of anti-inflammatory adipokines in cardiometabolic disorders: Moving beyond adiponectin. Int. J. Mol. Sci. 2021, 22, 13529. [Google Scholar] [CrossRef] [PubMed]
- Kazama, K.; Usui, T.; Okada, M.; Hara, Y.; Yamawaki, H. Omentin plays an anti-inflammatory role through inhibition of TNF-α-induced superoxide production in vascular smooth muscle cells. Eur. J. Pharmacol. 2012, 686, 116–123. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, A.; Matsuda, M.; Nishizawa, M.; Segawa, K.; Tanaka, M.; Kishimoto, K.; Matsuki, Y.; Murakami, M.; Ichisaka, T.; Murakami, H.; et al. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science 2005, 307, 426–430. [Google Scholar] [CrossRef]
- Varma, V.; Yao-Borengasser, A.; Rasouli, N.; Bodles, A.M.; Phanavanh, B.; Lee, M.J.; Starks, T.; Kern, L.M.; Spencer, H.J., III.; McGehee, R.E., Jr. Human visfatin expression: Relationship to insulin sensitivity, intramyocellular lipids, and inflammation. J. Clin. Endocrinol. Metab. 2007, 92, 666–672. [Google Scholar] [CrossRef]
- Haider, D.G.; Schindler, K.; Schaller, G.; Prager, G.; Wolzt, M.; Ludvik, B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J. Clin. Endocrinol. Metab. 2006, 91, 1578–1581. [Google Scholar] [CrossRef]
- Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 2005, 115, 911–999. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P. Adiposity and cardiovascular disease: Are we using the right definition of obesity? Eur. Heart J. 2007, 28, 2047–2048. [Google Scholar] [CrossRef]
- Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. 2016, 7, 30. [Google Scholar] [CrossRef]
- Tilg, H.; Ianiro, G.; Gasbarrini, A.; Adolph, T. Adipokines: Masterminds of metabolic inflammation. Nat. Rev. Immunol. 2025, 25, 250–265. [Google Scholar] [CrossRef]
- Ohashi, K.; Parker, J.L.; Ouchi, N.; Higuchi, A.; Vita, J.A.; Gokce, N.; Pedersen, A.A.; Kalthoff, C.; Tullin, S.; Sams, A.; et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 2010, 285, 6153–6160. [Google Scholar] [CrossRef]
- Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635. [Google Scholar] [CrossRef]
- Ramos-Ramirez, P.; Malmhall, C.; Tliba, O.; Radinger, M.; Bossios, A. Adiponectin/AdipoR1 axis promotes IL-10 release by human regulatory T cells. Front. Immunol. 2021, 12, 677550. [Google Scholar] [CrossRef]
- Pang, T.T.; Narendran, P. The distribution of adiponectin receptors on human peripheral blood mononuclear cells. Ann. N. Y. Acad. Sci. 2008, 1150, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Guo, Y.; Ge, Z.; Zhang, Z.; Da, Y.; Li, W.; Zhang, Z.; Xue, Z.; Li, Y.; Ren, Y.; et al. Adiponectin suppresses T helper 17 cell differentiation and limits autoimmune CNS inflammation via the SIRT1/PPARγ/RORγt pathway. Mol. Neurobiol. 2017, 54, 4908–4920. [Google Scholar]
- Nawaz, A.; Aminuddin, A.; Kado, T.; Takikawa, A.; Yamamoto, S.; Tsuneyama, K.; Igarashi, Y.; Ikutani, M.; Nishida, Y.; Nagai, Y.; et al. CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat. Commun. 2017, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Noh, H.M.; Choi, B.; Park, J.E.; Kim, J.E.; Jang, Y.; Lee, H.K.; Chang, E.-J. Interleukin-22 induces the infiltration of visceral fat tissue by a discrete subset of Duffy antigen receptor for chemokine-positive M2-like macrophages in response to a high fat diet. Cells 2019, 8, 1587. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ren, Y.; Chang, K.; Wu, W.; Griffiths, H.R.; Lu, S.; Gao, D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front. Immunol. 2023, 14, 1153915. [Google Scholar] [CrossRef]
- Hu, Q.; Lyon, C.J.; Fletcher, J.K.; Tang, W.; Wan, M.; Hu, T.Y. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm. Sin. B. 2021, 11, 1493–1512. [Google Scholar] [CrossRef]
- Vegiopoulos, A.; Rohm, M.; Herzig, S. Adipose tissue: Between the extremes. EMBO J. 2017, 36, 1999–2017. [Google Scholar] [CrossRef]
- Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 2019, 129, 3990–4000. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Loos, R.J.F.; Marshall, S.M.; Zierath, J.R. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021, 184, 1530–1544. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Wollam, J.; Olefsky, J.M. An integrated view of immunometabolism. Cell 2018, 172, 22–40. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-Alpha and inflammatory cytokines and risk of Type 2 Diabetes: A systematic review and meta-analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Nara, H.; Watanabe, R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int. J. Mol. Sci. 2021, 22, 9889–9903. [Google Scholar] [CrossRef]
- Alizadeh Pahlavani, H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front. Endocrinol. 2022, 13, 811751. [Google Scholar] [CrossRef]
- Vieira-Potter, V.J. Inflammation and macrophage modulation in adipose tissues. Cell. Microbiol. 2014, 16, 1484–1492. [Google Scholar] [CrossRef]
- Pestel, J.; Blangero, F.; Watson, J.; Pirola, L.; Eljaafari, A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023, 212, 48–59. [Google Scholar] [CrossRef]
- Al-Ibraheem, A.M.T.; Hameed, A.A.Z.; Marsool, M.D.M.; Jain, H.; Prajjwal, P.; Khazmi, I.; Nazzal, R.S.; Al-Najati, H.M.H.; Al-Zuhairi, B.H.Y.K.; Razzaq, M.; et al. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci. Rep. 2024, 7, e70034. [Google Scholar] [CrossRef]
- Soták, M.; Clark, M.; Suur, B.E.; Börgeson, E. Inflammation and resolution in obesity. Nat. Rev. Endocrinol. 2025, 21, 45–61. [Google Scholar] [CrossRef]
- Shaikh, S.R.; Beck, M.A.; Alwarawrah, Y.; MacIver, N.J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 2024, 20, 136–148. [Google Scholar] [PubMed]
- Bradley, D.; Deng, T.; Shantaram, D.; Hsueh, W.A. Orchestration of the adipose tissue immune landscape by adipocytes. Annu. Rev. Physiol. 2024, 86, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Zenas-Trujillo, G.; Trujillo-Ramirez, I.; Carhuavilca-Torres, J.; Ayala-Mendivil, R.; Vera-Ponce, V. Prevalence of Metabolically-Obese Normal-Weight Worldwide: Systematic Review and Meta-Analysis. J. Endocrinol. Metab. 2023, 13, 104–113. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Wang, X. Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development. Exp. Biol. Med. 2023, 248, 2020–2029. [Google Scholar] [CrossRef]
- Fischer, T.; Beck-Sickinger, A. Chemerin—Exploring a versatile adipokine. Biol. Chem. 2022, 403, 625–642. [Google Scholar] [CrossRef]
- Chou, H.H.; Teng, M.S.; Hsu, L.A.; Er, L.K.; Wu, S.; Ko, Y.L. Circulating chemerin level is associated with metabolic, biochemical and haematological parameters-A population-based study. Clin. Endocrinol. 2021, 94, 927–939. [Google Scholar] [CrossRef]
- Lara-Guzmán, Ó.J.; Arango-González, Á.M.; Álvarez-Quintero, R.; Escobar, J.S.; Muñoz-Durango, K.; Sierra, J.A. Circulating hs-CRP, IL-18, Chemerin, Leptin, and Adiponectin Levels Reflect Cardiometabolic Dysfunction in Adults with Excess Weight. Int. J. Mol. Sci. 2025, 26, 1176. [Google Scholar] [CrossRef]
- Laffranchi, M.; Schioppa, T.; Sozio, F.; Piserà, A.; Tiberio, L.; Salvi, V.; Bosisio, D.; Musso, T.; Sozzani, S.; Del Prete, A. Chemerin in immunity. J. Leukoc. Biol. 2025, 117, qiae181. [Google Scholar] [CrossRef] [PubMed]
- Ugur, K.; Erman, F.; Turkoglu, S.; Aydin, Y.; Aksoy, A.; Lale, A.; Karagöz, Z.K.; Ugur, I.; Akkoc, R.F.; Yalniz, M. Asprosin, visfatin and subfatin as new biomarkers of obesity and metabolic syndrome. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2124–2133. [Google Scholar] [CrossRef]
- Jerusha, F.R.; Raghunath, V. Assessment of serum and salivary visfatin levels in newly diagnosed patients of type-II DM. J. Oral. Maxillofac. Pathol. 2023, 27, 663–667. [Google Scholar] [CrossRef]
- Gunduz, F.O.; Yildirmak, S.T.; Temizel, M.; Faki, Y.; Cakmak, M.; Durmuscan, M.; Sezgin, F. Serum visfatin and fetuin-a levels and glycemic control in patients with obese type 2 diabetes mellitus. Diabetes Metab. J. 2011, 35, 523–528. [Google Scholar] [CrossRef]
- Al Doghaither, H.A.; Alshaikh, E.M.; Omar, U.M.; Alsufiani, H.M.; Mansouri, R.A.; Tarbiah, N.I.; Alshaikh, A.A.; Alshaikh, A.M. Insulin resistance and its correlation with chemerin and visfatin in Saudi patients with hyperthyroidism. Int. J. Health Sci. 2019, 13, 18–21. [Google Scholar]
- Sherly, A.A.; Rukmini, M.S.; Hegde, A.; Arun, S.; Kotian, H. Serum levels of omentin and visfatin in patients with metabolic syndrome. Arch. Physiol. Biochem. 2025, 131, 683–690. [Google Scholar] [CrossRef]
- Zhao, A.; Xiao, H.; Zhu, Y.; Liu, S.; Zhang, S.; Yang, Z.; Du, L.; Li, X.; Niu, X.; Wang, C.; et al. Omentin-1: A newly discovered warrior against metabolic related diseases. Expert. Opin. Ther. Targets. 2022, 26, 275–289. [Google Scholar] [CrossRef]
- Dooxa Nongrum, A.; Guru, S.R.; Nisha, J.K.; Aghanashini, S. Analysing adipokine Omentin-1 in periodontal disease and type-2 diabetes mellitus: An interventional comparative study. J. Oral Biol. Craniofac. Res. 2022, 12, 273–278. [Google Scholar] [CrossRef]
- Ko, C.Y.; Lin, Y.Y.; Achudhan, D.; Chang, J.W.; Liu, S.C.; Lai, C.Y.; Huang, Y.L.; Tsai, C.H.; Fong, Y.C.; Chen, H.T.; et al. Omentin-1 ameliorates the progress of osteoarthritis by promoting IL-4-dependent anti-inflammatory responses and M2 macrophage polarization. Int. J. Biol. Sci. 2023, 19, 5275–5289. [Google Scholar] [CrossRef]
- de Luis Román, D.; Izaola Jáuregui, O.; Primo, D. Relationship between serum omentin-1 levels and nascent metabolic syndrome in Caucasian patients with obesity. Nutr. Hosp. 2024, 41, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Cabral, V.L.F.; Wang, F.; Peng, X.; Gao, J.; Zhou, Z.; Sun, R.; Bao, J.; Wu, X. Omentin-1 promoted proliferation and ameliorated inflammation, apoptosis, and degeneration in human nucleus pulposus cells. Arch. Gerontol. Geriatr. 2022, 102, 104748. [Google Scholar] [CrossRef]
- Schulze, M.B.; Stefan, N. Metabolically Healthy Obesity: From Epidemiology and Mechanisms to Clinical Implications. Nat. Rev. Endocrinol. 2024, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Koohi, F.; Ebadinejad, A.; Valizadeh, M.; Hosseinpanah, F. Transition from Metabolically Healthy to Unhealthy Overweight/Obesity and Risk of Cardiovascular Disease Incidence: A Systematic Review and Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Opio, J.; Croker, E.; Odongo, G.S.; Attia, J.; Wynne, K.; McEvoy, M. Metabolically Healthy Overweight/Obesity Are Associated with Increased Risk of Cardiovascular Disease in Adults, Even in the Absence of Metabolic Risk Factors: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Obes. Rev. 2020, 21, e13127. [Google Scholar] [CrossRef]
- Huang, M.Y.; Wang, M.Y.; Lin, Y.S.; Lin, C.J.; Lo, K.; Chang, I.J.; Cheng, T.Y.; Tsai, S.Y.; Chen, H.H.; Lin, C.Y.; et al. The Association between Metabolically Healthy Obesity, Cardiovascular Disease, and All-Cause Mortality Risk in Asia: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2020, 17, 1320. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, P.; Ma, R.; Guo, X.; Sun, Y.; Zhang, X. A Novel Criterion of Metabolically Healthy Obesity Could Effectively Identify Individuals with Low Cardiovascular Risk Among Chinese Cohort. Front. Endocrinol. 2023, 14, 1140472. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Leung, L.L.; Morser, J. Chemerin Forms: Their Generation and Activity. Biomedicines 2022, 10, 2018. [Google Scholar] [CrossRef]
- Kennedy, A.J.; Davenport, A.P. International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacol. Rev. 2018, 70, 174–196. [Google Scholar] [CrossRef]
- Van Gerwen, J.; Shun-Shion, A.S.; Fazakerley, D.J. Insulin signalling and GLUT4 trafficking in insulin resistance. Biochem. Soc. Trans. 2023, 51, 1057–1069. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, J.S.; Jo, M.J.; Cho, E.; Ahn, S.Y.; Kwon, Y.J.; Ko, G.J. The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. Molecules 2022, 27, 334. [Google Scholar] [CrossRef]
- Bastard, J.P.; Dridi-Brahimi, I.; Vatier, C.; Fellahi, S.; Fève, B. Biological markers of adipose tissue: Adipokines. Ann. Endocrinol. 2024, 85, 171–172. [Google Scholar] [CrossRef]
- Hu, S.; Shao, Z.; Zhang, C.; Chen, L.; Mamun, A.A.; Zhao, N.; Cai, J.; Lou, Z.; Wang, X.; Chen, J. Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. Aging 2020, 12, 11732–11753. [Google Scholar] [CrossRef]
- Tian, J.; Mu, Y.; Ma, L. Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury. Toxicol. Res. 2023, 40, 73–81. [Google Scholar] [CrossRef]
- Pezzino, S.; Puleo, S.; Luca, T.; Castorina, M.; Castorina, S. Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends. Biomedicines 2025, 13, 1854. [Google Scholar] [CrossRef]
- Becker, M.; Rabe, K.; Lebherz, C.; Zugwurst, J.; Göke, B.; Parhofer, K.G.; Lehrke, M.; Broedl, U.C. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes 2010, 59, 2898–2903. [Google Scholar] [CrossRef]
- De Henau, O.; Degroot, G.N.; Imbault, V.; Robert, V.; De Poorter, C.; Mcheik, S.; Galés, C.; Parmentier, M.; Springael, J.Y. Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2. PLoS ONE 2016, 11, e0164179. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Huang, J.; Wang, Y.; Yang, Z.; Chen, X. Chemerin causes lipid metabolic imbalance and induces passive lipid accumulation in human hepatoma cell line via the receptor GPR1. Life Sci. 2021, 278, 119530. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, Y.; Wang, Z.; Wei, L.; Zhang, H.; Fang, C.; Zhu, S.; Du, Y.; Su, R.; Li, W.; et al. Chemerin alleviates the placental oxidative stress and improves fetal overgrowth of gestational diabetes mellitus mice induced by high fat diet. Mol. Med. 2024, 30, 239. [Google Scholar] [CrossRef]
- Aravindraj, R.; Renuka, P.; Vinodhini, V.M.; Meenakshi Sundari, S.N. Circulating Chemerin Levels in Obese and Non-obese Individuals and Its Association With Obesity in Metabolic Dysfunction-Associated Fatty Liver Disease. Cureus 2024, 16, e68105. [Google Scholar] [CrossRef]
- Neves, K.B.; Nguyen Dinh Cat, A.; Alves-Lopes, R.; Harvey, K.Y.; Costa, R.M.D.; Lobato, N.S.; Montezano, A.C.; Oliveira, A.M.; Touyz, R.M.; Tostes, R.C. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1851–H1860. [Google Scholar] [CrossRef] [PubMed]
- Neves, K.B.; Montezano, A.C.; Alves-Lopes, R.; Bruder-Nascimento, T.; Costa, R.M.; Costa, R.S.; Touyz, R.M.; Tostes, R.C. Upregulation of Nrf2 and Decreased Redox Signaling Contribute to Renoprotective Effects of Chemerin Receptor Blockade in Diabetic Mice. Int. J. Mol. Sci. 2018, 19, 2454. [Google Scholar] [CrossRef]
- Chen, S.; Wu, K.; Ke, Y.; Chen, S.; He, R.; Zhang, Q.; Shen, C.; Li, Q.; Ruan, Y.; Zhu, Y.; et al. Association of circulating visfatin level and metabolic fatty liver disease: An updated meta-analysis and systematic review. Medicine 2024, 103, e39613. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Choi, S.E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Visfatin Induces Inflammation and Insulin Resistance via the NF-κB and STAT3 Signaling Pathways in Hepatocytes. J. Diabetes Res. 2019, 2019, 4021623. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, H.; Yin, C.; Lan, X.; Wu, L.; Du, X.; Griffiths, H.R.; Gao, D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front. Endocrinol. 2022, 13, 873699. [Google Scholar] [CrossRef]
- de A Boleti, A.P.; de O Cardoso, P.H.; Frihling, B.E.F.; Silva, P.S.E.; de Moraes, L.F.R.N.; Migliolo, L. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen. Res. 2023, 18, 38–46. [Google Scholar] [CrossRef]
- Zaidi, H.; Aksnes, T.; Åkra, S.; Eggesbø, H.B.; Byrkjeland, R.; Seljeflot, I.; Opstad, T.B. Abdominal Adipose Tissue Associates With Adiponectin and TNFα in Middle-Aged Healthy Men. Front. Endocrinol. 2022, 13, 874977. [Google Scholar] [CrossRef]
- Dağdelen, D.; Karadag, A.S.; Kasapoğlu, E.; Wang, J.V.; Erman, H. Correlation of metabolic syndrome with serum omentin-1 and visfatin levels and disease severity in psoriasis and psoriatic arthritis. Dermatol. Ther. 2020, 33, e14378. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, L.; Ling, Y.; Xu, Y.; Yu, X.; Ma, L.; Shou, M. Risk Correlation Analysis between Polycystic Ovary Syndrome (PCOS) and Serum Visfatin Levels in Middle-Aged Women: Systematic Review and Meta-Analysis. Discov. Med. 2023, 35, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Kärberg, K.; Forbes, A.; Lember, M. Visfatin and Subclinical Atherosclerosis in Type 2 Diabetes: Impact of Cardiovascular Drugs. Medicina 2023, 59, 1324. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.I.; Nori, W. Correlation of Serum Visfatin Level in Non-obese Women with Polycystic Ovary Syndrome and Matched Control. Reprod. Sci. 2022, 29, 3285–3293. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, Y.L.; Lin, J.D.; Pei, D.; Pitrone, P.; Chen, J.S.; Wu, C.Z. Visfatin and Retinol Binding Protein-4 in Young-Onset Type 2 Diabetes Mellitus. Medicina 2023, 59, 1278. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Sabah, Z.U.; Jeelani, M.; Marakala, V.; Sohail, S.K.; O’haj, M.; Alharthi, M.H.; et al. Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J. Pers. Med. 2022, 12, 735. [Google Scholar] [CrossRef]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Haider, D.G.; Schaller, G.; Kapiotis, S.; Maier, C.; Luger, A.; Wolzt, M. The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 2006, 49, 1909–1914. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, Y.; Ling, W.; Liu, Z.; Yang, L.; Wang, C.; Peng, X.; Wang, L.; Chen, J. Anthocyanins regulate serum adipsin and visfatin in patients with prediabetes or newly diagnosed diabetes: A randomized controlled trial. Eur. J. Nutr. 2021, 60, 1935–1944. [Google Scholar] [CrossRef]
- Abdalla, M.M.I. Role of visfatin in obesity-induced insulin resistance. World J. Clin. Cases 2022, 10, 10840–10851. [Google Scholar] [CrossRef]
- De Souza Batista, C.M.; Yang, R.-Z.; Lee, M.-J.; Glynn, N.M.; Yu, D.-Z.; Pray, J.; Ndubuizu, K.; Patil, S.; Schwartz, A.; Kligman, M.; et al. Omentin Plasma Levels and Gene Expression Are Decreased in Obesity. Diabetes 2007, 56, 1655–1661. [Google Scholar] [CrossRef]
- Miroshnikova, V.V.; Polyakova, E.A.; Pobozheva, I.A.; Panteleeva, A.A.; Razgildina, N.D.; Kolodina, D.A.; Belyaeva, O.D.; Berkovich, O.A.; Pchelina, S.N.; Baranova, E.I. FABP4 and omentin-1 gene expression in epicardial adipose tissue from coronary artery disease patients. Genet. Mol. Biol. 2021, 44, e20200441. [Google Scholar] [CrossRef]
- Atashak, S.; Stannard, S.R.; Daraei, A.; Soltani, M.; Saeidi, A.; Moradi, F.; Laher, I.; Hackney, A.C.; Zouhal, H. High-intensity Interval Training Improves Lipocalin-2 and Omentin-1 Levels in Men with Obesity. Int. J. Sports Med. 2022, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Y.; Huang, C.C.; Ko, C.Y.; Tsai, C.H.; Chang, J.W.; Achudhan, D.; Tang, C.H. Omentin-1 modulates interleukin expression and macrophage polarization: Implications for rheumatoid arthritis therapy. Int. Immunopharmacol. 2025, 149, 114205. [Google Scholar] [CrossRef]
- Özkan, E.A.; Sadigov, A.; Öztürk, O. Evaluation of Serum Omentin-1, Vaspin, Leptin, Adiponectin Levels in Obese/Overweight Children and Their Relationship With Non-Alcoholic Fatty Liver Disease. Clin. Nutr. Res. 2022, 11, 194–203. [Google Scholar] [CrossRef]
- Sperling, M.; Grzelak, T.; Pelczyńska, M.; Bogdański, P.; Formanowicz, D.; Czyżewska, K. Association of Serum Omentin-1 Concentration with the Content of Adipose Tissue and Glucose Tolerance in Subjects with Central Obesity. Biomedicines 2023, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Heidarianpour, A.; Tavassoli, H. Aerobic Exercise Training Effects on Omentin-1, Insulin Resistance, and Lipid Profile Among Male Smokers. Res. Q. Exerc. Sport. 2023, 94, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines 2024, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Jiao, B.; Tian, X.J.; Qi, B.R. Therapeutic potential of omentin-1 in preeclampsia: Enhancing fetal outcomes, vascular function, and reducing inflammation. Exp. Anim. 2025, 74, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Okamura, Y.; Adachi, K.; Niijima, R.; Kodama, T.; Otani, K.; Okada, M.; Yamawaki, H. Human omentin-1 reduces vascular insulin resistance and hypertension in Otsuka Long-Evans Tokushima Fatty rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 3379–3387. [Google Scholar] [CrossRef]
- Michalczyk, K.; Niklas, N.; Rychlicka, M.; Cymbaluk-Płoska, A. The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics 2021, 11, 494. [Google Scholar] [CrossRef]
- Biegański, H.M.; Dąbrowski, K.M.; Różańska-Walędziak, A. Omentin-General Overview of Its Role in Obesity, Metabolic Syndrome and Other Diseases; Problem of Current Research State. Biomedicines 2025, 13, 632. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Jiang, X.; Wang, Y.; Ma, H.; Zhou, Y.; Tian, M.; Liu, Y. Omentin-1 and diabetes: More evidence but far from enough. Arch. Physiol. Biochem. 2024, 130, 599–605. [Google Scholar] [CrossRef]
- Zamanian, M.Y.; Maleki, S.; Oghenemaro, E.F.; Singh, M.; Mohammadi, M.; Alkhayyat, A.H.; Sapaev, I.B.; Kaur, P.; Shirsalimi, N.; Nagarwal, A. Omentin-1 as a promising biomarker and therapeutic target in hypertension and heart failure: A comprehensive review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Yilmaz, M.F.; Kalkan, Z.; Cander, B.; Gul, M.; Isik, M.; Ilhan, M. Relationship between circulating serum omentin-1 levels and nascent metabolic syndrome in patients with hypertension. J. Investig. Med. 2022, 70, 385–390. [Google Scholar] [CrossRef]


| Adipokine | Classification | Tissue Of Origin/Main Expression | Association With Obesity | Main Functions |
|---|---|---|---|---|
| Chemerin Refs. [20,21,57,58,59,60,61] | Pro-inflammatory | Liver and adipose tissue | Significantly higher circulating levels in obese individuals | It acts on adipocyte differentiation, modulates glucose and lipid homeostasis, and stimulates lipolysis. It recruits plasmacytoid dendritic cells, initiating an innate immune response. |
| Visfatin Refs. [62,63,64,65] | Complex profile | Visceral adipose tissue and adipose-derived macrophages | Variable and conflicting association with obesity. Expression in visceral adipose tissue (VAT) correlates with obesity, but not necessarily with circulating levels. | It activates insulin and has insulinotropic effects by binding to and activating the insulin receptor. Involved in glucose metabolism and systemic inflammation. |
| Omentin-1 Refs. [66,67,68,69,70,71] | Anti-inflammatory | Vascular stroma of visceral adipose tissue | Reduced circulating levels in obese individuals with poor glycemic regulation | Circulating levels of omentin-1 are reduced in obese individuals, suggesting a role in insulin resistance, diabetes, obesity, and metabolic syndrome. Omentin-1 inhibits pro-inflammatory cytokines (such as TNF, IL-6, and IL-1) and increases the secretion of anti-inflammatory adipokines (such as IL-10 and adiponectin). |
| Category | Study | Population Characteristics | Test Method | SS |
|---|---|---|---|---|
| Positive Correlation | Ugur, K. et al., 2022 [62] | Patients with obesity and metabolic syndrome vs. healthy controls. | ELISA | Significantly higher visfatin levels in patients with obesity and metabolic syndrome, suggesting its role as a biomarker. |
| Positive Correlation | Sherly A A et al., 2025 [66] | Case–control study with patients with metabolic syndrome vs. healthy controls. | ELISA | Significantly altered visfatin levels in patients with metabolic syndrome, a condition strongly associated with obesity. |
| Positive Correlation | Dağdelen D et al., 2020 [97] | Patients with psoriasis, with and without Metabolic Syndrome. | ELISA | Higher visfatin levels in patients with Metabolic Syndrome, suggesting a link with metabolic dysfunction. |
| No correlation/Variable | Chen J et al., 2023 [98] | Meta-analysis of studies including non-obese women with Polycystic Ovary Syndrome (PCOS). | Meta-análise | Higher visfatin levels in non-obese women with PCOS compared with controls, indicating an association with pathology independent of obesity. |
| No correlation/Variable | Kärberg, K. et al., 2023 [99] | Patients with type 2 diabetes. | ELISA | No direct association found between visfatin and atherosclerosis; results were influenced by the use of cardiovascular medications. |
| No correlation/Variable | Ali and Nori, 2022 [100] | Non-obese women with polycystic ovary syndrome (PCOS) vs. healthy controls. | ELISA | No significant correlation was found between visfatin levels and BMI. Levels were elevated in PCOS, regardless of obesity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedro, W.J.S.; Barbosa Júnior, F.V.; Alves, F.N.B.R.; Braga, L.V.; Alves, L.R.; Afonso, J.P.R.; Silva, I.O.; Silva, C.H.M.; Vencio, S.; Capodaglio, P.; et al. Role of Adipokines Chemerin, Visfatin, and Omentin in Obesity and Their Inflammatory and Metabolic Implications. Biomedicines 2025, 13, 2321. https://doi.org/10.3390/biomedicines13102321
Pedro WJS, Barbosa Júnior FV, Alves FNBR, Braga LV, Alves LR, Afonso JPR, Silva IO, Silva CHM, Vencio S, Capodaglio P, et al. Role of Adipokines Chemerin, Visfatin, and Omentin in Obesity and Their Inflammatory and Metabolic Implications. Biomedicines. 2025; 13(10):2321. https://doi.org/10.3390/biomedicines13102321
Chicago/Turabian StylePedro, Wilson José S., Flávio V. Barbosa Júnior, Fernanda N. B. R. Alves, Lenita V. Braga, Larissa R. Alves, João Pedro R. Afonso, Iranse O. Silva, Carlos Hassel M. Silva, Sergio Vencio, Paolo Capodaglio, and et al. 2025. "Role of Adipokines Chemerin, Visfatin, and Omentin in Obesity and Their Inflammatory and Metabolic Implications" Biomedicines 13, no. 10: 2321. https://doi.org/10.3390/biomedicines13102321
APA StylePedro, W. J. S., Barbosa Júnior, F. V., Alves, F. N. B. R., Braga, L. V., Alves, L. R., Afonso, J. P. R., Silva, I. O., Silva, C. H. M., Vencio, S., Capodaglio, P., Oliveira, L. V. F., & Freitas Júnior, W. R. (2025). Role of Adipokines Chemerin, Visfatin, and Omentin in Obesity and Their Inflammatory and Metabolic Implications. Biomedicines, 13(10), 2321. https://doi.org/10.3390/biomedicines13102321

