Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Outcome and Demographic Variable Definitions
2.3. Genotyping
2.4. Genotype Imputation and Parental Genotype Imputation
2.5. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. SNP-Based Analyses Decompose the Genetic Effects on Offspring with Type 2 Diabetes
3.3. Gene-Based Analyses Enhance the Discovery of Novel Associated Genes from DGEs and IGEs GWASs
3.4. Identification of the Associated Pathways for Better Biological Interpretation
3.5. Tissue-Specific Enrichment of Important Target Organs of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, A.J.; Santomauro, D.F.; Aali, A.; Abate, Y.H.; Abbafati, C.; Abbastabar, H.; Abd ElHafeez, S.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdollahi, A.; et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Umegaki, H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr. Gerontol. Int. 2016, 16, 293–299. [Google Scholar] [CrossRef]
- Laiteerapong, N.; Karter, A.J.; Liu, J.Y.; Moffet, H.H.; Sudore, R.; Schillinger, D.; John, P.M.; Huang, E.S. Correlates of quality of life in older adults with diabetes: The diabetes & aging study. Diabetes Care 2011, 34, 1749–1753. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; He, Y.; Jiang, B.; Wu, L.; Wang, Y.; Di, Z.; Zeng, J. Awareness, treatment and control of type 2 diabetes among Chinese elderly and its changing trend for past decade. BMC Public Health 2016, 16, 278. [Google Scholar] [CrossRef]
- Shahrestanaki, E.; Mohammadian Khonsari, N.; Seif, E.; Baygi, F.; Ejtahed, H.S.; Sheidaei, A.; Djalalinia, S.; Magliano, D.J.; Qorbani, M. The worldwide trend in diabetes awareness, treatment, and control from 1985 to 2022: A systematic review and meta-analysis of 233 population-representative studies. Front. Public Health 2024, 12, 1305304. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.M.; Georges, T.; Anderson, B.J. Family Influences. In Behavioral Diabetes: Social Ecological Perspectives for Pediatric and Adult Populations; Delamater, A.M., Marrero, D.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 105–120. [Google Scholar]
- DeFronzo, R.A.; Abdul-Ghani, M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 2011, 34 (Suppl. S2), S202–S209. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, G.; Ward, K.J.; Bell, C.G.; Christensen, K.; Bowden, J.; Dalgård, C.; Harris, J.R.; Kaprio, J.; Lyle, R.; Magnusson, P.K.; et al. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium. Twin Res. Hum. Genet. 2015, 18, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Hatzikotoulas, K.; Southam, L.; Taylor, H.J.; Yin, X.; Lorenz, K.M.; Mandla, R.; Huerta-Chagoya, A.; Melloni, G.E.M.; Kanoni, S.; et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 2024, 627, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 2022, 54, 560–572. [Google Scholar] [CrossRef]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef]
- Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012, 9, 6–22. [Google Scholar] [CrossRef]
- Young, A.I. Solving the missing heritability problem. PLoS Genet. 2019, 15, e1008222. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, S.; Ding, J.M.; Chen, W.; Guo, Y. Enhancer-Gene Interaction Analyses Identified the Epidermal Growth Factor Receptor as a Susceptibility Gene for Type 2 Diabetes Mellitus. Diabetes Metab. J. 2021, 45, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Qian, Y.; Shen, Q.; Chen, H.; Ma, H.; Dai, J.; Shen, C.; Jin, G.; Hu, Z.; et al. Analysis of the interaction effect of 48 SNPs and obesity on type 2 diabetes in Chinese Hans. BMJ Open Diabetes Res. Care 2020, 8, e001638. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.J.; Brodie, E.D., 3rd; Wolf, J.B. Interacting Phenotypes and the Evolutionary Process: I. Direct and Indirect Genetic Effects of Social Interactions. Evolution 1997, 51, 1352–1362. [Google Scholar] [CrossRef]
- Wolf, J.B.; Brodie Iii, E.D.; Cheverud, J.M.; Moore, A.J.; Wade, M.J. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 1998, 13, 64–69. [Google Scholar] [CrossRef]
- Baud, A.; McPeek, S.; Chen, N.; Hughes, K.A. Indirect Genetic Effects: A Cross-disciplinary Perspective on Empirical Studies. J. Hered. 2022, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.; Thorleifsson, G.; Frigge, M.L.; Vilhjalmsson, B.J.; Young, A.I.; Thorgeirsson, T.E.; Benonisdottir, S.; Oddsson, A.; Halldorsson, B.V.; Masson, G.; et al. The nature of nurture: Effects of parental genotypes. Science 2018, 359, 424–428. [Google Scholar] [CrossRef]
- Rietveld, C.A.; Medland, S.E.; Derringer, J.; Yang, J.; Esko, T.; Martin, N.W.; Westra, H.J.; Shakhbazov, K.; Abdellaoui, A.; Agrawal, A.; et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013, 340, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Demange, P.A.; Hottenga, J.J.; Abdellaoui, A.; Eilertsen, E.M.; Malanchini, M.; Domingue, B.W.; Armstrong-Carter, E.; de Zeeuw, E.L.; Rimfeld, K.; Boomsma, D.I.; et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat. Commun. 2022, 13, 4801. [Google Scholar] [CrossRef]
- Eilertsen, E.M.; Cheesman, R.; Ayorech, Z.; Roysamb, E.; Pingault, J.B.; Njolstad, P.R.; Andreassen, O.A.; Havdahl, A.; McAdams, T.A.; Torvik, F.A.; et al. On the importance of parenting in externalizing disorders: An evaluation of indirect genetic effects in families. J. Child Psychol. Psychiatry 2022, 63, 1186–1195. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Zaitlen, N.; Hu, F.B.; Kraft, P.; Price, A.L. Genetic and environmental components of family history in type 2 diabetes. Hum. Genet. 2015, 134, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kaprio, J.; Tuomilehto, J.; Koskenvuo, M.; Romanov, K.; Reunanen, A.; Eriksson, J.; Stengård, J.; Kesäniemi, Y.A. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992, 35, 1060–1067. [Google Scholar] [CrossRef]
- Young, A.I.; Nehzati, S.M.; Benonisdottir, S.; Okbay, A.; Jayashankar, H.; Lee, C.; Cesarini, D.; Benjamin, D.J.; Turley, P.; Kong, A. Mendelian imputation of parental genotypes improves estimates of direct genetic effects. Nat. Genet. 2022, 54, 897–905. [Google Scholar] [CrossRef]
- Ayorech, Z.; Cheesman, R.; Eilertsen, E.M.; Bjorndal, L.D.; Roysamb, E.; McAdams, T.A.; Havdahl, A.; Ystrom, E. Maternal depression and the polygenic p factor: A family perspective on direct and indirect effects. J. Affect. Disord. 2023, 332, 159–167. [Google Scholar] [CrossRef]
- Bener, A.; Yousafzai, M.T.; Al-Hamaq, A.O.; Mohammad, A.G.; Defronzo, R.A. Parental transmission of type 2 diabetes mellitus in a highly endogamous population. World J. Diabetes 2013, 4, 40–46. [Google Scholar] [CrossRef]
- Wang, C.; Yatsuya, H.; Tamakoshi, K.; Toyoshima, H.; Wada, K.; Li, Y.; Hilawe, E.H.; Uemura, M.; Chiang, C.; Zhang, Y.; et al. Association between parental history of diabetes and the incidence of type 2 diabetes mellitus differs according to the sex of the parent and offspring’s body weight: A finding from a Japanese worksite-based cohort study. Prev. Med. 2015, 81, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zou, Y.; Wu, Y.; Miao, J.; Yu, Z.; Fletcher, J.M.; Lu, Q. Decomposing heritability and genetic covariance by direct and indirect effect paths. PLoS Genet. 2023, 19, e1010620. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Y.; Chen, D.; Zhan, S.; Zhang, Z.; Dou, H. The Fangshan/Family-based Ischemic Stroke Study In China (FISSIC) protocol. BMC Med. Genet. 2007, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Tang, X.; Wu, Y.; Qin, X.; He, L.; Wang, J.; Li, N.; Li, J.; Zhang, Z.; Dou, H.; et al. Cohort profile: The Fangshan Cohort Study of cardiovascular epidemiology in Beijing, China. J. Epidemiol. 2014, 24, 84–93. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Chen, H.; Yang, R.; Yu, H.; Wu, Y.; Hu, Y. Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study. Metabolites 2022, 12, 875. [Google Scholar] [CrossRef]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Howie, B.; Marchini, J.; Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 2011, 1, 457–470. [Google Scholar] [CrossRef]
- Yao, Y.; Ochoa, A. Limitations of principal components in quantitative genetic association models for human studies. Elife 2023, 12, e79238. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef]
- Yoon, S.; Nguyen, H.C.T.; Yoo, Y.J.; Kim, J.; Baik, B.; Kim, S.; Kim, J.; Kim, S.; Nam, D. Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Res. 2018, 46, e60. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Jain, A.; Tuteja, G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 2018, 35, 1966–1967. [Google Scholar] [CrossRef] [PubMed]
- Fatica, A.; Bozzoni, I. Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet. 2014, 15, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Ku, G.M.; Kim, H.; Vaughn, I.W.; Hangauer, M.J.; Myung Oh, C.; German, M.S.; McManus, M.T. Research resource: RNA-Seq reveals unique features of the pancreatic beta-cell transcriptome. Mol. Endocrinol. 2012, 26, 1783–1792. [Google Scholar] [CrossRef]
- Saunders, G.R.B.; Wang, X.; Chen, F.; Jang, S.K.; Liu, M.; Wang, C.; Gao, S.; Jiang, Y.; Khunsriraksakul, C.; Otto, J.M.; et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 2022, 612, 720–724. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardinas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, S.Y.; Sohn, S.Y.; Ahn, J.; Han, K.; Lee, J.H. Type 2 Diabetes and Its Association With Psychiatric Disorders in Young Adults in South Korea. JAMA Netw. Open 2023, 6, e2319132. [Google Scholar] [CrossRef]
- Ding, H.; Xie, M.; Wang, J.; Ouyang, M.; Huang, Y.; Yuan, F.; Jia, Y.; Zhang, X.; Liu, N.; Zhang, N. Shared genetics of psychiatric disorders and type 2 diabetes:a large-scale genome-wide cross-trait analysis. J. Psychiatr. Res. 2023, 159, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; Nord, A.S.; Thompson, E.E.; Pan, L.; Tan, Z.; Cusanovich, D.; Sun, Y.; Nicolae, R.; Edelstein, C.; Schneider, D.H.; et al. Genome-wide association study of plasma lipoprotein(a) levels identifies multiple genes on chromosome 6q. J. Lipid Res. 2009, 50, 798–806. [Google Scholar] [CrossRef]
- Zheng, P.F.; Yin, R.X.; Wei, B.L.; Liu, C.X.; Deng, G.X.; Guan, Y.Z. Associations of PRKN-PACRG SNPs and G x G and G x E interactions with the risk of hyperlipidaemia. Sci. Rep. 2020, 10, 13010. [Google Scholar] [CrossRef]
- Yi, X.; Dong, M.; Guo, N.; Tian, J.; Lei, P.; Wang, S.; Yang, Y.; Shi, Y. Flavonoids improve type 2 diabetes mellitus and its complications: A review. Front. Nutr. 2023, 10, 1192131. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Fankhouser, R.W.; Murrell, D.E.; Anane, Y.Y.; Hurley, D.L.; Mamudu, H.M.; Harirforoosh, S. Type 2 diabetes: An exploratory genetic association analysis of selected metabolizing enzymes and transporters and effects on cardiovascular and renal biomarkers. Drug Metab. Pers. Ther. 2022, 37, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Ramírez, P.; López-Olaiz, M.A.; Morales-Fernández, A.L.; Flores-Echiveste, M.I.; de Jesus Casillas-Navarro, A.; Pérez-Rodríguez, M.A.; de Jesús Orozco-Luna, F.; Cortés-Romero, C.; Zuñiga, L.Y.; Sanchez Parada, M.G.; et al. Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes 2022, 13, 772. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayyar, A.; Hammad, M.M.; Williams, M.R.; Al-Onaizi, M.; Abubaker, J.; Alzaid, F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023, 13, 384. [Google Scholar] [CrossRef]
- Dabelea, D.; Mayer-Davis, E.J.; Lamichhane, A.P.; D’Agostino, R.B., Jr.; Liese, A.D.; Vehik, K.S.; Narayan, K.M.; Zeitler, P.; Hamman, R.F. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: The SEARCH Case-Control Study. Diabetes Care 2008, 31, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Boule, L.A.; Winans, B.; Lawrence, B.P. Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ. Health Perspect. 2014, 122, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.D.; Moen, G.H.; Evans, D.M. Using adopted individuals to partition indirect maternal genetic effects into prenatal and postnatal effects on offspring phenotypes. Elife 2022, 11, e73671. [Google Scholar] [CrossRef]
- Garcia-Serrano, A.M.; Duarte, J.M.N. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front. Neurosci. 2020, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Sun, K.; Xiang, X.; Juan, J.; Cao, Y.; Song, J.; Yang, Y.; Shi, M.; Tian, Y.; Liu, K.; et al. Identification of Novel CXCL12 Genetic Polymorphisms Associated with Type 2 Diabetes Mellitus: A Chinese Sib-Pair Study. Genet. Test. Mol. Biomark. 2019, 23, 435–441. [Google Scholar] [CrossRef]
- Newton, M.A.; Quintana, F.A.; den Boon, J.A.; Sengupta, S.; Ahlquist, P. Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis. Ann. Appl. Stat. 2007, 1, 85–106, 122. [Google Scholar] [CrossRef]
Characteristics | Overall n = 881 | No T2D n = 590 | T2D n = 291 | p Value 1 |
---|---|---|---|---|
Sex, n (%) | 0.375 | |||
Female | 363 (41.20%) | 237 (40.17%) | 126 (43.30%) | |
Male | 518 (58.80%) | 353 (59.83%) | 165 (56.70%) | |
Age, years | 55.84 ± 10.44 | 54.81 ± 10.91 | 57.94 ± 9.10 | <0.001 |
HTN, n (%) | 621 (70.57%) | 388 (65.87%) | 233 (80.07%) | <0.001 |
Education, n (%) | 0.078 | |||
Illiteracy | 150 (17.38%) | 96 (16.61%) | 54 (18.95%) | |
Primary school | 164 (19%) | 97 (16.78%) | 67 (23.51%) | |
Middle school | 387 (44.84%) | 267 (46.19%) | 120 (42.11%) | |
High school | 130 (15.06%) | 95 (16.44%) | 35 (12.28%) | |
University | 32 (3.71%) | 23 (3.98%) | 9 (3.16%) | |
Smoke, n (%) | 455 (52.66%) | 311 (53.81%) | 144 (50.35%) | 0.340 |
Drink, n (%) | 375 (43.50%) | 257 (44.46%) | 118 (41.55%) | 0.420 |
Height, cm | 163.23 ± 8.01 | 163.50 ± 8.12 | 162.69 ± 7.77 | 0.230 |
WC, cm | 91.34 ± 9.38 | 90.75 ± 9.48 | 92.54 ± 9.07 | 0.008 |
BMI, kg/m2 | 26.26 ± 3.50 | 26.12 ± 3.56 | 26.53 ± 3.36 | 0.120 |
WHR, cm/cm | 0.91 ± 0.06 | 0.91 ± 0.06 | 0.93 ± 0.06 | <0.001 |
SBP, mmHg | 138.49 ± 20.25 | 137.67 ± 20.12 | 140.16 ± 20.45 | 0.100 |
DBP, mmHg | 83.72 ± 11.57 | 83.88 ± 11.63 | 83.40 ± 11.47 | 0.380 |
FBG, mmol/L | 5.58 ± 2.43 | 4.64 ± 0.91 | 7.48 ± 3.29 | <0.001 |
HbA1c, % | 6.51 ± 1.46 | 5.78 ± 0.30 | 7.70 ± 1.78 | <0.001 |
TG, mmol/L | 1.55 ± 1.38 | 1.47 ± 1.31 | 1.70 ± 1.50 | 0.002 |
TC, mmol/L | 3.11 ± 0.89 | 3.09 ± 0.86 | 3.14 ± 0.93 | 0.600 |
HDL-C, mmol/L | 0.93 ± 0.31 | 0.94 ± 0.30 | 0.90 ± 0.31 | 0.040 |
LDL-C, mmol/L | 2.19 ± 0.80 | 2.18 ± 0.75 | 2.22 ± 0.90 | 0.800 |
ApoA, mmol/L | 1.12 ± 0.31 | 1.13 ± 0.29 | 1.12 ± 0.34 | 0.680 |
ApoB, mmol/L | 0.74 ± 0.23 | 0.73 ± 0.22 | 0.76 ± 0.24 | 0.210 |
CHR | SNP | POS | Mapped Gene 1 | A1/A2 | Freq | Effect Type | Beta | SE | p Value |
---|---|---|---|---|---|---|---|---|---|
3 | rs3866325 | 94749380 | LINC00879 | T/A | 0.303 | TGEs | −0.09 | 0.03 | 6.17 × 10−4 |
DGEs | −0.22 | 0.04 | 2.59 × 10−8 | ||||||
IGEs | 0.13 | 0.03 | 3.68 × 10−7 | ||||||
IGEs-M | 0.22 | 0.05 | 3.01 × 10−5 | ||||||
IGEs-P | 0.05 | 0.05 | 3.23 × 10−1 | ||||||
3 | rs202048780 | 94750315 | LINC00879 | ATAG/- | 0.299 | TGEs | −0.09 | 0.03 | 5.74 × 10−4 |
DGEs | −0.22 | 0.04 | 2.39 × 10−8 | ||||||
IGEs | 0.14 | 0.03 | 3.63 × 10−7 | ||||||
IGEs-M | 0.20 | 0.05 | 9.59 × 10−5 | ||||||
IGEs-P | 0.07 | 0.05 | 1.80 × 10−1 | ||||||
3 | rs9861368 | 94756030 | LINC00879 | T/G | 0.304 | TGEs | −0.09 | 0.03 | 8.66 × 10−4 |
DGEs | −0.22 | 0.04 | 4.42 × 10−8 | ||||||
IGEs | 0.13 | 0.03 | 3.92 × 10−7 | ||||||
IGEs-M | 0.20 | 0.05 | 6.28 × 10−5 | ||||||
IGEs-P | 0.07 | 0.05 | 2.06 × 10−1 | ||||||
7 | rs3805116 | 140713367 | MRPS33 | C/T | 0.082 | TGEs | −0.02 | 0.04 | 6.91 × 10−1 |
DGEs | −0.23 | 0.07 | 3.99 × 10−4 | ||||||
IGEs | 0.22 | 0.04 | 2.37 × 10−7 | ||||||
IGEs-M | −0.11 | 0.09 | 2.63 × 10−1 | ||||||
IGEs-P | 0.54 | 0.10 | 4.39 × 10−8 |
GENE | CHR | POS | NSNPs 1 | Effect Type | ZSTAT | p Value |
---|---|---|---|---|---|---|
PACRG | 6 | 163148164–163736524 | 1112 | TGEs | 4.60 | 2.12 × 10−6 |
DGEs | 4.70 | 1.29 × 10−6 | ||||
IGEs | 2.76 | 3.00 × 10−3 | ||||
IGEs-M | 1.85 | 3.24 × 10−2 | ||||
IGEs-P | 0.28 | 3.88 × 10−1 | ||||
MRPS33 | 7 | 140705854–140715028 | 13 | TGEs | −2.73 | 9.97 × 10−1 |
DGEs | 2.79 | 3.00 × 10−3 | ||||
IGEs | 4.48 | 3.71 × 10−6 | ||||
IGEs-M | −0.37 | 6.43 × 10−1 | ||||
IGEs-P | 4.66 | 1.58 × 10−6 | ||||
PIH1D2 | 11 | 111934734–111944998 | 2 | TGEs | 0.19 | 4.24 × 10−1 |
DGEs | 1.16 | 1.22 × 10−1 | ||||
IGEs | 1.14 | 1.27 × 10−1 | ||||
IGEs-M | 2.46 | 7.00 × 10−3 | ||||
IGEs-P | 4.83 | 6.76 × 10−7 | ||||
SDHD | 11 | 111957497–111990353 | 24 | TGEs | 0.14 | 4.44 × 10−1 |
DGEs | 1.28 | 1.00 × 10−1 | ||||
IGEs | 1.20 | 1.16 × 10−1 | ||||
IGEs-M | 2.62 | 4.00 × 10−3 | ||||
IGEs-P | 4.55 | 2.67 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhou, Z.; Ma, Y.; Ding, K.; Xiao, H.; Wu, T.; Chen, D.; Wu, Y. Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design. Biomedicines 2025, 13, 120. https://doi.org/10.3390/biomedicines13010120
Li X, Zhou Z, Ma Y, Ding K, Xiao H, Wu T, Chen D, Wu Y. Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design. Biomedicines. 2025; 13(1):120. https://doi.org/10.3390/biomedicines13010120
Chicago/Turabian StyleLi, Xiaoyi, Zechen Zhou, Yujia Ma, Kexin Ding, Han Xiao, Tao Wu, Dafang Chen, and Yiqun Wu. 2025. "Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design" Biomedicines 13, no. 1: 120. https://doi.org/10.3390/biomedicines13010120
APA StyleLi, X., Zhou, Z., Ma, Y., Ding, K., Xiao, H., Wu, T., Chen, D., & Wu, Y. (2025). Genetic Nurture Effects on Type 2 Diabetes Among Chinese Han Adults: A Family-Based Design. Biomedicines, 13(1), 120. https://doi.org/10.3390/biomedicines13010120