Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Procedures
2.2.1. Electrocardiogram Study
2.2.2. Echocardiogram Study
2.2.3. External Monitoring Fibricheck®
2.3. Sample Size
2.4. Statistical Analysis
3. Results
3.1. Diagnosis of Atrial Fibrillation
3.2. ECG Variables: MVP ECG Risk Score ≥ 4
3.3. Echocardiography Study
4. Discussion
5. Study Limitations
6. Practical Implications and Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- King’s College London for the Stroke Alliance for Europe. The Burden of Stroke in Europe. Atrial Fibrillation. Available online: https://strokeeurope.eu/ (accessed on 1 January 2024).
- The World Health Organization. Global Burden of Stroke. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 30 July 2024).
- Vinter, N.; Cordsen, P.; Johnsen, S.P.; Staerk, L.; Benjamin, E.J.; Frost, L.; Trinquart, L. Temporal trends in lifetime risks of atrial fibrillation and its complications between 2000 and 2022: Danish, nationwide, population based cohort study. BMJ 2024, 385, e077209. [Google Scholar] [CrossRef]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health—Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fernandez, R.; Violato, M.; Candio, P.; Leal, J. Economic burden of stroke across Europe: A population-based cost analysis. Eur. Stroke J. 2020, 5, 17–25. [Google Scholar] [CrossRef]
- Kalantarian, S.; Ay, H.; Gollub, R.L.; Lee, H.; Retzepi, K.; Mansour, M.; Ruskin, J.N. Association between atrial fibrillation and silent cerebral infarctions: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 161, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Pürerfellner, H.; Pokushalov, E.; Sarkar, S.; Di Bacco, M.; Maus, B.; Dekker, L.R.; Reveal LINQ Usability Investigators. Performance of a new atrial fibrillation detection algorithm in a miniaturized insertable cardiac monitor: Results from the Reveal LINQ Usability Study. Heart Rhythm. 2016, 13, 1425–1430. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): Developed by the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC), with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Endorsed by the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Proietti, M.; Romiti, G.F.; Vitolo, M.; Borgi, M.; Di Rocco, A.; Farcomeni, A.; Miyazawa, K.; Healey, J.S.; Lane, D.A.; Boriani, G.; et al. Epidemiology of subclinical atrial fibrillation in patients with cardiac implantable electronic devices: A systematic review and meta-regression. Eur. J. Intern. Med. 2022, 103, 84–94. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2023, 149, e1–e156. [Google Scholar] [CrossRef]
- Boriani, G.; Glotzer, T.V.; Santini, M.; West, T.M.; De Melis, M.; Sepsi, M.; Gasparini, M.; Lewalter, T.; Camm, J.A.; Singer, D.E. Device-detected atrial fibrillation and risk for stroke: An analysis of >10,000 patients from the SOS AF project (Stroke preventiOn Strategies based on Atrial Fibrillation information from implanted devices). Eur. Heart J. 2014, 35, 508–516. [Google Scholar] [CrossRef]
- McIntyre, W.F.; Diederichsen, S.Z.; Freedman, B.; Schnabel, R.B.; Svennberg, E.; Healey, J.S. Screening for atrial fibrillation to prevent stroke: A meta-analysis. Eur. Heart J. Open 2022, 2, oeac044. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.; Nguyen, T.N.; Chow, C.K. Global implementation and evaluation of atrial fibrillation screening in the past two decades—A narrative review. NPJ Cardiovasc. Health 2024, 1, 17. [Google Scholar] [CrossRef]
- Svennberg, E.; Friberg, L.; Frykman, V.; Al-Khalili, F.; Engdahl, J.; Rosenqvist, M. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): A multicentre, parallel group, unmasked, randomised controlled trial. Lancet 2021, 398, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Corica, B.; Bonini, N.; Imberti, J.F.; Romiti, G.F.; Vitolo, M.; Attanasio, L.; Basili, S.; Freedman, B.; Potpara, T.S.; Boriani, G.; et al. Yield of diagnosis and risk of stroke with screening strategies for atrial fibrillation: A comprehensive review of current evidence. Eur. Heart J. Open 2023, 3, oead031. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.D.; Atlas, S.J.; Go, A.S.; Lubitz, S.A.; McManus, D.D.; Dolor, R.J.; Chatterjee, R.; Rothberg, M.B.; Rushlow, D.R.; Crosson, L.A.; et al. Effect of Screening for Undiagnosed Atrial Fibrillation on Stroke Prevention. J. Am. Coll. Cardiol. 2024, 84, 2073–2084. [Google Scholar] [CrossRef]
- Himmelreich, J.C.L.; Veelers, L.; Lucassen, W.A.M.; Schnabel, R.B.; Rienstra, M.; van Weert, H.C.P.M.; Harskamp, R.E. Prediction models for atrial fibrillation applicable in the community: A systematic review and meta-analysis. Europace 2020, 22, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Engler, D.; Hanson, C.L.; Desteghe, L.; Boriani, G.; Diederichsen, S.Z.; Freedman, B.; Palà, E.; Potpara, T.S.; Witt, H.; Heidbuchel, H.; et al. AFFECT-EU investigators Feasible approaches and implementation challenges to atrial fibrillation screening: A qualitative study of stakeholder views in 11 European countries. BMJ Open 2022, 12, e059156. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pinilla, A.; Clua-Espuny, J.L.; Satué-Gracia, E.M.; Pallejà-Millán, M.; Martín-Luján, F.M.; PREFA-TE Study-Group. Protocol for a multicentre and prospective follow-up cohort study of early detection of atrial fibrillation, silent stroke and cognitive impairment in high-risk primary care patients: The PREFA-TE study. BMJ Open 2024, 14, e080736. [Google Scholar] [CrossRef]
- Bayés de Luna, A.; Escobar-Robledo, L.A.; Aristizabal, D.; Weir Restrepo, D.; Mendieta, G.; Massó van Roessel, A.; Elosua, R.; Bayés-Genís, A.; Martínez-Sellés, M.; Baranchuk, A. Atypical advanced interatrial blocks: Definition and electrocardiographic recognition. J. Electrocardiol. 2018, 51, 1091–1093. [Google Scholar] [CrossRef]
- Gentille-Lorente, D.; Hernández-Pinilla, A.; Satue-Gracia, E.; Muria-Subirats, E.; Forcadell-Peris, M.J.; Gentille-Lorente, J.; Ballesta-Ors, J.; Martín-Lujan, F.M.; Clua-Espuny, J.L. Echocardiography and Electrocardiography in Detecting Atrial Cardiomyopathy: A Promising Path to Predicting Cardioembolic Strokes and Atrial Fibrillation. J. Clin. Med. 2023, 12, 7315. [Google Scholar] [CrossRef]
- Clua-Espuny, J.L.; Molto-Balado, P.; Lucas-Noll, J.; Panisello-Tafalla, A.; Muria-Subirats, E.; Clua-Queralt, J.; Queralt-Tomas, L.; Reverté-Villarroya, S.; Investigators Ebrictus Research. Early Diagnosis of Atrial Fibrillation and Stroke Incidence in Primary Care: Translating Measurements into Actions-A Retrospective Cohort Study. Biomedicines 2023, 11, 1116. [Google Scholar] [CrossRef]
- Fibricheck App. Available online: https://www.fibricheck.com/clinical-studies/ (accessed on 1 November 2024).
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Alexander, B.; Milden, J.; Hazim, B.; Haseeb, S.; Bayes-Genis, A.; Elosua, R.; Martínez-Sellés, M.; Yeung, C.; Hopman, W.; de Luna, A.B.; et al. New electrocardiographic score for the prediction of atrial fibrillation: The MVP ECG risk score (morphology-voltage-P-wave duration). Ann. Noninvasive Electrocardiol. 2019, 24, e12669. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2018, 32, 1–64. [Google Scholar] [CrossRef]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Alhakak, A.S.; Biering-Sørensen, S.R.; Møgelvang, R.; Modin, D.; Jensen, G.B.; Schnohr, P.; Iversen, A.Z.; Svendsen, J.H.; Jespersen, T.; Gislason, G.; et al. Usefulness of left atrial strain for predicting incident atrial fibrillation and ischaemic stroke in the general population. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 363–371. [Google Scholar] [CrossRef]
- Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr 2017, 30, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Svennberg, E.; Tjong, F.; Goette, A.; Akoum, N.; Di Biase, L.; Bordachar, P.; Boriani, G.; Burri, H.; Conte, G.; Deharo, J.C.; et al. How to use digital devices to detect and manage arrhythmias: An EHRA practical guide. Europace 2022, 24, 979–1005, Erratum in Europace 2022, 24, 1005. https://doi.org/10.1093/europace/euac067. [Google Scholar] [CrossRef] [PubMed]
- Lowres, N.; Neubeck, L.; Redfern, J.; Ben Freedman, S. Screening to identify unknown atrial fibrillation: A systematic review. Thromb Haemost 2013, 110, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Ballesta-Ors, J.; Clua-Espuny, J.L.; Gentille-Lorente, D.I.; Lechuga-Duran, I.; Fernández-Saez, J.; Muria-Subirats, E.; Blasco-Mulet, M.; Lorman-Carbo, B.; Alegret, J.M. Results, barriers and enablers in atrial fibrillation case finding: Barriers in opportunistic atrial fibrillation case finding-a cross-sectional study. Fam. Pract. 2020, 37, 486–492. [Google Scholar] [CrossRef]
- Goudis, C.; Daios, S.; Dimitriadis, F.; Liu, T. CHARGE-AF: A Useful Score For Atrial Fibrillation Prediction? Curr. Cardiol. Rev. 2023, 19, e010922208402. [Google Scholar] [CrossRef]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC] study). Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef]
- Palà, E.; Bustamante, A.; Clúa-Espuny, J.L.; Acosta, J.; González-Loyola, F.; Santos, S.D.; Ribas-Segui, D.; Ballesta-Ors, J.; Penalba, A.; Giralt, M.; et al. Blood-biomarkers and devices for atrial fibrillation screening: Lessons learned from the AFRICAT (Atrial Fibrillation Research In CATalonia) study. PLoS ONE 2022, 17, e0273571. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, R.; Alsaeed, E.; Hurdus, B.; Aktaa, S.; Hogg, D.; Bates, M.G.D.; Cowan, C.; Wu, J.; Gale, C.P. Prediction of incident atrial fibrillation in community-based electronic health records: A systematic review with meta-analysis. Heart 2022, 108, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Himmelreich, J.C.L.; Harskamp, R.E.; Geelhoed, B.; Virdone, S.; Lucassen, W.A.M.; Gansevoort, R.T.; Rienstra, M. Validating risk models versus age alone for atrial fibrillation in a young Dutch population cohort: Should atrial fibrillation risk prediction be expanded to younger community members? BMJ Open 2022, 12, e057476. [Google Scholar] [CrossRef]
- Ahmed, H.; Ismayl, M.; Palicherla, A.; Kashou, A.; Dufani, J.; Goldsweig, A.; Anavekar, N.; Aboeata, A. Outcomes of Device-detected Atrial High-rate Episodes in Patients with No Prior History of Atrial Fibrillation: A Systematic Review and Meta-analysis. Arrhythm. Electrophysiol. Rev. 2024, 13, e09. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, S.; Healey, J.S.; McIntyre, W.F.; Lubitz, S.A. Lubitz. Population-Based Screening for Atrial Fibrillation. Circ. Res. 2020, 127, 143–154. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Marinelli, E.A.; Arbelo, E.; Boriani, G.; Boveda, S.; Buckley, C.M.; Camm, A.J.; Casadei, B.; Chua, W.; Dagres, N.; et al. Early diagnosis and better rhythm management to improve outcomes in patients with atrial fibrillation: The 8th AFNET/EHRA consensus conference. Europace 2023, 25, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.F.; Yung, D.; Skanes, A.; et al. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef]
- Gruwez, H.; Ezzat, D.; Van Puyvelde, T.; Dhont, S.; Meekers, E.; Bruckers, L.; Wouters, F.; Kellens, M.; Van Herendael, H.; Rivero-Ayerza, M.; et al. Real-world validation of smartphone-based photoplethysmography for rate and rhythm monitoring in atrial fibrillation. Europace 2024, 26, euae065. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, K.K.; Svennberg, E.; Friberg, L.; Hygrell, T.; Frykman, V.; Al-Khalili, F.; Hijazi, Z.; Rosenqvist, M.; Engdahl, J. Randomized Invitation to Systematic NT-proBNP and ECG Screening in 75-Year Olds to Detect Atrial Fibrillation -STROKESTOP II. Circulation 2024, 150, 1837–1846. [Google Scholar] [CrossRef]
- Petzl, A.M.; Jabbour, G.; Cadrin-Tourigny, J.; Pürerfellner, H.; Macle, L.; Khairy, P.; Avram, R.; Tadros, R. Innovative approaches to atrial fibrillation prediction: Should polygenic scores and machine learning be implemented in clinical practice? Europace 2024, 26, euae201. [Google Scholar] [CrossRef] [PubMed]
- Sivanandarajah, P.; Wu, H.; Bajaj, N.; Khan, S.; Ng, F.S. Is machine learning the future for atrial fibrillation screening? Cardiovasc. Digit. Health J. 2022, 3, 136–145. [Google Scholar] [CrossRef]
- Nadarajah, R.; Wahab, A.; Reynolds, C.; Raveendra, K.; Askham, D.; Dawson, R.; Keene, J.; Shanghavi, S.; Lip, G.Y.H.; Hogg, D.; et al. Future Innovations in Novel Detection for Atrial Fibrillation (FIND-AF): Pilot study of an electronic health record machine learning algorithm-guided intervention to identify undiagnosed atrial fibrillation. Open Heart 2023, 10, e002447. [Google Scholar] [CrossRef]
- Subash, R.; Kongnakorn, T.; Jhanjee, R.; Mokgokong, R. EE454 Cost-Effectiveness of Screening for Atrial Fibrillation Utilizing the Unafied-7 Algorithm Versus Usual Care in Individuals Aged 65 from a US Payer Perspective. Value Health 2024, 26, S142. [Google Scholar] [CrossRef]
- Elosua, R.; Escobar-Robledo, L.A.; Massó-van Roessel, A.; Martínez-Sellés, M.; Baranchuk, A.; Bayés-de-Luna, A. ECG patterns of typical and atypical advanced interatrial block: Prevalence and clinical relevance. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 807–810. [Google Scholar] [CrossRef]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J.; et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-randomised interventional trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Lip, G.Y.; Galderisi, M.; Goette, A.; Shah, D.; Marwan, M.; Lederlin, M.; Mondillo, S.; Edvardsen, T.; Sitges, M.; et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 355–383. [Google Scholar] [CrossRef]
- Palà, E.; Bustamante, A.; Pagola, J.; Juega, J.; Francisco-Pascual, J.; Penalba, A.; Rodriguez, M.; De Lera Alfonso, M.; Arenillas, J.F.; Cabezas, J.A.; et al. Blood-Based Biomarkers to Search for Atrial Fibrillation in High-Risk Asymptomatic Individuals and Cryptogenic Stroke Patients. Front. Cardiovasc. Med. 2022, 9, 908053. [Google Scholar] [CrossRef]
- Schmalstieg-Bahr, K.; Gladstone, D.J.; Hummers, E.; Suerbaum, J.; Healey, J.S.; Zapf, A.; Köster, D.; Werhahn, S.M.; Wachter, R. Biomarkers for predicting atrial fibrillation: An explorative sub-analysis of the randomised SCREEN-AF trial. Eur. J. Gen. Pract. 2024, 30, 2327367. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; An, Y.; Ikeda, S.; Aono, Y.; Doi, K.; Ishii, M.; Iguchi, M.; Masunaga, N.; Esato, M.; Tsuji, H.; et al. Progression From Paroxysmal to Sustained Atrial Fibrillation Is Associated with Increased Adverse Events. Stroke 2018, 49, 10. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Toennis, T.; Goette, A.; Camm, A.J.; Diener, H.C.; Becher, N.; Bertaglia, E.; Lundqvist, C.B.; Borlich, M.; Brandes, A.; et al. Anticoagulation with Edoxaban in Patients with Atrial High-Rate Episodes. N. Engl. J. Med. 2023, 389, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.S.; Lopes, R.D.; Granger, C.B.; Alings, M.; Rivard, L.; McIntyre, W.F.; Atar, D.; Birnie, D.H.; Boriani, G.; Camm, A.J.; et al. Apixaban for Stroke Prevention in Subclinical Atrial Fibrillation. N. Engl. J. Med. 2024, 390, 107–117. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, W.F.; Benz, A.P.; Becher, N.; Healey, J.S.; Granger, C.B.; Rivard, L.; Camm, A.J.; Goette, A.; Zapf, A.; Alings, M.; et al. Direct Oral Anticoagulants for Stroke Prevention in Patients with Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA Trials. Circulation 2024, 149, 981–988. [Google Scholar] [CrossRef]
- Svendsen, J.H.; Diederichsen, S.Z.; Højberg, S.; Krieger, D.W.; Graff, C.; Kronborg, C.; Olesen, M.S.; Nielsen, J.B.; Holst, A.G.; Brandes, A.; et al. Implantable loop recorder detection of atrial fibrillation to prevent stroke (The LOOP Study): A randomised controlled trial. Lancet 2021, 398, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Svennberg, E.; Diederichsen, S.Z.; Crijns, H.J.G.M.; Lambiase, P.D.; Boriani, G.; Van Gelder, I.C. Great debate: Device-detected subclinical atrial fibrillation should be treated like clinical atrial fibrillation. Eur. Heart J. 2024, 45, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Imberti, J.F.; Bonini, N.; Tosetti, A.; Mei, D.A.; Gerra, L.; Malavasi, V.L.; Mazza, A.; Lip, G.Y.H.; Boriani, G. Atrial High-Rate Episodes Detected by Cardiac Implantable Electronic Devices: Dynamic Changes in Episodes and Predictors of Incident Atrial Fibrillation. Biology 2022, 11, 443. [Google Scholar] [CrossRef]
- Healey, J.S.; Connolly, S.J.; Gold, M.R.; Israel, C.W.; Van Gelder, I.C.; Capucci, A.; Lau, C.; Fain, E.; Yang, S.; Bailleul, C.; et al. Subclinical Atrial Fibrillation and the Risk of Stroke. N. Engl. J. Med. 2012, 366, 120–129. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Healey, J.S.; Crijns, H.J.; Wang, J.; Hohnloser, S.H.; Gold, M.R.; Capucci, A.; Lau, C.-P.; Morillo, C.A.; Hobbelt, A.H.; et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur. Heart J. 2017, 38, 1339–1344. [Google Scholar] [CrossRef]
- Becher, N.; Toennis, T.; Bertaglia, E.; Blomström-Lundqvist, C.; Brandes, A.; Cabanelas, N.; Calvert, M.; Camm, A.J.; Chlouverakis, G.; Dan, G.-A.; et al. Anticoagulation with edoxaban in patients with long atrial high-rate episodes ≥24 h. Eur. Heart J. 2024, 45, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Becher, N.; Metzner, A.; Toennis, T.; Kirchhof, P.; Schnabel, R.B. Atrial fibrillation burden: A new outcome predictor and therapeutic target. Eur. Heart J. 2024, 45, 2824–2838. [Google Scholar] [CrossRef] [PubMed]
- Tiver, K.D.; Quah, J.; Lahiri, A.; Ganesan, A.N.; McGavigan, A.D. Atrial fibrillation burden: An update-the need for a CHA2DS2-VASc-AFBurden score. Europace 2021, 23, 665–673. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Koehler, J.; Ziegler, P.D.; Sarkar, S.; Zweibel, S.; Passman, R.S. Stroke Risk as a Function of Atrial Fibrillation Duration and CHA2DS2-VASc Score. Circulation 2019, 140, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.B.; Brøndum, R.F.; Nøhr, A.K.; Overvad, T.F.; Lip, G.Y.H. Risk of stroke in male and female patients with atrial fibrillation in a nationwide cohort. Nat. Commun. 2024, 15, 6728. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Ha, A.C.; Kirchhof, P.; Hindricks, G.; Healey, J.S.; Hill, M.D.; Sharma, M.; Wyse, D.G.; Champagne, J.; Essebag, V.; et al. The Optimal Anti-Coagulation for Enhanced-Risk Patients Post-Catheter Ablation for Atrial Fibrillation (OCEAN) trial. Am. Heart J. 2018, 197, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Lorman-Carbó, B.; Clua-Espuny, J.L.; Muria-Subirats, E.; Ballesta-Ors, J.; González-Henares, M.A.; Fernández-Sáez, J.; Martín-Luján, F.M.; on behalf Ebrictus Research Group. Complex chronic patients as an emergent group with high risk of intracerebral haemorrhage: An observational cohort study. BMC Geriatr. 2021, 21, 106. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, M.; Jensen, M.; Højen, A.A.; Larsen, T.B.; Lip, G.Y.; Ording, A.G.; Nielsen, P.B. Net Clinical Benefit of Oral Anticoagulation Among Frail Patients with Atrial Fibrillation: Nationwide Cohort Study. Stroke 2024, 55, 413–422. [Google Scholar] [CrossRef]
- Gauthier, A.; Lagarde, C.; Mourey, F.; Manckoundia, P. Use of Digital Tools, Social Isolation, and Lockdown in People 80 Years and Older Living at Home. Int. J. Environ. Res. Public Health 2022, 19, 2908. [Google Scholar] [CrossRef]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Clua-Queralt, J.; Clua-Espuny, J.-L. Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies 2024, 12, 13. [Google Scholar] [CrossRef]
- Mariani, M.V.; Pierucci, N.; Piro, A.; Trivigno, S.; Chimenti, C.; Galardo, G.; Miraldi, F.; Vizza, C.D. Incidence and Determinants of Spontaneous Cardioversion of Early Onset Symptomatic Atrial Fibrillation. Medicina 2022, 58, 1513. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pinilla, A.; Jose Luis Clua-Espuny, J.L.; Satue-Gracia, E.; Martin-Lujan, F. Echocardiography, electrocardiography and irm as predictive tools for cardioembolic strokes. In Proceedings of the 10th European Stroke Organisation Conference, Basel, Switzerland, 15–17 May 2024. [Google Scholar]
Variables | All (%) | AF * | No-AF | p-Value * |
---|---|---|---|---|
N (%) | 149 | 13 (8.7) | 136 (91.2) | |
General information | ||||
Age (years) | 74.7 (5.11) | 73.46 (6.21) | 74.9 (5.0) | 0.319 |
Women | 96 (64.4) | 6 (6.2) | 90 (93.7) | 0.224 |
Men | 53 (35.3) | 7 (13.2) | 46 (86.8) | |
BMI (Kg/m2) | 31.94 (5.50) | 33.5 (7.61) | 31.8 (4.9) | 0.290 |
Comorbidity | ||||
Active smoking | 13 (8.8) | 1 (0.7) | 12 (8.1) | 0.999 |
Hypertension | 133 (89.9) | 13 (100) | 120 (80.5) | 0.363 |
Dyslipidaemia | 113 (76.4) | 9 (69.2) | 104 (69.7) | 0.507 |
Diabetes mellitus | 76 (51.4) | 8 (61.5) | 68 (50.0) | 0.556 |
Chronic Renal Failure | 36 (24.3) | 2 (25.0) | 34 (22.3) | 0.735 |
Myocardial ischemia | 23 (15.5) | 1 (7.7) | 22 (14.9) | 0.695 |
Peripheral Vascular disease | 13 (6.70) | 3 (23.0) | 10 (7.3) | 0.090 |
Heart Failure | 16 (10.73) | 1 (7.7) | 15 (11.0) | 0.999 |
Diagnosis of valvular heart disease | 9 (6.1) | - | 9 (6.1) | 0.999 |
Pharmacological treatment | ||||
HTA treatment | 126 (84.5) | 11 (84.6) | 115 (84.5) | 0.943 |
Statins treatment | 82 (55.03) | 7 (53.8) | 75 (55.1) | 0.999 |
Diabetes treatment | 67 (44.96) | 8 (61.5) | 59 (43.3) | 0.375 |
Antiplatelet drugs | 41 (27.51) | 5 (38.4) | 36 (26.4) | 0.350 |
Cardiological exploratory parameters | ||||
CHA2DS2VA score | 3.9 (1.04) | 3.9 (0.8) | 3.97 (1.0) | 0.876 |
MVP ECG risk score | 3.3 (1.4) | 4.4 (1.1) | 3.2 (1.4) | 0.003 |
Interatrial block (IAB) | 33 (22.1) | 7 (53.8) | 26 (19.1) | 0.006 |
LA-reservoir Strain (%) | 28.5 (9.92) | 20.4 (13.7) | 29.5 (9.1) | 0.003 |
2D-LA-FE (%) | 51.6 (12.68) | 39.4 (13.4) | 52.8 (11.8) | <0.001 |
LA indexed Vol (mL/m2) | 30.3 (9.03) | 39.0 (9.3) | 29.4 (8.7) | <0.001 |
NT-Pro-BNP | 226.2 (300.6) | 250.6 (256.5) | 217.6 (304.5) | 0.77 |
Clinical scores | ||||
Pfeiffer score | 0.90 (1.2) | 1.5 (1.4) | 1.0 (1.2) | 0.166 |
Fazecas score | 0.84 (0.82) | 0.83 (0.8) | 0.84 (0.8) | 0.965 |
Fibricheck-measures | 32.8 (19.5) | 29.5 (16.8) | 33.2 (19.8) | 0.523 |
Case Identifier | CHA2Ds2VA Score | Basal MVP ECG Risk Score | LA-Reservoir Strain (%) | 2D-LA-Ejection Fraction (%) | LA-Index Volume (mL/m2) | Fibricheck_AF (%) (Number of Measures) − (Rhythm Interpretation) * | Diagnosis Confirmed (ECG or Holter) | |
---|---|---|---|---|---|---|---|---|
1st Monitoring 2023 | 2nd Monitoring 2024 | |||||||
FATE003 | 4 | 2/AF | 3.7 | 33.4 | 53.8 | 100% [AF] | AF (basal ECG) | |
FATE019 | 3 | 5 | 34.2 | 59.5 | 29.3 | 0% (11)-[APC] | 9.4% (32)-[AF] | AF (Holter) |
FATE021 | 5 | 5/AF | 2.2 | 10.0 | 54.1 | 100% [AF] | AF (basal ECG) | |
FATE031 | 5 | 4 | 16.4 | 45.0 | 28.0 | 2% (51)-[AF] | 0.0% (68)-[APC] | 2 * (Holter) |
FATE033 | 5 | 5 | 5.0 | 30.0 | 32.7 | 100% [AF] | AF (basal ECG) | |
FATE050 | 3 | 4 | - | - | 38.0 | 14.7% (34)-[AF] | AF (Holter) | |
FATE051 | 4 | 3 | - | - | - | 0% (30)-[APC] | 14.3% (7)-[AF] | No confirmed by ECG declined Holter |
FATE054 | 3 | 3 | 36.2 | 54.2 | 16.8 | 0% (29)-[SR] | 5.0% (20)-[AF] | 3 * (Holter) |
FATE064 | 4 | 5 | - | - | - | 3.3% (30)-[AF] | 0.0% (17)-[SR] | |
FATE067 | 6 | 6 | 12.3 | 32.0 | 54.9 | 0% (31)-[SR] | 4.3 (23)-[AF] | Flutter (follow-up ECG) |
FATE068 | 4 | 5 | 16.6 | 35.0 | 30.7 | 14.3% (35)-[AF] | AF (Holter LA Mixoma) | |
FATE074 | 4 | 5 | 16.8 | 56.0 | 32.0 | 37.8% (37)-[AF] | 23.1% (39)-[AF] | No confirmed by ECG declined Holter |
FATE075 | 3 | 5 | - | - | - | 33.2% (205)-[AF] | 36.1% (36)-[AF] | 3 *(Holter) |
FATE076 | 3 | 6 | 24.4 | 45 | 32.4 | 0% (27)-[IEB] | 1.4% (29)-[AF] | AF (Holter) |
FATE092 | 5 | 5 | 19.4 | 50.0 | 36.0 | 1.4% (38)-[IEB] | 52.6% (10)-[AF] | AF (foll0w-up ECG) |
FATE094 | 4 | 4 | 34.4 | 56.0 | 33.2 | 0% (22)-[IEB] | 63.6% (11)-[AF] | AF (follow-up ECG) |
FATE116 | 3 | 4 | 47.0 | 46.0 | 29.4 | 0% (26)-[IEB] | Flutter (basal ECG) | |
FATE132 | 3 | 5/AF | 18.4 | 29.0 | 43.8 | 64% (25)-[AF] | AF (follow-up ECG) | |
FATE133 | 3 | 5 | - | - | - | 3.1% (32)-[AF] | BAV (Holter) | |
FATE136 | 4 | 1 | 46.8 | 59.0 | 35.1 | 4.3% (23)-[AF] | 0.0% (12)-[SR] | |
FATE143 | 5 | 1 | - | 26.0 | 33.5 | 3.3% (30)-[AF] | 0.0% (17)-[APC] | |
FATE146 | 4 | 4 | 27.2 | 47.0 | 39.7 | 15.6% (32)-[AF] | AF (follow-up ECG) | |
All average | 3.9 ± 1.04 | 3.3 ± 1.4 | 28.5 ± 9.0 | 51.6 ± 12.6 | 30.3 ± 9.0 | |||
AF average | 3 ± 0.8 | 4.2 ± 1.1 | 17.2 ± 8.7 | 38.6 ± 15.3 | 38.6 ± 9.3 | 31.7 ± 11.5 | ||
no-AF average | 3.9 ± 1.0 | 3.2 ± 1.4 | 28.4 ± 9.1 | 52.6 ± 11.9 | 29.6 ± 8.7 | 43.7 ± 44.2 | ||
p-value | 0.666 | 0.017 | <0.001 | <0.001 | 0.001 | 0.022 |
1: Risk stratification for atrial fibrillation should be performed using validated risk scores. Efficient identification of high-risk individuals relies on the routine application of these scores. Additionally, incorporating alerts into clinical records can enhance awareness and facilitate timely intervention. |
2: The systematic measurement of the MVP score should be included in the risk assessment and documented alongside the CHA2DS2-VA score. Incomplete recording of risk factors and clinical findings in primary care health records can impede the continuity and quality of care. |
3: Data integration records should be assessed to determine the need for external monitoring, particularly in conjunction with echocardiography findings, such as left atrial ejection fraction (LA-EF) and left atrial strain (LA-Sr). However, limited resources in primary care, including restricted access to echocardiography and external monitoring, pose significant challenges for effective AF screening and follow-up monitoring. |
4: In cases of a positive result from external monitoring, an atrial fibrillation diagnosis should be confirmed through Holter monitoring, which should be accessible within primary care services. This approach leads to benefits such as empowering users and providers through advanced monitoring, less referral burden, decrease in wait lists, and lower healthcare costs. |
5: If atrial fibrillation is confirmed, and oral anticoagulation and rhythm control should be initiated in accordance with ESC guidelines. For negative results, a follow-up protocol for external monitoring should be established to ensure ongoing evaluation. |
6: The availability of quality indicators and cost-effectiveness assessments is essential for evaluating and optimizing the healthcare process. These metrics provide valuable insights into the efficiency, effectiveness, and overall impact of interventions, enabling data-driven improvements in patient care. |
7: For future research, it is important to emphasize that when atrial fibrillation (AF) (including DDAF and SCAF) is detected via an external device, two additional variables should be assessed to determine whether to initiate oral anticoagulation (OAC): 1/AF burden, in conjunction with other relevant variables, and 2/Thrombotic risk and bleeding risk assessment using artificial intelligence tools that incorporate all of the aforementioned variables independently of the AF diagnosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clua-Espuny, J.L.; Hernández-Pinilla, A.; Gentille-Lorente, D.; Muria-Subirats, E.; Forcadell-Arenas, T.; de Diego-Cabanes, C.; Ribas-Seguí, D.; Diaz-Vilarasau, A.; Molins-Rojas, C.; Palleja-Millan, M.; et al. Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study). Biomedicines 2025, 13, 119. https://doi.org/10.3390/biomedicines13010119
Clua-Espuny JL, Hernández-Pinilla A, Gentille-Lorente D, Muria-Subirats E, Forcadell-Arenas T, de Diego-Cabanes C, Ribas-Seguí D, Diaz-Vilarasau A, Molins-Rojas C, Palleja-Millan M, et al. Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study). Biomedicines. 2025; 13(1):119. https://doi.org/10.3390/biomedicines13010119
Chicago/Turabian StyleClua-Espuny, Josep L., Alba Hernández-Pinilla, Delicia Gentille-Lorente, Eulàlia Muria-Subirats, Teresa Forcadell-Arenas, Cinta de Diego-Cabanes, Domingo Ribas-Seguí, Anna Diaz-Vilarasau, Cristina Molins-Rojas, Meritxell Palleja-Millan, and et al. 2025. "Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study)" Biomedicines 13, no. 1: 119. https://doi.org/10.3390/biomedicines13010119
APA StyleClua-Espuny, J. L., Hernández-Pinilla, A., Gentille-Lorente, D., Muria-Subirats, E., Forcadell-Arenas, T., de Diego-Cabanes, C., Ribas-Seguí, D., Diaz-Vilarasau, A., Molins-Rojas, C., Palleja-Millan, M., Satué-Gracia, E. M., & Martín-Luján, F., on behalf of the PREFATE Project-Group. (2025). Evidence Gaps and Lessons in the Early Detection of Atrial Fibrillation: A Prospective Study in a Primary Care Setting (PREFATE Study). Biomedicines, 13(1), 119. https://doi.org/10.3390/biomedicines13010119