Angiographic Predictors for Repeated Revascularization in Patients with Intermediate Coronary Lesions
Abstract
:1. Introduction
2. Study Population and Methods
2.1. Study Population
2.2. Angiographic Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics (Table 1)
Variables | TLR (−) n = 302 (69.1%) | TLR (+) n = 135 (30.9%) | Total n = 437 (100%) | p-Value |
---|---|---|---|---|
FU duration, month | 33.0 ± 32.0 | 36.8 ± 32.0 | 34.2 ± 32.0 | 0.254 |
Age, years | 63.4 ± 11.0 | 62.6 ± 10.5 | 63.2 ± 10.8 | 0.443 |
Men, n (%) | 213 (70.5) | 96 (71.1) | 309 (70.7) | 0.902 |
Hypertension, n (%) | 207 (68.5) | 87 (64.4) | 294 (67.3) | 0.399 |
Diabetes mellitus, n (%) | 128 (42.4) | 40 (29.6) | 168 (38.4) | 0.011 |
Smoking, n (%) | 74 (30.8) | 34 (30.6) | 108 (30.8) | 0.969 |
Diagnosis, n (%) | ||||
Stable angina | 165 (54.6) | 66 (48.9) | 231 (52.9) | 0.266 |
ACS | 122 (40.4) | 65 (48.1) | 187 (42.8) | 0.130 |
Lipid profile | ||||
Total cholesterol, mg/dL | 166.7 ± 47.0 | 181.2 ± 47.9 | 171.3 ± 47.7 | 0.004 |
Triglyceride, mg/dL | 163.1 ± 131.9 | 169.6 ± 99.5 | 165.1 ± 122.6 | 0.614 |
HDL cholesterol, mg/dL | 45.9 ± 35.1 | 44.3 ± 24.4 | 45.4 ± 32.1 | 0.647 |
LDL cholesterol, mg/dL | 76.9 ± 28.3 | 80.7 ± 28.7 | 114.7 ± 37.6 | 0.004 |
Creatinine, mg/dL | 1.31 ± 1.62 | 1.21 ± 1.53 | 1.28 ± 1.59 | 0.545 |
eGFR, mL/min/1.73 m2 | 77.1 ± 26.6 | 79.1 ± 22.9 | 77.7 ± 25.5 | 0.452 |
Fasting glucose, mg/dL | 134.8 ± 65.7 | 127.1 ± 57.3 | 132.4 ± 63.2 | 0.244 |
WBC, /μL | 8329.4 ± 3428.9 | 7655.4 ± 2426.7 | 8122.3 ± 3167.5 | 0.020 |
Hb, g/dL | 13.2 ± 2.1 | 13.8 ± 3.6 | 13.4 ± 2.7 | 0.037 |
HbA1C, % | 7.3 ± 4.9 | 6.7 ± 1.3 | 7.1 ± 4.2 | 0.301 |
Hs C-reactive protein, mg/L | 0.86 ± 6.20 | 0.42 ± 1.05 | 0.73 ± 5.24 | 0.482 |
Ejection fraction, % | 61.6 ± 11.4 | 63.1 ± 9.8 | 62.1 ± 10.9 | 0.192 |
Multi-vessel disease, n (%) | 173 (57.3) | 87 (64.4) | 260 (59.5) | 0.159 |
LM disease, n (%) | 14 (4.6) | 6 (4.4) | 20 (4.6) | 0.930 |
Previous PCI, n (%) | 33 (10.9) | 16 (11.9) | 49 (11.2) | 0.777 |
Previous CABG, n (%) | 2 (0.7) | 1 (0.7) | 3 (0.7) | 1.000 |
Initial PCI site | 287 | 123 | 410 | 0.896 |
LM, n (%) | 9 (3.1) | 1 (0.8) | 10 (2.4) | |
LAD, n (%) | 130 (45.3) | 55 (44.7) | 185 (45.1) | |
LCX, n (%) | 66 (23.0) | 30 (24.4) | 96 (23.4) | |
RCA, n (%) | 82 (28.6) | 37 (30.1) | 119 (29.0) | |
Medication | ||||
Aspirin | 300 (99.3) | 135 (100.0) | 435 (99.5) | 1.000 |
P2Y12 inhibitor | 0.402 | |||
Clopidogrel | 226 (74.8) | 104 (77.0) | 330 (75.5) | |
Ticagrelor | 29 (9.6) | 16 (11.9) | 45 (10.3) | |
Anticoagulation | 0.427 | |||
Warfarin | 1 (0.3) | 0 (0.0) | 1 (0.2) | |
DOAC | 5 (1.7) | 0 (0.0) | 5 (1.1) | |
RASI | 0.032 | |||
ACEi | 18 (6.0) | 16 (11.9) | 34 (7.8) | |
ARB | 180 (59.6) | 85 (63.0) | 265 (60.6) | |
BB | 184 (60.9) | 100 (74.1) | 284 (65.0) | 0.008 |
Statin | 284 (94.0) | 123 (91.1) | 407 (93.1) | 0.263 |
3.2. Coronary Angiographic Findings (Table 2)
Variables | TLR (−) 470 (75.0%) | TLR (+) 157 (25.0%) | Total 627 (100%) | p-Value |
---|---|---|---|---|
IL location | 0.183 | |||
LAD, n (%) | 164 (34.9) | 63 (40.1) | 227 (36.2) | |
LCX, n (%) | 100 (21.3) | 35 (22.3) | 135 (21.5) | |
RCA, n (%) | 203 (43.2) | 56 (35.7) | 259 (41.3) | |
LM, n (%) | 3 (0.6) | 3 (1.9) | 6 (1.0) | |
IL site | 0.494 | |||
Ostium, n (%) | 9 (1.9) | 5 (3.2) | 14 (2.2) | |
Proximal, n (%) | 144 (30.6) | 55 (35.0) | 199 (31.7) | |
Middle, n (%) | 247 (52.6) | 78 (49.7) | 325 (51.8) | |
Distal, n (%) | 70 (14.9) | 19 (12.1) | 89 (14.2) | |
Percent diameter stenosis (%) | 44.2 ± 12.2 | 47.3 ± 13.5 | 44.9 ± 12.6 | 0.006 |
% DS ≥ 60%, n (%) | 89 (18.9%) | 46 (29.3) | 135 (21.5) | |
Lesion length, mm | 18.4 ± 11.1 | 19.3 ± 10.9 | 18.6 ± 11.1 | 0.367 |
IL angiographic characteristics | ||||
Branch | 325 (69.1) | 124 (79.0) | 449 (71.6) | 0.018 |
Irregularity | 63 (13.4) | 28 (17.8) | 91 (14.5) | 0.172 |
Tortuosity | 143 (30.4) | 44 (28.0) | 187 (29.8) | 0.569 |
Ulcer/erosion rupture | 23 (4.9) | 12 (7.6) | 35 (5.6) | 0.194 |
Calcium | 106 (22.6) | 37 (23.6) | 143 (22.8) | 0.793 |
Haziness | 12 (2.6) | 15 (4.3) | 27 (4.3) | <0.001 |
FU diagnosis | ||||
SAP | 278 (59.8) | 81 (52.3) | 359 (57.9) | 0.100 |
ACS | 171 (36.8) | 74 (47.7) | 245 (39.5) | 0.016 |
FU percent diameter stenosis | 45.0 ± 15.7 | 85.8 ± 14.6 | 55.2 ± 23.5 | <0.001 |
FU treatment | <0.001 | |||
Medication only | 470 | 0 (0.0) | ||
+POBA | 2 (0.5) | |||
+Stent | 154 (98.1) | |||
+CABG | 1 (0.6) |
3.3. Angiographic Predictors of IL for TLR
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hahn, J.-Y.; Choi, S.-H.; Jeong, J.-O.; Song, Y.B.; Choi, J.-H.; Park, Y.H.; Chun, W.J.; Oh, J.H.; Cho, D.K.; Lim, S.-H.; et al. Conservative versus aggressive treatment strategy with angiographic guidance alone in patients with intermediate coronary lesions: The SMART-CASE randomized, non-inferiority trial. Int. J. Cardiol. 2017, 240, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, J.A.; Tannenbaum, M.A.; Alexopoulos, D.; Hjemdahl-Monsen, C.E.; Leavy, J.; Weiss, M.; Borrico, S.; Gorlin, R.; Fuster, V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 1988, 12, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.; van Schaardenburgh, P.; Manoharan, G.; Boersma, E.; Bech, J.-W.; van’t Veer, M.; Bär, F.; Hoorntje, J.; Koolen, J.; Wijns, W. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J. Am. Coll. Cardiol. 2007, 49, 2105–2111. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-H.; Corban, M.T.; Seo, Y.-H.; Kim, T.; Lee, G.; Kwon, T.-G.; Kim, K.-H.; Song, I.-G.; Lee, M.-S.; Rihal, C.S.; et al. Ten-year clinical outcomes of an intermediate coronary lesion; prognosis and predictors of major adverse cardiovascular events. Int. J. Cardiol. 2020, 299, 26–30. [Google Scholar] [CrossRef]
- Kim, Y.K.; Jang, C.W.; Kwon, S.H.; Kim, J.H.; Lerman, A.; Bae, J.-H. Ten-year clinical outcomes in patients with intermediate coronary stenosis according to the combined culprit lesion. Clin. Cardiol. 2021, 44, 1161–1168. [Google Scholar] [CrossRef]
- Pijls Nico, H.J.; Fearon William, F.; Tonino Pim, A.L.; Siebert, U.; Ikeno, F.; Bornschein, B.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; et al. Fractional Flow Reserve Versus Angiography for Guiding Percutaneous Coronary Intervention in Patients with Multivessel Coronary Artery Disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J. Am. Coll. Cardiol. 2010, 56, 177–184. [Google Scholar] [CrossRef]
- Tonino, P.A.L.; Fearon, W.F.; De Bruyne, B.; Oldroyd, K.G.; Leesar, M.A.; Ver Lee, P.N.; MacCarthy, P.A.; van’t Veer, M.; Pijls, N.H.J. Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study: Fractional Flow Reserve Versus Angiography in Multivessel Evaluation. J. Am. Coll. Cardiol. 2010, 55, 2816–2821. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e18–e114. [Google Scholar] [CrossRef]
- Xaplanteris, P.; Fournier, S.; Pijls, N.H.; Fearon, W.F.; Barbato, E.; Tonino, P.A.; Engstrøm, T.; Kääb, S.; Dambrink, J.-H.; Rioufol, G.; et al. Five-year outcomes with PCI guided by fractional flow reserve. N. Engl. J. Med. 2018, 379, 250–259. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2018, 40, 87–165. [Google Scholar] [CrossRef]
- Belle, E.V.; Rioufol, G.; Pouillot, C.; Cuisset, T.; Bougrini, K.; Teiger, E.; Champagne, S.; Belle, L.; Barreau, D.; Hanssen, M.; et al. Outcome Impact of Coronary Revascularization Strategy Reclassification with Fractional Flow Reserve at Time of Diagnostic Angiography. Circulation 2014, 129, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Curzen, N.; Rana, O.; Nicholas, Z.; Golledge, P.; Zaman, A.; Oldroyd, K.; Hanratty, C.; Banning, A.; Wheatcroft, S.; Hobson, A. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain? The RIPCORD study. Circ. Cardiovasc. Interv. 2014, 7, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Tebaldi, M.; Biscaglia, S.; Fineschi, M.; Manari, A.; Menozzi, M.; Secco, G.G.; Di Lorenzo, E.; D’Ascenzo, F.; Fabbian, F.; Tumscitz, C.; et al. Fractional Flow Reserve Evaluation and Chronic Kidney Disease: Analysis From a Multicenter Italian Registry (the FREAK Study). Catheter. Cardiovasc. Interv. 2016, 88, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Dattilo, P.B.; Prasad, A.; Honeycutt, E.; Wang, T.Y.; Messenger, J.C. Contemporary Patterns of Fractional Flow Reserve and Intravascular Ultrasound Use Among Patients Undergoing Percutaneous Coronary Intervention in the United States: Insights From the National Cardiovascular Data Registry. J. Am. Coll. Cardiol. 2012, 60, 2337–2339. [Google Scholar] [CrossRef]
- Ghanem, F.; Alshami, M.; Aburumman, H.; Jbara, M.H.; Ramu, V.K.; Gajjar, B.; Altibi, A.; Mkhaimer, Y.; Alhuneafat, L.; Patel, J.B. Abstract 15572: Utility Trends and Outcomes of Fractional Flow Reserve (FFR) in Diagnostic Coronary Angiograms for Patients with Stable Angina: National Readmission Database (2016–2019). Circulation 2022, 146, A15572. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Mohananey, D.; Razzouk, L.; Weisz, G.; Slater, J.N. Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States. Catheter. Cardiovasc. Interv. 2018, 92, E410–E415. [Google Scholar] [CrossRef]
- de la Torre Hernandez, J.M.; Hernández Hernandez, F.; Alfonso, F.; Rumoroso, J.R.; Lopez-Palop, R.; Sadaba, M.; Carrillo, P.; Rondan, J.; Lozano, I.; Ruiz Nodar, J.M.; et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions: Results from the multicenter LITRO study. J. Am. Coll. Cardiol. 2011, 58, 351–358. [Google Scholar] [CrossRef]
- Fassa, A.-A.; Wagatsuma, K.; Higano, S.T.; Mathew, V.; Barsness, G.W.; Lennon, R.J.; Holmes, D.R.; Lerman, A. Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease. J. Am. Coll. Cardiol. 2005, 45, 204–211. [Google Scholar] [CrossRef]
- Li, J.; Montarello, N.J.; Hoogendoorn, A.; Verjans, J.W.; Bursill, C.A.; Peter, K.; Nicholls, S.J.; McLaughlin, R.A.; Psaltis, P.J. Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC Cardiovasc. Imaging 2022, 15, 145–159. [Google Scholar] [CrossRef]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef]
- Christou, M.A.; Siontis, G.C.; Katritsis, D.G.; Ioannidis, J.P. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am. J. Cardiol. 2007, 99, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.D.; Donohue, T.J.; Younis, L.T.; Bach, R.G.; Aguirre, F.V.; Wittry, M.D.; Goodgold, H.M.; Chaitman, B.R.; Kern, M.J. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994, 89, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Arbab-Zadeh, A.; Fuster, V. The Myth of the “Vulnerable Plaque”: Transitioning From a Focus on Individual Lesions to Atherosclerotic Disease Burden for Coronary Artery Disease Risk Assessment. J. Am. Coll. Cardiol. 2015, 65, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Tomaniak, M.; Katagiri, Y.; Modolo, R.; de Silva, R.; Khamis, R.Y.; Bourantas, C.V.; Torii, R.; Wentzel, J.J.; Gijsen, F.J.H.; van Soest, G.; et al. Vulnerable plaques and patients: State-of-the-art. Eur. Heart J. 2020, 41, 2997–3004. [Google Scholar] [CrossRef]
- Ali, Z.A.; Karimi Galougahi, K.; Maehara, A.; Shlofmitz, R.A.; Ben-Yehuda, O.; Mintz, G.S.; Stone, G.W. Intracoronary optical coherence tomography 2018: Current status and future directions. JACC Cardiovasc. Interv. 2017, 10, 2473–2487. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Kan, J.; Ge, Z.; Han, L.; Lu, S.; Tian, N.; Lin, S.; Lu, Q.; Wu, X.; et al. Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation. J. Am. Coll. Cardiol. 2018, 72, 3126–3137. [Google Scholar] [CrossRef]
- Dai, J.; Xing, L.; Jia, H.; Zhu, Y.; Zhang, S.; Hu, S.; Lin, L.; Ma, L.; Liu, H.; Xu, M.; et al. In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: A clinical, angiographical, and intravascular optical coherence tomography study. Eur. Heart J. 2018, 39, 2077–2085. [Google Scholar] [CrossRef]
- Pu, J.; Mintz, G.S.; Biro, S.; Lee, J.-B.; Sum, S.T.; Madden, S.P.; Burke, A.P.; Zhang, P.; He, B.; Goldstein, J.A.; et al. Insights Into Echo-Attenuated Plaques, Echolucent Plaques, and Plaques with Spotty Calcification: Novel Findings From Comparisons Among Intravascular Ultrasound, Near-Infrared Spectroscopy, and Pathological Histology in 2294 Human Coronary Artery Segments. J. Am. Coll. Cardiol. 2014, 63, 2220–2233. [Google Scholar] [CrossRef]
- Giroud, D.; Li, J.M.; Urban, P.; Meier, B.; Rutishauser, W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am. J. Cardiol. 1992, 69, 729–732. [Google Scholar] [CrossRef]
- Saw, J. Coronary angiogram classification of spontaneous coronary artery dissection. Catheter. Cardiovasc. Interv. 2014, 84, 1115–1122. [Google Scholar] [CrossRef]
- Block, P.C.; Myler, R.K.; Stertzer, S.; Fallon, J.T. Morphology after transluminal angioplasty in human beings. N. Engl. J. Med. 1981, 305, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Naruko, T.; Ueda, M.; Becker, A.E.; Tojo, O.; Teragaki, M.; Takeuchi, K.; Takeda, T. Angiographic-pathologic correlations after elective percutaneous transluminal coronary angioplasty. Circulation 1993, 88, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J.; Nakano, M.; Virmani, R.; Song, H.-G.; Ahn, J.-M.; Kim, W.-J.; Lee, J.-Y.; Park, D.-W.; Lee, S.-W.; Kim, Y.-H.; et al. OCT Findings in Patients with Recanalization of Organized Thrombi in Coronary Arteries. JACC Cardiovasc. Imaging 2012, 5, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Ziada, K.M.; Tuzcu, E.M.; De Franco, A.C.; Kim, M.H.; Raymond, R.E.; Franco, I.; Whitlow, P.L.; Ellis, S.G.; Nissen, S.E. Intravascular Ultrasound Assessment of the Prevalence and Causes of Angiographic “Haziness” Following High-Pressure Coronary Stenting. Am. J. Cardiol. 1997, 80, 116–121. [Google Scholar] [CrossRef]
- Vijayvergiya, R.; Krishnappa, D.; Kasinadhuni, G.; Gupta, A.; Panda, P.; Ratheesh, K.J. Coronary dissection or a recanalized thrombus? Optical coherence tomography has the answer. IHJ Cardiovasc. Case Rep. (CVCR) 2018, 2, 6–8. [Google Scholar] [CrossRef]
- Chien, S. Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H1209–H1224. [Google Scholar] [CrossRef]
- Molony, D.S.; Timmins, L.H.; Hung, O.Y.; Rasoul-Arzrumly, E.; Samady, H.; Giddens, D.P. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries. Biomed. Eng. Online 2015, 14, S2. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, J.M.; Yoon, A.H.; Chang, K.; Lee, S.-W. Perspectives in Predicting Rapid Plaque Progression and Future Coronary Events Using Comprehensive Plaque and Hemodynamic Assessment. J. Cardiovasc. Interv. 2023, 2, 77. [Google Scholar] [CrossRef]
Total | ||||||
---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | |||||
Variables | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
% DS ≥ 60% | 1.023 | 1.011–1.035 | <0.001 | 1.025 | 1.013–1.037 | <0.001 |
Haziness | 1.855 | 1.087–3.165 | 0.023 | 2.126 | 1.240–3.644 | 0.006 |
Initial ACS | 1.327 | 0.967–1.822 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-K.; Kwon, S.-H.; Seo, Y.-H.; Kim, K.-H.; Kwon, T.-G.; Bae, J.-H. Angiographic Predictors for Repeated Revascularization in Patients with Intermediate Coronary Lesions. Biomedicines 2024, 12, 2825. https://doi.org/10.3390/biomedicines12122825
Kim Y-K, Kwon S-H, Seo Y-H, Kim K-H, Kwon T-G, Bae J-H. Angiographic Predictors for Repeated Revascularization in Patients with Intermediate Coronary Lesions. Biomedicines. 2024; 12(12):2825. https://doi.org/10.3390/biomedicines12122825
Chicago/Turabian StyleKim, Yong-Kyun, Soon-Ho Kwon, Young-Hoon Seo, Ki-Hong Kim, Taek-Geun Kwon, and Jang-Ho Bae. 2024. "Angiographic Predictors for Repeated Revascularization in Patients with Intermediate Coronary Lesions" Biomedicines 12, no. 12: 2825. https://doi.org/10.3390/biomedicines12122825
APA StyleKim, Y.-K., Kwon, S.-H., Seo, Y.-H., Kim, K.-H., Kwon, T.-G., & Bae, J.-H. (2024). Angiographic Predictors for Repeated Revascularization in Patients with Intermediate Coronary Lesions. Biomedicines, 12(12), 2825. https://doi.org/10.3390/biomedicines12122825