The Correlation Between Biological Markers and Prognosis in Thyroid Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- Patients diagnosed with thyroid cancer between 2010 and 2018.
- Patients older than 18 years at the time of diagnosis.
- Patients who have undergone surgery for thyroid cancer.
- Patients with confirmed determination of the presence or absence of the BRAF V600E mutation.
- Patients with complete medical record data on preoperative thyroglobulin and calcitonin values.
- Patients who followed the standard treatment protocol for thyroid cancer.
- Patients with a follow-up of at least five years from diagnosis.
- Patients who agreed to participate in the study and signed the informed consent.
- Patients treated and monitored in the Endocrinology Department of the Emergency Clinical Hospital “Pius Brînzeu” in Timișoara.
- Patients with no history of other previously diagnosed cancers.
- Patients with an incomplete or uncertain diagnosis of thyroid cancer.
- Patients with active autoimmune diseases that could influence biomarker levels.
- Patients who received experimental treatments for thyroid cancer in other clinical trials.
- Patients with severe renal or hepatic impairment.
- Patients with severe or chronic infections in the preoperative period.
- Patients with severe allergies to drugs used in standard thyroid cancer treatment.
- Patients with psychiatric or cognitive disorders that could affect their ability to follow the study protocol.
- Patients who refused to provide access to their complete medical data.
- Patients moving out of the geographic monitoring area can no longer be followed appropriately.
- Patients with a history of non-compliance with prescribed medical treatments.
2.2. Evaluation of Biomarkers
2.3. Data Analysis
2.4. Ethical Consideration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ATC | Anaplastic Thyroid Carcinoma |
BRAF | V600E gene mutation |
BMI | Body Mass Index |
CI | Confidence Interval |
FTC | Follicular Thyroid Carcinoma |
HR | Hazard Ratio |
MAPK/ERK | Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase |
MTC | Medullary Thyroid Carcinoma |
PTC | Papillary Thyroid Carcinoma |
Tg | Thyroglobulin |
References
- Kitahara, C.M.; Schneider, A.B. Epidemiology of Thyroid Cancer. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1284–1297. [Google Scholar] [CrossRef] [PubMed]
- In brief: How does the thyroid gland work? [Updated 18 June 2021]. In InformedHealth.org; Institute for Quality and Efficiency in Health Care (IQWiG): Cologne, Germany, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279388/ (accessed on 12 January 2024).
- Lee, K.; Anastasopoulou, C.; Chandran, C.; Cassaro, S. Thyroid Cancer. [Updated 1 May 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459299/ (accessed on 12 January 2024).
- Gonzalez-Gonzalez, R.; Bologna-Molina, R.; Carreon-Burciaga, R.G.; Gómezpalacio-Gastelum, M.; Molina-Frechero, N.; Salazar-Rodríguez, S. Papillary thyroid carcinoma: Differential diagnosis and prognostic values of its different variants: Review of the literature. Int. Sch. Res. Not. 2011, 2011, 915925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Limaiem, F.; Rehman, A.; Mazzoni, T. Papillary Thyroid Carcinoma. [Updated 13 March 2024]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536943/ (accessed on 12 January 2024).
- Shonka, D.C., Jr.; Ho, A.; Chintakuntlawar, A.V.; Geiger, J.L.; Park, J.C.; Seetharamu, N.; Jasim, S.; Ahmed, A.H.A.; Bible, K.C.; Brose, M.S.; et al. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: Defining advanced thyroid cancer and its targeted treatment. Head Neck 2022, 44, 1277–1300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Masri, M.; Al-Shobaki, T.; Al-Najjar, H.; Iskanderian, R.; Younis, E.; Abdallah, N.; Tbakhi, A.; Haddad, H.; Al-Masri, M.; Obeid, Z.; et al. BRAF V600E mutation in papillary thyroid carcinoma: Its relation to clinical features and oncologic outcomes in a single cancer centre experience. Endocr. Connect. 2021, 10, 1531–1537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prpić, M.; Franceschi, M.; Romić, M.; Jukić, T.; Kusić, Z. Thyroglobulin as a tumor marker in differentiated thyroid cancer—clinical considerations. Acta Clin. Croat. 2018, 57, 518–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sparano, C.; Adornato, V.; Puccioni, M.; Zago, E.; Perigli, G.; Badii, B.; Santoro, R.; Maggi, M.; Petrone, L. Early calcitonin levels in medullary thyroid carcinoma: Prognostic role in patients without distant metastases at diagnosis. Front. Oncol. 2023, 13, 1120799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sezer, H.; Uren, N.; Yazici, D. Association between BRAF V600E mutation and the clinicopathological features in incidental papillary thyroid microcarcinoma: A single-center study in Turkish patients. North. Clin. Istanb. 2020, 7, 321–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCain, J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment of BRAF-Mutated Metastatic Melanoma. Pharm. Ther. 2013, 38, 96–108. [Google Scholar] [PubMed] [PubMed Central]
- Tan, E.; Whiting, J.; Xie, H.; Imanirad, I.; Carballido, E.; Felder, S.; Frakes, J.; Mo, Q.; Walko, C.; Permuth, J.B.; et al. BRAF Mutations Are Associated with Poor Survival Outcomes in Advanced-stage Mismatch Repair-deficient/Microsatellite High Colorectal Cancer. Oncologist 2022, 27, 191–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Indrasena, B.S. Use of thyroglobulin as a tumour marker. World J. Biol. Chem. 2017, 8, 81–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Master, S.R.; Mathias, P.M.; Burns, B. Medullary Thyroid Cancer. [Updated 15 February 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459354/ (accessed on 12 January 2024).
- Rahbari, R.; Zhang, L.; Kebebew, E. Thyroid cancer gender disparity. Futur. Oncol. 2010, 6, 1771–1779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, K.-N.; Hwang, Y.; Kim, K.; Lee, K.E.; Park, Y.J.; Choi, J.Y.; Park, D.J.; Cho, B.; Kang, D.; Park, S.K. Active and Passive Smoking, BRAF V600E Mutation Status, and the Risk of Papillary Thyroid Cancer: A Large-Scale Case-Control and Case-Only Study. Cancer Res. Treat. 2019, 51, 1392–1399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, S.T.; Pandeya, N.; Neale, R.E.; McLeod, D.S.; Bain, C.J.; Baade, P.D.; Youl, P.H.; Allison, R.; Leonard, S.; Jordan, S.J. Obesity Is Associated with BRAF V600E-Mutated Thyroid Cancer. Clin. Thyroidol. Public 2020, 30, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Myung, S.K.; Kim, H.S.; Korean Meta-Analysis (KORMA) Study Group. Alcohol Intake and Risk of Thyroid Cancer: A Meta-Analysis of Observational Studies. Cancer Res. Treat. 2017, 49, 534–547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, F.; Fang, W.; Ye, L.; Zhang, X.; Shen, L.; Han, R.; Wei, Q.; Fei, X.; Chen, X.; Wang, W.; et al. BRAF mutation correlates with recurrent papillary thyroid carcinoma in Chinese patients. Curr. Oncol. 2014, 21, 740–747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macerola, E.; Poma, A.M.; Vignali, P.; Basolo, A.; Ugolini, C.; Torregrossa, L.; Santini, F.; Basolo, F. Molecular Genetics of Follicular-Derived Thyroid Cancer. Cancers 2021, 13, 1139. [Google Scholar] [CrossRef]
- Lu, H.-Z.; Qiu, T.; Ying, J.-M.; Lyn, N. Association between BRAF V600E mutation and the clinicopathological features of solitary papillary thyroid microcarcinoma. Oncol. Lett. 2017, 13, 1595–1600. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yazdaan, H.E.; Jaya, F.; Sanjna, F.; Junaid, M.; Rasool, S.; Baig, A.; Natt, M.Z.; Maurya, N.; Iqbal, S.; Yeldo, B.A.; et al. Advances in Thyroid Function Tests: Precision Diagnostics and Clinical Implications. Cureus 2023, 15, e48961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.; Lee, K.E.; Myong, J.P.; Park, J.; Jeon, Y.K.; Min, H.S.; Park, S.Y.; Jung, K.C.; Koo, D.H.; Youn, Y. BRAF V600E mutation is associated with tumor aggressiveness in papillary thyroid cancer. World J. Surg. 2011, 36, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, L.; Yin, G.; Cheng, L.; Zeng, B.; Cheng, J.; Yang, L. Association analysis and the clinical significance of BRAF gene mutations and ultrasound features in papillary thyroid carcinoma. Oncol. Lett. 2019, 18, 2995–3002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vrinceanu, D.; Dumitru, M.; Marinescu, A.; Serboiu, C.; Musat, G.; Radulescu, M.; Popa-Cherecheanu, M.; Ciornei, C.; Manole, F. Management of giant thyroid tumors in patients with multiple comorbidities in a tertiary head and neck surgery center. Biomedicines 2024, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Cheng, X.; Su, B.; Wang, X.; Wang, L.; Jayachandran, M.; Sun, X.; Bu, L.; Huang, Y.; Qu, S. The Increased Risk of Thyroid Cancer-Specific Mortality with Tumor Size in Stage IVB Patients. Front. Oncol. 2020, 10, 560203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristic | BRAF V600E Positive (n = 178) | BRAF V600E Negative (n = 217) | p-Value |
---|---|---|---|
Gender | |||
-Male | 78 (43.8%) | 80 (36.9%) | 0.164 |
-Female | 100 (56.2%) | 137 (63.1%) | 0.164 |
Age (years) | |||
-Mean (SD) | 54.2 (12.7) | 51.0 (14.5) | 0.023 |
-Range | 20–83 | 18–85 | |
Smoking Status | |||
-Current Smoker | 52 (29.21%) | 69 (29.219%) | 1.000 |
-Former Smoker | 59 (33.14%) | 66 (30.41%) | 0.562 |
-Never Smoker | 67 (37.64%) | 82 (37.78%) | 0.977 |
Family history of cancer | |||
-Yes | 40 (22.47%) | 45 (20.7%) | 0.670 |
-No | 138 (77.5%) | 172 (79.3%) | 0.665 |
BMI (kg/m2) | |||
Mean (SD) | 27.8 (5.4) | 26.9 (5.1) | 0.124 |
Range | 18.5–40.2 | 17.8–38.9 | |
Alcohol Consumption | |||
-Never | 60 (33.7%) | 55 (25.3%) | 0.067 |
-Occasionally | 85 (47.8%) | 110 (50.7%) | 0.566 |
-Regularly | 33 (18.5%) | 52 (24.0%) | 0.186 |
Physical Activity | |||
-Sedentary | 69 (38.76%) | 81 (37.32%) | 0.769 |
-Moderate | 81 (45.50%) | 96 (31.79%) | 0.005 |
-Active | 28 (15.73%) | 42 (19.35%) | 0.349 |
Education Level | |||
-High School or Less | 91 (51.12%) | 115 (52.99%) | 0.711 |
-Some College | 49 (27.52%) | 60 (28.03%) | 0.910 |
-Bachelor’s Degree or Higher | 38 (21.34%) | 42 (19.36%) | 0.626 |
Marital Status | |||
-Single | 55 (30.89%) | 68 (31.33%) | 0.925 |
-Married | 90 (50.56%) | 112 (51.61%) | 0.835 |
-Divorced | 23 (12.92%) | 26 (11.98%) | 0.778 |
-Widowed | 10 (5.61%) | 11 (5.06%) | 0.808 |
Employment Status | |||
-Employed | 110 (61.79%) | 130 (59.90%) | 0.702 |
-Unemployed | 30 (16.85%) | 42 (19.35%) | 0.522 |
-Retired | 38 (21.34%) | 45 (20.73%) | 0.882 |
Characteristic | BRAF V600E Positive (n = 178) | BRAF V600E Negative (n = 217) | p-Value |
---|---|---|---|
Histological Type | |||
-Papillary | 165 (92.69%) | 112 (51.61%) | <0.001 |
-Follicular | 8 (4.49%) | 58 (26.72%) | <0.001 |
-Medullary | 5 (2.80%) | 47 (21.65%) | <0.001 |
Tumor Stage | |||
-I | 42 (23.59%) | 88 (40.55%) | <0.001 |
-II | 53 (29.77%) | 62 (28.57%) | 0.794 |
-III | 45 (25.28%) | 45 (20.73%) | 0.284 |
-IV | 38 (21.34%) | 22 (10.13%) | 0.002 |
Histopathological Subtype | BRAF V600E Positive (n) | BRAF V600E Negative (n) | Thyroglobulin (ng/mL, Mean ± SD) | Calcitonin (pg/mL, Mean ± SD) |
---|---|---|---|---|
PTC | 165 | 112 | 45.2 ± 22.5 | 14.8 ± 8.5 |
FTC | 8 (FVPTC) | 58 | 28.5 ± 14.0 | 12.3 ± 6.1 |
MTC | 5 | 47 | 18.7 ± 10.2 | 85.4 ± 25.3 |
Biomarker | Histological Subtype | Tumor Stage I | Tumor Stage II | Tumor Stage III | Tumor Stage IV | Correlation Coefficient (r) | p-Value |
---|---|---|---|---|---|---|---|
Thyroglobulin (ng/mL) | PTC | 30.5 ± 12.8 | 40.1 ± 18.3 | 48.7 ± 22.4 | 62.0 ± 25.6 | 0.76 | <0.001 |
FTC | 25.3 ± 10.5 | 34.7 ± 15.2 | 42.1 ± 19.3 | 55.8 ± 22.1 | 0.71 | <0.001 | |
MTC | 18.2 ± 9.7 | 22.5 ± 12.1 | 30.4 ± 16.8 | 40.2 ± 20.3 | 0.68 | <0.001 | |
Calcitonin (pg/mL) | PTC | 12.1 ± 6.7 | 15.8 ± 8.4 | 20.5 ± 10.9 | 28.4 ± 14.7 | 0.65 | <0.001 |
FTC | 11.3 ± 6.1 | 14.6 ± 7.9 | 18.3 ± 10.2 | 25.7 ± 13.5 | 0.62 | <0.001 | |
MTC | 60.4 ± 20.1 | 75.2 ± 25.6 | 90.8 ± 30.3 | 110.5 ± 35.2 | 0.80 | <0.001 |
Biomarker | Histological Subtype | No. of Cases (%) | Level | 5-Year Survival Rate (%) | Median Survival (Months) | p-Value |
---|---|---|---|---|---|---|
Thyroglobulin | PTC | 110 (39.71%) | Low (<30 ng/mL) | 82.1 | Not reached | 0.012 |
167 (60.28%) | High (≥30 ng/mL) | 67.5 | 50 | |||
FTC | 30 (45.45%%) | Low (<30 ng/mL) | 85.3 | Not reached | 0.010 | |
36 (54.54%) | High (≥30 ng/mL) | 70.2 | 55 | |||
MTC | 37 (71.15%) | Low (<30 ng/mL) | 78.5 | 65 | 0.020 | |
15 (28.84%) | High (≥30 ng/mL) | 60.4 | 40 | |||
Calcitonin | PTC | 140 (50.54%) | Low (<15 pg/mL) | 80.5 | Not reached | 0.015 |
137 (49.45%) | High (≥15 pg/mL) | 68.9 | 52 | |||
FTC | 35 (53.03%) | Low (<15 pg/mL) | 84.2 | Not reached | 0.014 | |
31 (46.96%) | High (≥15 pg/mL) | 72.3 | 58 | |||
MTC | 27 (51.92%) | Low (<15 pg/mL) | 75.1 | 70 | 0.018 | |
25 (48.07%) | High (≥15 pg/mL) | 61.8 | 45 |
Variable | Subtype | Hazard Ratio (HR) | 95% Confidence Interval (CI) | p-Value |
---|---|---|---|---|
Age (per year) | PTC | 1.03 | 1.01–1.06 | 0.002 |
FTC | 1.02 | 1.00–1.05 | 0.015 | |
MTC | 1.05 | 1.02–1.08 | <0.001 | |
Tumor Stage (IV vs. I) | PTC | 2.50 | 1.75–3.60 | <0.001 |
FTC | 2.20 | 1.50–3.10 | <0.001 | |
MTC | 3.10 | 2.00–4.50 | <0.001 | |
Thyroglobulin (≥30 ng/mL) | PTC | 1.85 | 1.30–2.70 | 0.003 |
FTC | 1.60 | 1.10–2.40 | 0.010 | |
MTC | 1.40 | 1.00–2.10 | 0.040 | |
Calcitonin (≥15 pg/mL) | PTC | 1.70 | 1.20–2.40 | 0.005 |
FTC | 1.50 | 1.10–2.20 | 0.012 | |
MTC | 2.50 | 1.80–3.40 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajjar, R.; Duta, C.; Faur, I.F.; Prodan-Barbulescu, C.; Alhajjar, H.; Pantea, S. The Correlation Between Biological Markers and Prognosis in Thyroid Cancer. Biomedicines 2024, 12, 2826. https://doi.org/10.3390/biomedicines12122826
Hajjar R, Duta C, Faur IF, Prodan-Barbulescu C, Alhajjar H, Pantea S. The Correlation Between Biological Markers and Prognosis in Thyroid Cancer. Biomedicines. 2024; 12(12):2826. https://doi.org/10.3390/biomedicines12122826
Chicago/Turabian StyleHajjar, Rami, Ciprian Duta, Ionut Flaviu Faur, Catalin Prodan-Barbulescu, Hadi Alhajjar, and Stelian Pantea. 2024. "The Correlation Between Biological Markers and Prognosis in Thyroid Cancer" Biomedicines 12, no. 12: 2826. https://doi.org/10.3390/biomedicines12122826
APA StyleHajjar, R., Duta, C., Faur, I. F., Prodan-Barbulescu, C., Alhajjar, H., & Pantea, S. (2024). The Correlation Between Biological Markers and Prognosis in Thyroid Cancer. Biomedicines, 12(12), 2826. https://doi.org/10.3390/biomedicines12122826