Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy—A Narrative Review
Abstract
1. Introduction
2. Searching Methodology and Selection Criteria
3. Biological Functions of DLBCL-Cell-Derived EVs
4. Effects of DLBCL-Cell-Derived EVs on Macrophages
5. Role of DLBCL-Cell-Derived Evs: Reports from In Vivo Studies
6. Association Between Circulating Evs and Clinicopathological Features
7. EVs as a Potential Diagnostic Marker
8. The Prognostic Prediction Value and Treatment Efficacy of EVs
9. Therapeutic Implications
9.1. Targeting EV Biogenesis and Release
9.2. Blocking EV Uptake
9.3. Neutralizing EV Cargo
9.4. Enhancing Immune Response
9.5. Potential in Combination Therapies
10. Challenges in Translating EV-Based Approaches to Clinical Settings
11. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef]
- Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S.; Lefort, S.; Marit, G.; Macro, M.; Sebban, C.; et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: A study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010, 116, 2040–2045. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Trümper, L.; Osterborg, A.; Pettengell, R.; Trneny, M.; Imrie, K.; Ma, D.; Gill, D.; Walewski, J.; Zinzani, P.-L.; et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006, 7, 379–391. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Schubert, J.; Ziepert, M.; Schmits, R.; Mohren, M.; Lengfelder, E.; Reiser, M.; Nickenig, C.; Clemens, M.; Peter, N.; et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: A randomised controlled trial (RICOVER-60). Lancet Oncol. 2008, 9, 105–116. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 2015, 65, 783–797. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Gao, Y.; Lin, C.; An, Q.; Feng, Y.; Liu, Y.; Liu, D.; Luo, H.; Wang, D. The Biology and Function of Extracellular Vesicles in Cancer Development. Front. Cell Dev. Biol. 2021, 9, 777441. [Google Scholar] [CrossRef]
- Chang, W.H.; Cerione, R.A.; Antonyak, M.A. Extracellular Vesicles and Their Roles in Cancer Progression. Methods Mol. Biol. 2021, 2174, 143–170. [Google Scholar]
- Zhang, L.; Zhou, S.; Zhou, T.; Li, X.; Tang, J. Potential of the tumor-derived extracellular vesicles carrying the miR-125b-5p target TNFAIP3 in reducing the sensitivity of diffuse large B cell lymphoma to rituximab. Int. J. Oncol. 2021, 58, 31. [Google Scholar] [CrossRef]
- Feng, Y.; Zhong, M.; Tang, Y.; Liu, X.; Liu, Y.; Wang, L.; Zhou, H. The Role and Underlying Mechanism of Exosomal CA1 in Chemotherapy Resistance in Diffuse Large B Cell Lymphoma. Mol. Ther. Nucleic Acids 2020, 21, 452–463. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Hu, S.; Cai, Y.; Yang, J.; Ren, S.; Zhao, Y.; Lu, T.; Zhou, X.; Wang, X. Circulating Exosomal MiR-107 Restrains Tumorigenesis in Diffuse Large B-Cell Lymphoma by Targeting 14-3-3η. Front. Cell Dev. Biol. 2021, 9, 667800. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, M.; Wang, H.; Wang, W.; Lu, Y. Diffuse large B cell lymphoma-derived extracellular vesicles educate macrophages to promote tumours progression by increasing PGC-1β. Scand. J. Immunol. 2020, 91, e12841. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Liu, W.J.; Wang, H.; Wang, W.D.; Liu, N.W.; Lu, Y. NSE from diffuse large B-cell lymphoma cells regulates macrophage polarization. Cancer Manag. Res. 2019, 11, 4577–4595. [Google Scholar] [CrossRef]
- Koch, R.; Aung, T.; Vogel, D.; Chapuy, B.; Wenzel, D.; Becker, S.; Sinzig, U.; Venkataramani, V.; von Mach, T.; Jacob, R.; et al. Nuclear Trapping through Inhibition of Exosomal Export by Indomethacin Increases Cytostatic Efficacy of Doxorubicin and Pixantrone. Clin. Cancer Res. 2016, 22, 395–404. [Google Scholar] [CrossRef]
- Aung, T.; Chapuy, B.; Vogel, D.; Wenzel, D.; Oppermann, M.; Lahmann, M.; Weinhage, T.; Menck, K.; Hupfeld, T.; Koch, R.; et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. USA 2011, 108, 15336–15341. [Google Scholar] [CrossRef]
- Frenquelli, M.; Tonon, G. WNT Signaling in Hematological Malignancies. Front. Oncol. 2020, 10, 615190. [Google Scholar] [CrossRef]
- Ge, X.; Lv, X.; Feng, L.; Liu, X.; Wang, X. High expression and nuclear localization of β-catenin in diffuse large B-cell lymphoma. Mol. Med. Rep. 2012, 5, 1433–1437. [Google Scholar]
- Koch, R.; Demant, M.; Aung, T.; Diering, N.; Cicholas, A.; Chapuy, B.; Wenzel, D.; Lahmann, M.; Güntsch, A.; Kiecke, C.; et al. Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma. Blood 2014, 123, 2189–2198. [Google Scholar] [CrossRef]
- Li, J.; Gao, N.; Gao, Z.; Liu, W.; Pang, B.; Dong, X.; Li, Y.; Fan, T. The Emerging Role of Exosomes in Cancer Chemoresistance. Front. Cell Dev. Biol. 2021, 9, 737962. [Google Scholar] [CrossRef]
- Oksvold, M.P.; Kullmann, A.; Forfang, L.; Kierulf, B.; Li, M.; Brech, A.; Vlassov, A.V.; Smeland, E.B.; Neurauter, A.; Pedersen, K.W. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin. Ther. 2014, 36, 847–862.e1. [Google Scholar] [CrossRef]
- Nagel, D.; Vincendeau, M.; Eitelhuber, A.C.; Krappmann, D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene 2014, 33, 5655–5665. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Zhang, B. Genetic drivers of NF-κB deregulation in diffuse large B-cell lymphoma. Semin. Cancer Biol. 2016, 39, 26–31. [Google Scholar] [CrossRef]
- Lobastova, L.; Lettau, M.; Babatz, F.; de Oliveira, T.D.; Nguyen, P.H.; Pauletti, B.A.; Schauss, A.C.; Dürkop, H.; Janssen, O.; Leme, A.F.P.; et al. CD30-Positive Extracellular Vesicles Enable the Targeting of CD30-Negative DLBCL Cells by the CD30 Antibody-Drug Conjugate Brentuximab Vedotin. Front. Cell Dev. Biol. 2021, 9, 698503. [Google Scholar] [CrossRef]
- Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract. 2020, 216, 152729. [Google Scholar] [CrossRef]
- Kridel, R.; Steidl, C.; Gascoyne, R.D. Tumor-associated macrophages in diffuse large B-cell lymphoma. Haematologica 2015, 100, 143–145. [Google Scholar] [CrossRef]
- Scott, D.W.; Gascoyne, R.D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer 2014, 14, 517–534. [Google Scholar] [CrossRef]
- Cioroianu, A.I.; Stinga, P.I.; Sticlaru, L.; Cioplea, M.D.; Nichita, L.; Popp, C.; Staniceanu, F. Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal. Cell. Pathol. 2019, 2019, 8586354. [Google Scholar] [CrossRef]
- Li, Y.-L.; Shi, Z.-H.; Wang, X.; Gu, K.-S.; Zhai, Z.-M. Tumor-associated macrophages predict prognosis in diffuse large B-cell lymphoma and correlation with peripheral absolute monocyte count. BMC Cancer 2019, 19, 1049. [Google Scholar] [CrossRef]
- Cai, Q.C.; Liao, H.; Lin, S.X.; Xia, Y.; Wang, X.X.; Gao, Y.; Lin, Z.-X.; Lu, J.-B.; Huang, H.-Q. High expression of tumor-infiltrating macrophages correlates with poor prognosis in patients with diffuse large B-cell lymphoma. Med. Oncol. 2012, 29, 2317–2322. [Google Scholar] [CrossRef]
- Wada, N.; Zaki, M.A.; Hori, Y.; Hashimoto, K.; Tsukaguchi, M.; Tatsumi, Y.; Ishikawa, J.; Tominaga, N.; Sakoda, H.; Take, H.; et al. Tumour-associated macrophages in diffuse large B-cell lymphoma: A study of the Osaka Lymphoma Study Group. Histopathology 2012, 60, 313–319. [Google Scholar] [CrossRef]
- Nam, S.J.; Go, H.; Paik, J.H.; Kim, T.M.; Heo, D.S.; Kim, C.W.; Jeon, Y.C. An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk. Lymphoma 2014, 55, 2466–2476. [Google Scholar] [CrossRef]
- Marchesi, F.; Cirillo, M.; Bianchi, A.; Gately, M.; Olimpieri, O.M.; Cerchiara, E.; Renzi, D.; Micera, A.; Balzamino, B.O.; Bonini, S.; et al. High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol. Oncol. 2015, 33, 110–112. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef]
- Chávez-Galán, L.; Olleros, M.L.; Vesin, D.; Garcia, I. Much More than M1 and M2 Macrophages, There are also CD169+ and TCR+ Macrophages. Front. Immunol. 2015, 6, 263. [Google Scholar]
- Wang, L.; Liu, P.; Chen, X.; Geng, Q.; Lu, Y. Serum neuron-specific enolase is correlated with clinical outcome of patients with non-germinal center B cell-like subtype of diffuse large B-cell lymphoma treated with rituximab-based immunochemotherapy. Med. Oncol. 2012, 29, 2153–2158. [Google Scholar] [CrossRef]
- Wang, L.; Liu, P.; Geng, Q.; Chen, X.; Lv, Y. Prognostic significance of neuron-specific enolase in patients with diffuse large B-cell lymphoma treated with rituximab-based immunochemotherapy. Leuk. Lymphoma 2011, 52, 1697–1703. [Google Scholar] [CrossRef]
- Mizuno, K.; Ogura, S.; Kamiya, T.; Ito, C.; Fujita, Y.; Aisa, Y.; Nakazato, T. Prognostic Significance of Neuron-Specific Enolase in Patients with Malignant Lymphoma. Blood 2018, 132, 1708. [Google Scholar] [CrossRef]
- Lou, X.; Fu, J.; Zhao, X.; Zhuansun, X.; Rong, C.; Sun, M.; Niu, H.; Wu, L.; Zhang, Y.; An, L.; et al. MiR-7e-5p downregulation promotes transformation of low-grade follicular lymphoma to aggressive lymphoma by modulating an immunosuppressive stroma through the upregulation of FasL in M1 macrophages. J. Exp. Clin. Cancer Res. 2020, 39, 237. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, J.; Lu, D.; Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; You, L.; Wang, L.; Huang, X.; Liu, H.; Wei, J.Y.; Zhu, L.; Qian, W. Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo. J. Exp. Clin. Cancer Res. 2018, 37, 190. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Shi, D.; Wan, X.C.; Hu, J.; Su, Y.F.; Zeng, Y.P.; Hu, Z.-J.; Yu, B.-H.; Zhang, Q.-L.; Wei, P.; et al. Universal extracellular vesicles and PD-L1+ extracellular vesicles detected by single molecule array technology as circulating biomarkers for diffuse large B cell lymphoma. Oncoimmunology 2021, 10, 1995166. [Google Scholar] [CrossRef]
- Zare, N.; Eskandari, N.; Mehrzad, V.; Javanmard, S.H. The expression level of hsa-miR-146a-5p in plasma-derived exosomes of patients with diffuse large B-cell lymphoma. J. Res. Med. Sci. 2019, 24, 10. [Google Scholar]
- Zare, N.; Haghjooy Javanmard, S.; Mehrzad, V.; Eskandari, N.; Kefayat, A. Evaluation of exosomal miR-155, let-7g and let-7i levels as a potential noninvasive biomarker among refractory/relapsed patients, responsive patients and patients receiving R-CHOP. Leuk. Lymphoma 2019, 60, 1877–1889. [Google Scholar] [CrossRef]
- Feng, Y.; Zhong, M.; Zeng, S.; Wang, L.; Liu, P.; Xiao, X.; Liu, Y. Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance. Epigenomics 2019, 11, 35–51. [Google Scholar] [CrossRef]
- Sun, C.; Jia, Y.; Wang, W.; Bi, R.; Wu, L.; Bai, Q.; Zhou, X. Integrative analysis of PD-L1 DNA status, mRNA status and protein status, and their clinicopathological correlation, in diffuse large B-cell lymphoma. Histopathology 2019, 74, 618–628. [Google Scholar] [CrossRef]
- Kataoka, K.; Miyoshi, H.; Sakata, S.; Dobashi, A.; Couronné, L.; Kogure, Y.; Sato, Y.; Nishida, K.; Gion, Y.; Shiraishi, Y.; et al. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia 2019, 33, 1687–1699. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L.; Siravegna, G. How to use liquid biopsies to treat patients with cancer. ESMO Open 2021, 6, 100060. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, K.; Wang, Z.; Wang, Y.; Liu, J.; Lin, L.; Shao, Y.; Gao, L.; Yin, H.; Cui, C.; et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 2016, 16, 753. [Google Scholar] [CrossRef]
- Matthiesen, R.; Gameiro, P.; Henriques, A.; Bodo, C.; Moraes, M.C.S.; Costa-Silva, B.; Cabeçadas, J.; da Silva, M.G.; Beck, H.C.; Carvalho, A.S. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int. J. Mol. Sci. 2022, 23, 13327. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, S.C.; Fachel, A.A.; Li, S.; Sawh, S.; Muley, A.; Ishii, J.; Saxena, A.; Dominguez, P.M.; Lopes, E.C.; Agirre, X.; et al. Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood 2018, 132, e13–e23. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.B.; Gu, Y.; Sun, D.L.; Ding, L.Y.; Yuan, X.G.; Jiang, H.W.; Wu, Z.-X. Effect of rituximab combined with chemotherapy on the expression of serum exosome miR-451a in patients with diffuse large b-cell lymphoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1620–1625. [Google Scholar] [PubMed]
- Caivano, A.; La Rocca, F.; Simeon, V.; Girasole, M.; Dinarelli, S.; Laurenzana, I.; De Stradis, A.; De Luca, L.; Trino, S.; Traficante, A.; et al. MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies-a short report. Cell. Oncol. 2017, 40, 97–103. [Google Scholar] [CrossRef]
- Yazarlou, F.; Kadkhoda, S.; Ghafouri-Fard, S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed. Pharmacother. 2021, 144, 112334. [Google Scholar] [CrossRef]
- Trabolsi, A.; Arumov, A.; Schatz, J.H. Bispecific antibodies and CAR-T cells: Dueling immunotherapies for large B-cell lymphomas. Blood Cancer J. 2024, 14, 27. [Google Scholar] [CrossRef]
- Stawarska, A.; Bamburowicz-Klimkowska, M.; Runden-Pran, E.; Dusinska, M.; Cimpan, M.R.; Rios-Mondragon, I.; Grudzinski, I.P. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int. J. Mol. Sci. 2024, 25, 6533. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Todor, S.B.; Ichim, C.; Boicean, A.; Mihaila, R.G. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications-A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 8407–8423. [Google Scholar] [CrossRef]
- De Sousa, K.P.; Rossi, I.; Abdullahi, M.; Ramirez, M.I.; Stratton, D.; Inal, J.M. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1835. [Google Scholar] [CrossRef]
Cell Line | Method | EVs Molecule Expression | Major Findings | Interpretation | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Proliferation | Viability | Apoptosis | Invasion | Chemoresistance | Signaling and Other Findings | |||||
SUDHL-4 | RT-qPCR | ↑ miR-125b-5p | Increased miR-125b-5p in SUDHL-4-derived EVs resulted in decreasing TNFAIP3 levels, which led to decreased CD20 expression and decreased sensitivity to rituximab. | [11] | ||||||
EVs Incubated with LY8/DUL cells | ↑ miR-125b-5p ↓ TNFAIP3 | |||||||||
EVs treated LY-8/DUL cells and were incubated with rituximab | ↓ | ↑ | ↓ CD20 | |||||||
Researchers incubated LY8/DUL cells with EVs from miR-125b-5p inhibitor transfected SUD cells and treated them with rituximab | ↓ miR-125b-5p | ↓ | ↓ miR-125b-5p ↑ TNFAIP3 ↑ CD20 | |||||||
EVs were incubated with transfected pcDNA-TNFAIP3 LY8/DUL cells followed by treatment with rituximab | ↓ | ↑ | ↑ CD20 | |||||||
SU-DHL-2/R (Chemoresistant) vs. SU-DHL-2 | Western blot | ↑ CA1 | CA1 increased chemoresistance via promotion of the NF-kB and STAT3 signaling pathways. | [12] | ||||||
CA1-siRNA transfected SU-DHL-2/R treated with R-CHOP | ↓ CA1 | ↓ | ↓ p-NF-kB/p65 ↓ p-STAT3/Tyr705 | |||||||
OCI-LY3, OCI-LY8 | qRT-PCR | ↑14-3-3η | Decreased miR-107 expression in DLBCL cells led to increased 14-3-3η expression, which was also upregulated in the EVs, resulting in tumor progression. | [13] | ||||||
miR-107 agomir transfected OCI-LY3 cells | ↓ | ↑ | ↓ | ↓ 14-3-3η | ||||||
miR-107 antagomir transfected OCI-LY8 cells | ↑ | ↓ | ↑ | ↑ 14-3-3η | ||||||
Treatment with Dox | ||||||||||
- OCI-LY8 cells | ↑ | |||||||||
- miR-107 antagomir transfected OCI-LY8 cells | ↓ | |||||||||
OCI-LY1, SU-DHL-2 | Cultured with CM of EV-incubated Mφ | NA | ↑ | ↑ (also migration) | ↑ OXPHOS in Mφ | OCI-LY1 and SU-DHL-2 cell-derived EVs enhanced OXPHOS of Mφ, thus promoting proliferation, migration, and invasion of DLBCL cells. | [14] | |||
OCI-LY1 | Western Blot | NSE secreted by DLBCL-derived EVs increased proliferation and viability and decreased apoptotic rates of lymphoma cells when co-cultured with macrophages. | [15] | |||||||
- NSE-WT (NSE-overexpressing) | ↑ NSE | |||||||||
- NSE-shRNA (NSE-knockdown) | ↓ NSE | |||||||||
NSE-WT LY1/DUL cells co-cultured with THP-1 | ↑ | ↑ | ↓ ↓ BAD, BAX ↑ BCL-2 | |||||||
NSE-WT/NSE-shRNA LY1/DUL cells | ↔ | ↔ | ↔ | |||||||
SU-DHL-6 SW480 | Western Blot | CD20+ CD20− | CD20+ EVs could rescue lymphoma cells damage from rituximab. | [22] | ||||||
Treated with rituximab in addition to EVs from | ||||||||||
- SU-DHL-6 cells (CD20+) | ↑ | |||||||||
- SW480 cells (CD20−) | ↔ | |||||||||
OCI-LY1, Su-DHL-4, Balm3 | Western blot, flow cytometry | CD20 | Rituximab-induced exosome release led to the absorption of rituximab and consumption of complement on lymphoma-derived EVs. | [17] | ||||||
Treated with rituximab in the presence of complement with | ||||||||||
- addition of EVs | ↑ | ↑ | ↑ exosome release ↑ fixation of TCC of the exosome | |||||||
- EV inhibitors (rapamycin/indomethacin/U18666A) | ↑ | |||||||||
Lentiviral sh-RNA knockdown of ABCA3 | ↓ ABCA3 | ↓ exosome release | ||||||||
SU-DHL-4, OCI-LY1, OCI-LY3 | Treated with Dox | ↑ Dox conc in EVs | ↑ exosome release | Increased ABCA3 expression was associated with an increase in exosome release, which led to reduced Dox retention and increased cell viability. Indomethacin could inhibit ABCA3 and improve drug retention. | [16] | |||||
Treated with Dox and | ||||||||||
- indomethacin | ↓ ABCA3 | ↓ | ↓ | ↓ exosome release ↑ Dox retention in DLBCL cells | ||||||
- Lentiviral sh-RNA knockdown of ABCA3 | ↓ ABCA3 | ↓ | ↓ | |||||||
Treated with pixantrone and indomethacin | ↓ ABCA3 | ↓ | ↓ | ↑ pixantrone retention in DLBCL cells | ||||||
L540 | Coincubation of CD30+ L540 EVs and fluorescent anti-CD30 antibody with | CD30− DLBCL cell could uptake BV antibody in the presence of CD30+ EVs that contribute to the toxicity of BV in CD30− negative cells and CD30+ EVs also enhanced the toxicity of BV, even in CD30+ cells. | [25] | |||||||
- Karpas 422 (CD30−) | CD30+ EVs internalization | |||||||||
- DoHH-2 (CD30−) | CD30+ EVs internalization | |||||||||
Incubation of BV and Karpas 422 cells (CD30−) without EVs | ↔ | |||||||||
Incubation of BV and Karpas 422 cells (CD30−) with addition of CD30+ EVs | ↓ | |||||||||
Incubation of BV and P30-OH/KUBO (CD30+) with addition of CD30+ EVs | ↓ |
Cell Line | EVs Molecule Expression | Method | Major Findings of Macrophages | Interpretation | Ref. | ||
---|---|---|---|---|---|---|---|
Migration | Apoptosis | Molecule Expression and Signaling | |||||
OCI-LY1, SU-DHL-2 | NA | Mφ were treated with EVs | ↑ CD163, CD206 ↑ IL-10, CCL-18 Secretion ↑ PGC-1β ↑ OXPHOS ↔ Glycolysis | EVs regulated the transformation of the M2 Mφ by increasing the expression of PGC-1β, which affected Mφ metabolism. | [14] | ||
shRNAs knocked down PGC-1β Mφ treated with EVs | ↓ CD206 ↓ OXPHOS | ||||||
OCI-LY1 | ↑ NSE | THP-1 was treated with: | NSE promoted nuclear p50 translocation, downregulated IKK- β expression, and enhanced the capability of migration and differentiation toward M2 Mφ. | [15] | |||
- OCI-LY1 EVs | ↑ p50 DNA binding activity ↓ IKK-β | ||||||
- NSE-shRNA OCI-LY1 EVs | ↓ p50 DNA binding activity | ||||||
THP-1 was co-cultured with OCI-LY1/SU-DHL-2 | ↑ | ↑ Arg-1, IL1, IL-10, CD206 mRNA ↑ nuclear p50 | |||||
THP-1 was transfected with p50 siRNA and co-cultured with OCI-LY1 | ↓ Arg-1, IL1, IL-10, CD206 mRNA | ||||||
A20 | ↓ miR-7e-5p | Mφ was treated with EVs from the following: | Reduced exosomal miR-7e-5p levels promoted apoptosis by targeting FasL and activated the activity of caspase cascade in M1 Mφ. | [40] | |||
- A20 cells with mouse M1 Mφ; | ↑ | ↓ miR-7e-5p ↑ FasL | |||||
- A20 cells transfected with miR-7e-5p-mimics; | ↓ | ↑ miR-7e-5p ↓ FasL, cleaved PARP, caspase3 | |||||
- A20 cells transfected with miR-7e-5p-mimics with GW4869 added (to inhibit EV secretion) | ↑ FasL, cleaved PARP, caspase3 |
Model | Xenograft Cell Line | Evs Cell | Method | Molecule Expression | Major Findings | Interpretation | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tumor Volume | Apoptosis | Migration | Angiogenesis | Microenvironment and Immunohistology | |||||||
NOD-SCID mice (6 weeks) | OCI-LY3 | OCI-LY3 | Coinjection of OCI-LY3 with Evs | ↑ | ↑ | ↑ | DLBCL-derived Evs promoted tumor growth and enhanced migration and angiogenesis. | [42] | |||
Nude mice (5–6 weeks) | OCI-LY8 | SUDHL-4 | Mice were injected with Evs + 10 mg/kg rituximab | ↑ miR-125b-5p | ↑ | ↓ TNFAIP3 ↓ CD20 | Evs reduced the sensitivity of DLBCL to rituximab via miR-125b-5p, which regulated TNFAIP3, thereby affecting CD20 expression. | [11] | |||
SCID beige mice (3–4 weeks) | OCI-LY8 | - | OCI-LY8 were transfected with miR-107 Agomir NC | ↓ miR-107 | ↑ | Downregulated miR-107 expression increased tumor growth. | [13] | ||||
BALB/c nude mice (4 weeks) | SU-DHL-2 | - | Mice were pretreated with Evs from the following: - CA1-siRNA-transfected SU-DHL-2/R | ↓ CA1 | ↓ | ↓ NF-kB ↓ STAT3 | Exosomal CA1 reduced chemotherapy sensitivity via NF-kB and STAT3 signaling pathways. | [12] | |||
BALB/c nu/nu mice (6 weeks) | OCI-LY1 | - | NSE-WT | ↑ NSE | ↑ | ↑ CD68+ CD206+ M2 Mφ ↑ Ki67 | NSE overexpression increased tumor size and several CD68+ CD206+ M2 Mφ levels | [15] | |||
NSE-shRNA1 | ↓ NSE | ↓ | ↑ | ↓ Ki67 | |||||||
CAM | OCI-Ly1, SU-DHL-4 | - | Pretreatment with the following:1 mL of 10 µmol/L indomethacin: - 50 µg Dox or pixantrone | ↓ | ↑ Distorted architecture ↓ Tumor cell density ↑ Dox retention in tumor cell nuclei | Indomethacin pretreatment was associated with drug retention and shifting of drugs from cytoplasm to nucleus and resulted in increased efficacy of doxorubicin and pixantrone. | [16] | ||||
BALB/C mice (aged 6 weeks) | A20 | A20 | Immunization with A20 EV-pulsed DCC: - IV/DCCEvs 10 µg/mouse weekly/three doses | DCCEvs (exosome-based tumor vaccine) | ↑ CD8+ T cells ↓ CD4+ CD25+ FOXP3+ Treg cells ↑ cytolysis efficiency in the spleen and lymph node lymphocytes | The activated DCCEvs triggered an anti-tumor immune response and induced anti-tumor activity. | [42] |
Subjects (N) | Source of EVs | EV Extraction Method | Detection Method | Biomarker Expression | Clinicopathologic Features | Interpretation | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COO | Ki67PI | Clinical | Stage | IPI | Laboratory | |||||||
DLBCL (164) | Plasma | exoRNeasy Plasma Midi Kit | SiMoa with CD9-CD63 assays | ↑ CD9-CD63 | GCB | ≥2 extranodal sites | High CD9-63 signals associated with GCB subtype and ≥2 extranodal sites. | [43] | ||||
SiMoa with PD-L1-CD63 assays | ↑ PD-L1-CD63 | ≥2 extranodal sites | High PD-L1-CD63 signals associated with ≥2 extranodal sites. | |||||||||
DLBCL (42) | Plasma | exoEasy Maxi kit | qRT-PCR | ↓ miR-107 | ↑ ECOG score | ↑ | ↑ | ↑ LDH ↑ B2M | Decreased exosomal miR-107 showed poor prognostic relevance. | [13] | ||
DLBCL (112) | Serum | ExoQuick-TC kit | Western blot | ↑ CA1 | ↑ | The expression level of CA1 was higher in exosomes from chemoresistant patients and correlated with higher IPI scores. | [12] | |||||
DLBCL (48) | Plasma | ExoSpin Exosome Purification Kit | qRT-PCR | ↔ miR-146a-5p | ↔ | ↔ LDH | No correlation of miR-146a-5p with LDH and IPI score. | [44] | ||||
DLBCL (48) | Plasma | ExoSpin Exosome Purification Kit | qRT-PCR | ↔ miR-155 | ↔ | ↔ age, gender | ↔ | ↔ | ↔ LDH | No correlation between miR-155, Let-7g, and Let-7i with age, gender, LDH, IPI, and disease stage. | [45] | |
↔ Let-7g | ↔ | ↔ age, gender | ↔ | ↔ | ↔ LDH | |||||||
↔ Let-7i | ↔ | ↔ age, gender | ↔ | ↔ | ↔ LDH | |||||||
DLBCL (116) | Serum | ExoQuick Kit | qRT-PCR | ↔ miR-99a-5p | ↔ | ↔ age, gender ↔ B symptoms | ↔ | ↔ | ↔ LDH | No correlation between miR-99a-5p and miR-125b-5p with COO, age, gender, B symptoms, LDH, IPI score, and disease stage. | [46] | |
↔ miR-125b-5p | ↔ | ↔ age, gender ↔ B symptoms | ↔ | ↔ | ↔ LDH |
Populations (N) | Source of EVs | EV Extraction Method | Detection Method | Index Test | Diagnostic Indices | Interpretation | Ref. | |
---|---|---|---|---|---|---|---|---|
Molecule Expression | AUC | |||||||
DLBCL (164) Controls (25) | Plasma | exoRNeasy Plasma Midi Kit | SiMoa with CD9-CD63 assays | CD9-CD63 | ↑ | 0.99 | Exosomal CD9-CD63 and PD-L1-CD63 in DLBCL patients were significantly higher and able to differentiate DLBCL patients from healthy controls. | [43] |
SiMoa with PD-L1-CD63 assays | PD-L1-CD63 | ↑ | 0.87 | |||||
DLBCL (42) Controls (31) | Plasma | exoEasy Maxi kit | qRT-PCR | miR-107 | ↓ | 0.854 | Plasma exosomal miR-107, miR-375-3p, and miR-485-3p could be used to distinguish DLBCL patients from normal controls. | [13] |
miR-375-3p | ↓ | 0.769 | ||||||
miR-485-3p | ↑ | 0.739 | ||||||
14-3-3η | ↑ | - | Expression of 14-3-3η was upregulated in plasma exosomes of DLBCL patients. | |||||
DLBCL (89) Control (48) | Serum | ExoQuick Kit | qRT-PCR | miR-451a | ↓ | 0.7147 | Exosomal miR-451a in DLBCL patients was significantly lower and could be used to distinguish DLBCL patients from normal controls. | [53] |
DLBCL (48) Control (6) | Plasma | ExoSpin Exosome Purification Kit | qRT-PCR | miR-146a-5p | ↔ | - | No significant difference in the level of expression of miR-146a-5p compared to controls was noted. | [44] |
DLBCL (5) Controls (18) | Serum | DC | qRT-PCR | miR-155 | ↔ | - | No difference in the level of expression of miR-155 compared to controls. | [54] |
Subject (N) | Source of EVs | EV Extraction Method | Detection Method | Index Test | Expression Level | Aim of Test | Index | Interpretation | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | PFS | OS | CR Rate | |||||||||
DLBCL (42) | Plasma | exoEasy Maxi kit | qRT-PCR | miR-107 | ↓ | Predicted PFS | - | ↓ | - | - | Low expression of exosomal miR-107 correlated with poor PFS. | [13] |
DLLBCL (164) | Plasma | exoRNeasy Plasma Midi Kit | SiMoa with CD9-CD63/ PD-L1-CD63 assays | CD9-CD63/ PD-L1-CD63 | ↑ | Predicted prognosis and treatment response | - | ↓ 5-year | ↓ 5-year | ↓ | Elevated CD9-CD63 and PD-L1-CD63 signals were associated with poor PFS, OS, and treatment response. | [43] |
DLBCL - R (31) - S (81) | Serum | ExoQuick-TC kit | Western Blot | CA1 | ↑ | Predicted CMT efficacy | 0.812 | ↓ | - | - | Higher expression of CA1 in chemoresistant patients and combination of exosomal CA1 with IPI score provide slightly superior prediction performance than exosomal CA1 alone. | [12] |
CA1 plus IPI score | ↑ | 0.821 | - | - | - | |||||||
DLBCL (116) - R (33) - S (83) | Serum | ExoQuick Kit | qRT-PCR | miR-99a-5p | ↑ | Predicted PFS and treatment response | 0.744 | ↓ | - | ↓ | High expression of exosomal miR-99a-5p and miR-125b-5p had high accuracy in predicting chemoresistance of DLBCL patients, contributed to poor PFS, and, combined with IPI, can give higher accuracy. | [46] |
miR-125b-5p | ↑ | 0.780 | ↓ | - | ↓ | |||||||
miR-99a-5p and IPI score | 0.833 | - | - | - | ||||||||
miR-125b-5p and IPI score | 0.814 | - | - | - | ||||||||
DLBCL - S (73) - R (25) | Serum | ExoQuick Kit | qRT-PCR | miR-451a | ↑ after treatment | Changes in serum exosome miR-451a during treatment and therapeutic effects | 0.8038 | - | - | - | Exosomal miR-451a could act as an indicator for evaluating treatment efficacy. | [53] |
DLBCL - R/R (16) - Responsive (17) - Receiving R-CHOP (15) | Plasma | ExoSpin | qRT-PCR | miR-155 | ↑ R/R > responsive > receiving | Changes in plasma exosome miR-155 and Let-7g in different groups of patients | - | - | - | - | R/R patients had significantly increased exosomal miR-155 levels and this miRNA may be useful as a prognostic marker to predict response treatment. Decreased level of exosomal Let-7g might be useful as a predictor of response to treatment. | [45] |
DLBCL - Relapsed (8) - Responsive (17) - Receiving R- CHOP (15) | Plasma | ExoSpin | qRT-PCR | miR-155 | ↑ Relapsed > responsive > receiving | - | - | - | - | |||
DLBCL - Refractory (8) - Responsive (17) - Receiving R-CHOP (15) | miR-155 | ↑ Refractory > responsive > receiving | - | - | - | - | ||||||
DLBCL - R/R (16) - Responsive (17) - Receiving R-CHOP (15) | Let-7g | ↓ Receiving < responsive < R/R | - | - | - | - | ||||||
DLBCL - Receiving R-CHOP (15) - R/R (16) - Responsive (17) | Let-7i | ↔ | - | - | - | - | ||||||
DLBCL (48) - Refractory (16) - Response (17) | Plasma | ExoSpin Exosome Purification Kit | qRT-PCR | miR-146a-5p | ↔ | Differentiated between responsive and refractory patients | - | - | - | - | No significant difference in the level of expression of exosomal miR-146a between refractory patients compared to responsive patients was noted. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punnachet, T.; Chattipakorn, S.C.; Chattipakorn, N.; Kumfu, S. Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy—A Narrative Review. Biomedicines 2024, 12, 2822. https://doi.org/10.3390/biomedicines12122822
Punnachet T, Chattipakorn SC, Chattipakorn N, Kumfu S. Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy—A Narrative Review. Biomedicines. 2024; 12(12):2822. https://doi.org/10.3390/biomedicines12122822
Chicago/Turabian StylePunnachet, Teerachat, Siriporn C. Chattipakorn, Nipon Chattipakorn, and Sirinart Kumfu. 2024. "Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy—A Narrative Review" Biomedicines 12, no. 12: 2822. https://doi.org/10.3390/biomedicines12122822
APA StylePunnachet, T., Chattipakorn, S. C., Chattipakorn, N., & Kumfu, S. (2024). Critical Role of Extracellular Vesicles in Diffuse Large B-Cell Lymphoma; Pathogenesis, Potential Biomarkers, and Targeted Therapy—A Narrative Review. Biomedicines, 12(12), 2822. https://doi.org/10.3390/biomedicines12122822