Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review
Abstract
:1. Introduction
2. Search Strategy
3. Endothelial Dysfunction during COVID-19 in Pregnancy—Cardiology Point of View
3.1. Invasive Testing
3.2. Noninvasive Testing
4. Endothelial Dysfunction and COVID-19
5. Pregnancy and COVID-19 Outcomes Associated with Endothelial Dysfunction
6. Pregnancy, Thrombophilia, and COVID-19
7. Healthcare Services Problems Regarding ED Management
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntounis, T.; Prokopakis, I.; Koutras, A.; Fasoulakis, Z.; Pittokopitou, S.; Valsamaki, A.; Chionis, A.; Kontogeorgi, E.; Lampraki, V.; Peraki, A.; et al. Pregnancy and COVID-19. J. Clin. Med. 2022, 11, 6645. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Oliveras, R.; Mendoza, M.; Capote, S.; Pratcorona, L.; Esteve-Valverde, E.; Cabero-Roura, L.; Alijotas-Reig, J. Immunological and physiopathological approach of COVID-19 in pregnancy. Arch. Gynecol. Obstet. 2021, 304, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Sekulovski, M.; Bogdanova-Petrova, S.; Peshevska-Sekulovska, M.; Velikova, T.; Georgiev, T. COVID-19-related liver injuries in pregnancy. World J. Clin. Cases 2023, 11, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio, D.; Khalil, A.; Saccone, G.; Rizzo, G.; Buca, D.; Liberati, M.; Vecchiet, J.; Nappi, L.; Scambia, G.; Berghella, V.; et al. The outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2020, 2, 100107. [Google Scholar] [CrossRef]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E.; et al. Pre-eclampsia-like syndrome induced by severe COVID-19: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1374–1380. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, L.; Fang, C.; Peng, S.; Zhang, L.; Chang, G.; Xia, S.; Zhou, W. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 2020, 9, 51–60. [Google Scholar] [CrossRef]
- Rolnik, D. Can COVID-19 in pregnancy cause preeclampsia? Bjog 2020, 127, 1381. [Google Scholar] [CrossRef]
- Juan, J.; Gil, M.M.; Rong, Z.; Zhang, Y.; Yang, H.; Poon, L.C. Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: Systematic review. Ultrasound Obstet. Gynecol. 2020, 56, 15–27. [Google Scholar] [CrossRef]
- Giardini, V.; Casati, M.; Carrer, A.; Vergani, P. Can Similarities between the Pathogenesis of Preeclampsia and COVID-19 Increase the Understanding of COVID-19? Int. J. Transl. Med. 2022, 2, 186–197. [Google Scholar] [CrossRef]
- Giardini, V.; Ornaghi, S.; Casati, M.; Carrer, A.; Acampora, E.; Vasarri, M.V.; Arienti, F.; Vergani, P. Imbalanced Angiogenesis in Pregnancies Complicated by SARS-CoV-2 Infection. Viruses 2022, 14, 2207. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Blackmore, H.; Kitas, G.D. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatol. Int. 2011, 31, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Halcox, J.P.; Schenke, W.H.; Zalos, G.; Mincemoyer, R.; Prasad, A.; Waclawiw, M.A.; Nour, K.R.; Quyyumi, A.A. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002, 106, 653–658. [Google Scholar] [CrossRef]
- Vita, J.A.; Keaney, J.F., Jr. Endothelial function: A barometer for cardiovascular risk? Circulation 2002, 106, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Hasdai, D.; Lerman, A. The assessment of endothelial function in the cardiac catheterization laboratory in patients with risk factors for atherosclerotic coronary artery disease. Herz 1999, 24, 544–547. [Google Scholar] [CrossRef]
- Niccoli, G.; Scalone, G.; Crea, F. Coronary functional tests in the catheterization laboratory—Pathophysiological and clinical relevance. Circ. J. 2015, 79, 676–684. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [CrossRef]
- Gallinoro, E.; Bertolone, D.T.; Fernandez-Peregrina, E.; Paolisso, P.; Bermpeis, K.; Esposito, G.; Gomez-Lopez, A.; Candreva, A.; Mileva, N.; Belmonte, M.; et al. Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA. EuroIntervention 2023, 19, e155–e166. [Google Scholar] [CrossRef]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients With Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265, https://doi.org/10.1016/s0735-1097(01)01746-6. Erratum in J. Am. Coll. Cardiol.2002, 39, 1082.. [Google Scholar]
- Hays, A.G.; Hirsch, G.A.; Kelle, S.; Gerstenblith, G.; Weiss, R.G.; Stuber, M. Non-invasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J. Am. Coll. Cardiol. 2010, 56, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef] [PubMed]
- Schindler, T.H.; Dilsizian, V. Coronary Microvascular Dysfunction: Clinical Considerations and Non-invasive Diagnosis. JACC Cardiovasc. Imaging 2020, 13 Pt 1, 140–155. [Google Scholar] [CrossRef]
- Mannaerts, D.; Faes, E.; Goovaerts, I.; Stoop, T.; Cornette, J.; Gyselaers, W.; Spaanderman, M.; Van Craenenbroeck, E.M.; Jacquemyn, Y. Flow-Mediated Dilation and Peripheral Arterial Tonometry Are Disturbed in Preeclampsia and Reflect Different Aspects of Endothelial Function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R518–R525. [Google Scholar] [CrossRef] [PubMed]
- Musz, P.; Podhajski, P.; Grzelakowska, K.; Umińska, J.M. Non-Invasive Assessment of Endothelial Function—A Review of Available Methods. Med. Res. J. 2021, 6, 53–58. [Google Scholar] [CrossRef]
- Meeme, A.; Buga, G.A.; Mammen, M.; Namugowa, A. Endothelial Dysfunction and Arterial Stiffness in Preeclampsia Demonstrated by the EndoPAT Method. Cardiovasc. J. Afr. 2017, 28, 23–29. [Google Scholar] [CrossRef]
- Impaired Flow-Mediated Dilation before, during, and after Preeclampsia|Hypertension. Available online: https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.115.06554 (accessed on 6 June 2023).
- van Hoof, R.H.M.; Vöö, S.A.; Sluimer, J.C.; Wijnen, N.J.A.; Hermeling, E.; Schreuder, F.H.B.M.; Truijman, M.T.B.; Cleutjens, J.P.M.; Daemen, M.J.A.P.; Daemen, J.-W.H.; et al. Vessel wall and adventitial DCE-MRI parameters demonstrate similar correlations with carotid plaque microvasculature on histology. J. Magn. Reson. Imaging 2017, 46, 1053–1059. [Google Scholar] [CrossRef]
- Lavin, B.; Andia, M.E.; Saha, P.; Botnar, R.M.; Phinikaridou, A. Quantitative MRI of Endothelial Permeability and (Dys)function in Atherosclerosis. J. Vis. Exp. 2021, 178, e62724. [Google Scholar] [CrossRef]
- Nakayama, M.; Yamamuro, M.; Takashio, S.; Uemura, T.; Nakayama, N.; Hirakawa, K.; Oda, S.; Utsunomiya, D.; Kaikita, K.; Hokimoto, S.; et al. Late gadolinium enhancement on cardiac magnetic resonance imaging is associated with coronary endothelial dysfunction in patients with dilated cardiomyopathy. Heart Vessel. 2018, 33, 393–402. [Google Scholar] [CrossRef]
- Georgiev, A.; Tsvetkova, S.; Goranov, G.; Nikolov, P. Large, calcified aneurysm of the left ventricle: A case report of an incidental finding. Clin. Case Rep. 2022, 10, e6160. [Google Scholar] [CrossRef]
- Velikova, T.V.; Kotsev, S.V.; Georgiev, D.S.; Batselova, H.M. Immunological aspects of COVID-19: What do we know? World J. Biol. Chem. 2020, 11, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Nägele, M.P.; Haubner, B.; Tanner, F.C.; Ruschitzka, F.; Flammer, A.J. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis 2020, 314, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Gwathmey, J.K.; Xie, L.H. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J. Hypertens. 2012, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Penny, W.F.; Ben-Yehuda, O.; Kuroe, K.; Long, J.; Bond, A.; Bhargava, V.; Peterson, J.F.; McDaniel, M.; Juliano, J.; Witztum, J.L.; et al. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: Heterogeneity of segmental response and correlation with plasma-oxidized low-density lipoprotein. J. Am. Coll. Cardiol. 2001, 37, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S. Pandemic influenza: A potential role for statins in treatment and prophylaxis. Clin. Infect. Dis. 2006, 43, 199–205. [Google Scholar] [CrossRef]
- Zhang, J.; McCullough, P.A.; Tecson, K.M. Vitamin D deficiency in association with endothelial dysfunction: Implications for patients with COVID-19. Rev. Cardiovasc. Med. 2020, 21, 339–344. [Google Scholar] [CrossRef]
- Kornacki, J.; Gutaj, P.; Kalantarova, A.; Sibiak, R.; Jankowski, M.; Wender-Ozegowska, E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021, 9, 1756. [Google Scholar] [CrossRef]
- Karumanchi, S.A. Angiogenic Factors in Preeclampsia: From Diagnosis to Therapy. Hypertension 2016, 67, 1072–1079. [Google Scholar] [CrossRef]
- Espino-Y-Sosa, S.; Martinez-Portilla, R.J.; Torres-Torres, J.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; Hernandez-Pacheco, J.A.; Espejel-Nuñez, A.; Mateu-Rogell, P.; Juarez-Reyes, A.; Lopez-Ceh, F.E.; et al. Novel Ratio Soluble Fms-like Tyrosine Kinase-1/Angiotensin-II (sFlt-1/ANG-II) in Pregnant Women Is Associated with Critical Illness in COVID-19. Viruses 2021, 13, 1906. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Preeclampsia Part 1: Current Understanding of Its Pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Lambadiari, V.; Mitrakou, A.; Kountouri, A.; Thymis, J.; Katogiannis, K.; Korakas, E.; Varlamos, C.; Andreadou, I.; Tsoumani, M.; Triantafyllidi, H.; et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur. J. Heart Fail. 2021, 23, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
- Yinon, D.; Lowenstein, L.; Suraya, S.; Beloosesky, R.; Zmora, O.; Malhotra, A.; Pillar, G. Pre-eclampsia is associated with sleep-disordered breathing and endothelial dysfunction. Eur. Respir. J. 2006, 27, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Palomo, M.; Youssef, L.; Ramos, A.; Torramade-Moix, S.; Moreno-Castaño, A.B.; Martinez-Sanchez, J.; Bonastre, L.; Pino, M.; Gomez-Ramirez, P.; Martin, L.; et al. Differences and similarities in endothelial and angiogenic profiles of preeclampsia and COVID-19 in pregnancy. Am. J. Obstet. Gynecol. 2022, 227, 277.e1–277.e16. [Google Scholar] [CrossRef] [PubMed]
- Naeh, A.; Berezowsky, A.; Yudin, M.H.; Dhalla, I.A.; Berger, H. Preeclampsia-Like Syndrome in a Pregnant Patient With Coronavirus Disease 2019 (COVID-19). J. Obstet. Gynaecol. Can. 2022, 44, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Fabre, M.; Calvo, P.; Ruiz-Martinez, S.; Peran, M.; Oros, D.; Medel-Martinez, A.; Strunk, M.; Benito Ruesca, R.; Schoorlemmer, J.; Paules, C. Frequent Placental SARS-CoV-2 in Patients with COVID-19-Associated Hypertensive Disorders of Pregnancy. Fetal Diagn. Ther. 2021, 48, 801–811. [Google Scholar] [CrossRef]
- Chornock, R.; Iqbal, S.N.; Wang, T.; Kodama, S.; Kawakita, T.; Fries, M. Incidence of Hypertensive Disorders of Pregnancy in Women with COVID-19. Am. J. Perinatol. 2021, 38, 766–772. [Google Scholar] [CrossRef]
- Gychka, S.G.; Brelidze, T.I.; Kuchyn, I.L.; Savchuk, T.V.; Nikolaienko, S.I.; Zhezhera, V.M.; Chermak, I.I.; Suzuki, Y.J. Placental vascular remodeling in pregnant women with COVID-19. PLoS ONE 2022, 17, e0268591. [Google Scholar] [CrossRef]
- Tou, L.C.; Wang, A.A.; Siddiqui, T.A.; Mamone, M. Overlapping presentations of HELLP syndrome and COVID-19. EJCRIM 2022, 9, 003540. [Google Scholar] [CrossRef]
- Rodriguez, A.G.; Contreras, S.M.; Manovel, S.M.F.; Vidal, J.M.M.; Buron, F.D.; Fernandez, C.F.; Gonzalez, M.d.C.R. SARS-COV-2 infection during pregnancy, a risk factor for eclampsia or neurological manifestations of COVID-19? Case Rep. BMC Pregnancy Childbirth 2020, 20, 587. [Google Scholar] [CrossRef]
- Gauberti, M.; Fournier, A.P.; Docagne, F.; Vivien, D.; Martinez de Lizarrondo, S. Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System. Theranostics 2018, 8, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Watanabe, K.; Iwasaki, A.; Kimura, C.; Matsushita, H.; Wakatsuki, A. Placental Oxidative Stress and Maternal Endothelial Function in Pregnant Women with Normotensive Fetal Growth Restriction. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2018, 31, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, J.; Poon, L.C.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; Espejel-Nuñez, A.; Juarez-Reyes, A.; Etchegaray-Solana, A.; Alfonso-Guillen, Y.; Aguilar-Andrade, L.; Hernández-Pacheco, J.A.; et al. Increased levels of soluble fms-like tyrosine kinase-1 are associated with adverse outcome in pregnant women with COVID-19. Ultrasound Obstet. Gynecol. 2022, 59, 202–208. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Preeclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Yzydorczyk, C.; Armengaud, J.B.; Peyter, A.C.; Chehade, H.; Cachat, F.; Juvet, C.; Siddeek, B.; Simoncini, S.; Sabatier, F.; Dignat-George, F.; et al. Endothelial Dysfunction in Individuals Born after Fetal Growth Restriction: Cardiovascular and Renal Consequences and Preventive Approaches. J. Dev. Orig. Health Dis. 2017, 8, 448–464. [Google Scholar] [CrossRef]
- White, S.L.; Perkovic, V.; Cass, A.; Chang, C.L.; Poulter, N.R.; Spector, T.; Haysom, L.; Craig, J.C.; Salmi, I.A.; Chadban, S.J.; et al. Is Low Birth Weight an Antecedent of CKD in Later Life? A Systematic Review of Observational Studies. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2009, 54, 248–261. [Google Scholar] [CrossRef]
- Foo, F.L.; Mahendru, A.A.; Masini, G.; Fraser, A.; Cacciatore, S.; MacIntyre, D.A.; McEniery, C.M.; Wilkinson, I.B.; Bennett, P.R.; Lees, C.C. Association Between Prepregnancy Cardiovascular Function and Subsequent Preeclampsia or Fetal Growth Restriction. Hypertension 2018, 72, 442–450. [Google Scholar] [CrossRef]
- Mayhew, T. Enhanced Fetoplacental Angiogenesis in Pre-Gestational Diabetes Mellitus: The Extra Growth Is Exclusively Longitudinal and Not Accompanied by Microvascular Remodelling. Diabetologia 2002, 45, 1434–1439. [Google Scholar] [CrossRef]
- Flores-Pliego, A.; Miranda, J.; Vega-Torreblanca, S.; Valdespino-Vázquez, Y.; Helguera-Repetto, C.; Espejel-Nuñez, A.; Borboa-Olivares, H.; Espino YSosa, S.; Mateu-Rogell, P.; León-Juárez, M.; et al. Molecular Insights into the Thrombotic and Microvascular Injury in Placental Endothelium of Women with Mild or Severe COVID-19. Cells 2021, 10, 364. [Google Scholar] [CrossRef]
- Gabrielli, M.; Valletta, F.; Franceschi, F. Gemelli Against COVID 2019. Barotrauma during non-invasive ventilation for acute respiratory distress syndrome caused by COVID-19: A balance between risks and benefits. Br. J. Hosp. Med. 2021, 82, 1–9. [Google Scholar] [CrossRef]
- Frallonardo, L.; Vimercati, A.; Novara, R.; Lepera, C.; Ferrante, I.; Chiarello, G.; Cicinelli, R.; Mongelli, M.; Brindicci, G.; Segala, F.V.; et al. Use of Sotrovimab in a cohort of pregnant women with a high risk of COVID 19 progression: A single-center experience. Pathog Glob. Health 2023, 117, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Martinelli, I.; Mannucci, P.M. Uncertain thrombophilia markers. Thromb. Haemost. 2016, 115, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Vuorio, A.; Kovanen, P.T.; Raal, F. Opportunities for preventing further endothelial dysfunction in pregnant COVID-19 patients with familial hypercholesterolemia. J. Clin. Lipidol. 2022, 16, 356–357. [Google Scholar] [CrossRef] [PubMed]
- Grandone, E.; Vimercati, A.; Sorrentino, F.; Colaizzo, D.; Ostuni, A.; Ceci, O.; Capozza, M.; Tiscia, G.; De Laurenzo, A.; Mastroianno, M.; et al. Obstetric outcomes in pregnant COVID-19 women: The imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth 2022, 22, 142. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, C.; Mangogna, A.; Balduit, A.; Aghamajidi, A.; Ricci, G.; Kishore, U.; Bulla, R. COVID-19, Preeclampsia, and Complement System. Front. Immunol. 2021, 12, 775168. [Google Scholar] [CrossRef]
- Gąsecka, A.; Borovac, J.A.; Guerreiro, R.A.; Giustozzi, M.; Parker, W.; Caldeira, D.; Chiva-Blanch, G. Thrombotic complications in patients with COVID-19: Pathophysiological mechanisms, diagnosis, and treatment. Cardiovasc. Drugs Ther. 2021, 35, 215–229. [Google Scholar] [CrossRef]
- Avila, J.; Long, B.; Holladay, D.; Gottlieb, M. Thrombotic complications of COVID-19. Am. J. Emerg. Med. 2021, 39, 213–218. [Google Scholar] [CrossRef]
- Badulescu, O.V.; Sirbu, P.D.; Filip, N.; Bordeianu, G.; Cojocaru, E.; Budacu, C.C.; Badescu, M.C.; Bararu-Bojan, I.; Veliceasa, B.; Ciocoiu, M. Hereditary Thrombophilia in the Era of COVID-19. Healthcare 2022, 10, 993. [Google Scholar] [CrossRef]
- Aydin, S.; Ugur, K.; Yalcin, H.; Sahin, I.; Akkoc, R.F.; Yakar, B.; Yucel, D.; Aydin, S. Overview of COVID-19’s relationship with thrombophilia proteins. Turk. J. Biochem. 2021, 46, 609–622. [Google Scholar] [CrossRef]
- Royal College of Obstetricians and Gynaecologists Reducing the Risk of Venous Thromboembolism during Pregnancy and the Puerperium. Green-Top Guideline. 2015, 37, 1–40. Available online: https://www.rcog.org.uk/media/qejfhcaj/gtg-37a.pdf (accessed on 18 August 2023).
- Royal College of Obstetricians and Gynaecologists Coronavirus in Pregnancy Guidance. 2021. Available online: https://www.rcog.org.uk/globalassets/documents/guidelines/2021-02-19-coronavirus-covid-19-infection-in-pregnancy-v13.pdf (accessed on 18 August 2023).
- ATTACC Investigators, ACTIV-4a Investigators, REMAP-CAP Investigators, Lawler, P.R.; Goligher, E.C.; Berger, J.S.; Neal, M.D.; McVerry, B.J.; Nicolau, J.C.; Gong, M.N.; Carrier, M.; Rosenson, R.S.; Reynolds, H.R.; et al. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with COVID-19. New Engl. J. Med. 2021, 385, 790–802. [Google Scholar] [CrossRef]
- Abdel-Maboud, M.; Menshawy, A.; Elgebaly, A.; Bahbah, E.I.; El Ashal, G.; Negida, A. Should We Consider Heparin Prophylaxis in COVID-19 Patients? A Systematic Review and Meta-Analysis. J. Thromb. Thrombolysis 2021, 51, 830–832. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; O’Donnell, J.S.; Sharif, K.; Emery, P.; Bridgewood, C. Immune Mechanisms of Pulmonary Intravascular Coagulopathy in COVID-19 Pneumonia. Lancet Rheumatol. 2020, 2, e437–e445. [Google Scholar] [CrossRef]
- Hamulyák, E.N.; Scheres, L.J.; Marijnen, M.C.; Goddijn, M.; Middeldorp, S. Aspirin or Heparin or Both for Improving Pregnancy Outcomes in Women with Persistent Antiphospholipid Antibodies and Recurrent Pregnancy Loss. Cochrane Database Syst. Rev. 2020, 5, CD012852. [Google Scholar] [CrossRef]
- Nahas, R.; Saliba, W.; Elias, A.; Elias, M. The Prevalence of Thrombophilia in Women with Recurrent Fetal Loss and Outcome of Anticoagulation Therapy for the Prevention of Miscarriages. Clin. Appl. Thromb. 2018, 24, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Daru, J.; White, K.; Hunt, B.J. COVID-19, thrombosis and pregnancy. Thromb. Update 2021, 5, 100077. [Google Scholar] [CrossRef]
- Varlas, V.N.; Borș, R.G.; Plotogea, M.; Iordache, M.; Mehedințu, C.; Cîrstoiu, M.M. Thromboprophylaxis in Pregnant Women with COVID-19: An Unsolved Issue. Int. J. Environ. Res. Public Health 2023, 20, 1949. [Google Scholar] [CrossRef]
- Servante, J.; Swallow, G.; Thornton, J.G.; Myers, B.; Munireddy, S.; Malinowski, A.K.; Othman, M.; Li, W.; O’Donoghue, K.; Walker, K.F. Haemostatic and thrombo-embolic complications in pregnant women with COVID-19: A systematic review and critical analysis. BMC Pregnancy Childbirth 2021, 21, 108. [Google Scholar] [CrossRef]
- Lou-Mercadé, A.C.; Gavín, O.; Oros, D.; Paules, C.; Savirón-Cornudella, R.; Mateo, P.; Páramo, J.A.; Ruiz-Martinez, S. Prevention of thrombosis in pregnant women with suspected SARS-CoV-2 infection: Clinical management algorithm. Ultrasound Obstet. Gynecol. 2020, 56, 111–112. [Google Scholar] [CrossRef]
- Patel, R.S.; Bachu, R.; Adikey, A.; Malik, M.; Shah, M. Factors related to physician burnout and its consequences: A review. Behav. Sci. 2018, 8, 98. [Google Scholar] [CrossRef]
- Dionisi, T.; Sestito, L.; Tarli, C.; Antonelli, M.; Tosoni, A.; D’Addio, S.; Mirijello, A.; Vassallo, G.A.; Leggio, L.; Gasbarrini, A.; et al. Gemelli Against COVID-19 Group. Risk of burnout and stress in physicians working in a COVID team: A longitudinal survey. Int. J. Clin. Pract. 2021, 75, e14755. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Singh, P.; Singh, K.; Shekhar, S.; Agrawal, N.; Misra, S. The effect of the COVID-19 pandemic on maternal health due to delay in seeking health care: Experience from a tertiary center. Int. J. Gynaecol. Obstet. 2021, 152, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Aminimoghaddam, S.; Afrooz, N.; Nasiri, S.; Motaghi Nejad, O.; Mahmoudzadeh, F. A COVID-19 pregnant patient with thrombotic thrombocytopenic purpura: A case report. J. Med. Case Rep. 2021, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Ballmick, N.A.; Kubac, J.F.; Akhondi, H. Acute Ischemic Stroke as the Presenting Feature of COVID-19 in the Young and Pregnant. HCA Healthc. J. Med. 2020, 1, 379–383. [Google Scholar] [CrossRef]
- Gunduz, Z.B. Venous sinus thrombosis during COVID-19 infection in pregnancy: A case report. Sao Paulo Med. J. 2021, 139, 190–195. [Google Scholar] [CrossRef]
- Konstantinidou, A.E.; Angelidou, S.; Havaki, S.; Paparizou, K.; Spanakis, N.; Chatzakis, C.; Sotiriadis, A.; Theodora, M.; Donoudis, C.; Daponte, A.; et al. Stillbirth due to SARS-CoV-2 placentitis without evidence of intrauterine transmission to fetus: Association with maternal risk factors. Ultrasound Obstet. Gynecol. 2022, 59, 813–822. [Google Scholar] [CrossRef]
- Arora, D.; Rajmohan, K.S.; Singh, S.; Nair, V.; Barui, S.; Dey, M.; Kumar, A. Correlation between placental histopathology and perinatal outcome in COVID-19. Tzu Chi Med. J. 2022, 34, 329–336. [Google Scholar] [CrossRef]
- Mongula, J.E.; Frenken, M.W.E.; van Lijnschoten, G.; Arents, N.L.A.; de Wit-Zuurendonk, L.D.; Schimmel-de Kok, A.P.A.; van Runnard Heimel, P.J.; Porath, M.M.; Goossens, S.M.T.A. COVID-19 during pregnancy: Non-reassuring fetal heart rate, placental pathology and coagulopathy. Ultrasound Obstet. Gynecol. 2020, 56, 773–776. [Google Scholar] [CrossRef]
- Vlachodimitropoulou Koumoutsea, E.; Vivanti, A.J.; Shehata, N.; Benachi, A.; Le Gouez, A.; Desconclois, C.; Whittle, W.; Snelgrove, J.; Malinowski, A.K. COVID-19 and acute coagulopathy in pregnancy. J. Thromb. Haemost. 2020, 18, 1648–1652. [Google Scholar] [CrossRef]
Authors | N ° | Age | Time of the Diagnosis | Coagulopathy Type | Anticoagulation Therapy | Maternal Outcome | Fetus Outcome |
---|---|---|---|---|---|---|---|
Aminimoghaddam et al. [85] | 1 | 21 y old | 29 GW | TTP | Heparin | Alive | Preterm delivery in 29 GW; baby alive |
Ballmick et al. [86] | 1 | 18 y old | 7 GW | Ischemic infarction in the right middle cerebral artery territory | Aspirin and clopidogrel | Alive | At follow-up, still pregnant with normal fetus parameters |
Gunduz et al. [87] | 1 | 22 y old | 35 GW | Venous sinus thrombosis | Low molecular weight heparin | Alive | Healthy baby |
Konstantinidou et al. [88] | 165 | 35 (34–37.5) | 35.5 GW (27.3–37.8) | Thrombophilia and SARS-CoV-2 placentitis | NR | 162 alive | 6 stillborn babies |
Servante et al. [80] | 13 | NR | NR | 3 arterial and/or venous thrombosis 7 DIC 3 coagulopathy | Low molecular weight heparin | 11 alive | Alive |
Arora et al. [89] | 19 | NR | 37–40 GW | 3 thrombophilia 9 hypertensive disorder | NR | 8 with maternal respiratory compromise | 7 patients with fetal distress syndrome |
Mongula et al. [90] | 1 | 27 y old | 31 + 4 GW | Preeclampsia and DIC | Aspirin | Alive | Alive |
Vlachodimitropoulou Koumoutsea et al. [91] | 2 | 41 y old and 23 y old | 35 + 3 GW and 35 + 2 GW | Progressive coagulopathy and transaminitis | Low molecular weight heparin | Alive | Alive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekulovski, M.; Mileva, N.; Chervenkov, L.; Peshevska-Sekulovska, M.; Vasilev, G.V.; Vasilev, G.H.; Miteva, D.; Tomov, L.; Lazova, S.; Gulinac, M.; et al. Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review. Biomedicines 2023, 11, 2458. https://doi.org/10.3390/biomedicines11092458
Sekulovski M, Mileva N, Chervenkov L, Peshevska-Sekulovska M, Vasilev GV, Vasilev GH, Miteva D, Tomov L, Lazova S, Gulinac M, et al. Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review. Biomedicines. 2023; 11(9):2458. https://doi.org/10.3390/biomedicines11092458
Chicago/Turabian StyleSekulovski, Metodija, Niya Mileva, Lyubomir Chervenkov, Monika Peshevska-Sekulovska, Georgi Vasilev Vasilev, Georgi Hristov Vasilev, Dimitrina Miteva, Latchezar Tomov, Snezhina Lazova, Milena Gulinac, and et al. 2023. "Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review" Biomedicines 11, no. 9: 2458. https://doi.org/10.3390/biomedicines11092458
APA StyleSekulovski, M., Mileva, N., Chervenkov, L., Peshevska-Sekulovska, M., Vasilev, G. V., Vasilev, G. H., Miteva, D., Tomov, L., Lazova, S., Gulinac, M., & Velikova, T. (2023). Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review. Biomedicines, 11(9), 2458. https://doi.org/10.3390/biomedicines11092458