High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Patients and Samples
2.3. Animal Experiment
2.4. Histopathological Examinations
2.5. Transmission Electron Microscopy
2.6. Perls’ Staining
2.7. Immunohistochemistry
2.8. Western Blotting
2.9. Statistical Analyses
3. Results
3.1. Results
3.1.1. Ferroptosis Was Involved in CAG Injury
3.1.2. An Excess of Iron Was Observed in the Gastric Tissue of CAG
3.1.3. Upregulation of Hepcidin in Gastric Tissue of CAG
3.1.4. IL-6/STAT3 Signaling Pathways Were Activated by CAG
3.1.5. Abnormal Iron in the Duodenum of CAG Rats
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAG | Chronic atrophic gastritis |
GC | Gastric cancer |
Dcyt b | Duodenal cytochrome b |
DMT1 | Divalent metal transporter 1 |
FPN1 | Ferroportin |
ROS | Reactive oxygen species |
PUFAs | Polyunsaturated fatty acids |
GPX4 | Glutathione peroxidase 4 |
MNNG | 1-Methyl-3-nitro-1-nitrosoguanidine |
4-HNE | 4-Hydroxynonenal |
FTH | H-ferritin |
IL-6 | Interleukin-6 |
TNF-α | Tumor necrosis factor-α |
IL-1β | Interleukin-1β |
STAT3 | Transducer and activator of transcription 3 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
NAG | Non-atrophic gastritis |
Con | Control |
TEM | Transmission electron microscope |
LIP | Labile iron pool |
IBD | Inflammatory bowel disease |
NCOA4 | Nuclear receptor coactivator 4 |
LPS | Lipopolysaccharide |
IL-6R | IL-6 receptor |
JAK2 | Janus kinase 2 |
Th1 | T helper 1 |
IFN-γ | Interferon gamma |
References
- Yip, H.C.; Uedo, N.; Chan, S.M.; Teoh, A.Y.B.; Wong, S.K.H.; Chiu, P.W.; Ng, E.K.W. An international survey on recognition and characterization of atrophic gastritis and intestinal metaplasia. Endosc. Int. Open 2020, 8, E1365–E1370. [Google Scholar] [CrossRef]
- Repetto, O.; De Re, V.; Giuffrida, P.; Lenti, M.V.; Magris, R.; Venerito, M.; Steffan, A.; Di Sabatino, A.; Cannizzaro, R. Proteomics signature of autoimmune atrophic gastritis: Towards a link with gastric cancer. Gastric Cancer 2021, 24, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Botezatu, A.; Bodrug, N. Chronic atrophic gastritis: An update on diagnosis. Med. Pharm. Rep. 2020, 94, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, L.; Shang, W.; Yang, Z.; Li, T.; Liu, F.; Shao, W.; Lv, L.; Chai, L.; Qu, L.; et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022, 29, 2190–2202. [Google Scholar] [CrossRef] [PubMed]
- Dănilă, C.; Cardos, I.A.; Pop-Crisan, A.; Marc, F.; Hoza, A.; Chirla, R.; Pascalău, A.; Magheru, C.; Cavalu, S. Correlations between Endoscopic and Histopathological Assessment of Helicobacter pylori-Induced Gastric Pathology—A Cross-Sectional Retrospective Study. Life 2022, 12, 2096. [Google Scholar] [CrossRef]
- Rodriguez-Castro, K.I.; Franceschi, M.; Noto, A.; Miraglia, C.; Nouvenne, A.; Leandro, G.; Meschi, T.; Angelis, G.L.D.; Di Mario, F. Clinical manifestations of chronic atrophic gastritis. Acta Biomed. 2018, 89, 88–92. [Google Scholar]
- Wang, X.; Ling, L.; Li, S.; Qin, G.; Cui, W.; Li, X.; Ni, H. The Diagnostic Value of Gastrin-17 Detection in Atrophic Gastritis: A Meta-Analysis. Medicine 2016, 95, e3599. [Google Scholar] [CrossRef]
- Schwarz, P.; Kübler, J.A.; Strnad, P.; Müller, K.; Barth, T.F.; Gerloff, A.; Feick, P.; Peyssonnaux, C.; Vaulont, S.; Adler, G.; et al. Hepcidin is localised in gastric parietal cells, regulates acid secretion and is induced by Helicobacter pylori infection. Gut 2012, 61, 193–201. [Google Scholar] [CrossRef]
- Gianoukakis, A.G.; Gupta, S.; Tran, T.N.; Richards, P.; Yehuda, M.; E Tomassetti, S. Graves’ disease patients with iron deficiency anemia: Serologic evidence of co-existent autoimmune gastritis. Am. J. Blood Res. 2021, 11, 238–247. [Google Scholar]
- Lanser, L.; Fuchs, D.; Kurz, K.; Weiss, G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021, 13, 3732. [Google Scholar] [CrossRef]
- Murata, Y.; Yoshida, M.; Sakamoto, N.; Morimoto, S.; Watanabe, T.; Namba, K. Iron uptake mediated by the plant-derived chelator nicotianamine in the small intestine. J. Biol. Chem. 2021, 296, 100195. [Google Scholar] [CrossRef]
- Ginzburg, Y.Z. Hepcidin-ferroportin axis in health and disease. Vitam. Horm. 2019, 110, 17–45. [Google Scholar] [PubMed]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. 2017, 8, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yoneyama, O.; Azumaya, M.; Takeuchi, M.; Sasaki, S.-Y.; Yokoyama, J.; Shioji, K.; Kawauchi, Y.; Hashimoto, S.; Nishigaki, Y.; et al. The relationship between iron deficiency in patients with Helicobacter pylori-infected nodular gastritis and the serum prohepcidin level. Helicobacter 2014, 20, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.-I.; Konno, M.; Mino, E.; Sato, K.; Takahashi, M.; Fujii, N. Enhanced Fe ion-uptake activity in Helicobacter pylori strains isolated from patients with iron-deficiency anemia. Clin. Infect. Dis. 2008, 46, e31–e33. [Google Scholar] [CrossRef]
- Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022, 185, 2401–2421. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021, 12, 836–857. [Google Scholar] [CrossRef]
- Yin, J.; Yi, J.; Yang, C.; Xu, B.; Lin, J.; Hu, H.; Wu, X.; Shi, H.; Fei, X. Chronic atrophic gastritis and intestinal metaplasia induced by high-salt and N-methyl-N’-nitro-N-nitrosoguanidine intake in rats. Exp. Ther. Med. 2021, 21, 315. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Jin, X.-M.; Dai, G.-H.; Chen, X.; Tong, Y.-L.; Ren, Z.-M.; Chen, Y.; Xue, X.-M.; Wu, R.-Z. Effects of Granule Dendrobii on chronic atrophic gastritis induced by N-methyl-N’-nitro-N-nitrosoguanidine in rats. World J. Gastroenterol. 2022, 28, 4668–4680. [Google Scholar] [CrossRef]
- Zu, G.-X.; Sun, Q.-Q.; Chen, J.; Liu, X.-J.; Sun, K.-Y.; Zhang, L.-K.; Li, L.; Han, T.; Huang, H.-L. Urine metabolomics of rats with chronic atrophic gastritis. PLoS ONE 2020, 15, e0236203. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Li, G.; Hu, Y.; Sun, H. The Impacts of Iron Overload and Ferroptosis on Intestinal Mucosal Homeostasis and Inflammation. Int. J. Mol. Sci. 2022, 23, 14195. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed]
- Shesh, B.P.; Connor, J.R. A novel view of ferritin in cancer. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188917. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Tao, J.; Yang, Y.; Tan, S.; Liu, H.; Jiang, J.; Zheng, F.; Wu, B. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis. 2020, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.M.; Wang, T.X.; Jia, X.F.; Yang, Y.; Shi, Z.M.; Cui, G.H.; Huang, G.Y.; Ye, H.; Zhang, X.Z. Fuzheng Nizeng Decoction regulated ferroptosis and endoplasmic reticulum stress in the treatment of gastric precancerous lesions: A mechanistic study based on metabolomics coupled with transcriptomics. Front. Pharmacol. 2022, 13, 1066244. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, N.; Seok, B.G.; Lee, S.; Lee, S.J.; Chung, S.W. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 2023, 14, 464. [Google Scholar] [CrossRef]
- Wang, P.; Cui, Y.; Ren, Q.; Yan, B.; Zhao, Y.; Yu, P.; Gao, G.; Shi, H.; Chang, S.; Chang, Y.-Z. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021, 12, 447. [Google Scholar] [CrossRef]
- Guan, D.; Li, C.; Li, Y.; Li, Y.; Wang, G.; Gao, F.; Li, C. The DpdtbA induced EMT inhibition in gastric cancer cell lines was through ferritinophagy-mediated activation of p53 and PHD2/hif-1alpha pathway. J. Inorg. Biochem. 2021, 218, 111413. [Google Scholar] [CrossRef]
- Zhang, H.; Ostrowski, R.; Jiang, D.; Zhao, Q.; Liang, Y.; Che, X.; Zhao, J.; Xiang, X.; Qin, W.; He, Z. Hepcidin Promoted Ferroptosis through Iron Metabolism which Is Associated with DMT1 Signaling Activation in Early Brain Injury following Subarachnoid Hemorrhage. Oxid. Med. Cell. Longev. 2021, 2021, 9800794. [Google Scholar] [CrossRef]
- Huang, M.; Li, S.; He, Y.; Lin, C.; Sun, Y.; Li, M.; Zhang, R.; Xu, R.; Lin, P.; Ke, X. Modulation of gastrointestinal bacterial in chronic atrophic gastritis model rats by Chinese and west medicine intervention. Microb. Cell Fact. 2021, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.; Muthupalani, S.; Ge, Z.; Wang, T.C.; Bakthavatchalu, V.; Cunningham, C.; Ennis, K.; Georgieff, M.; Fox, J.G. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice. PLoS ONE 2015, 10, e0142630. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Jang, E.-C.; Yeom, J.-O.; Kim, S.-Y.; Cho, H.; Kim, S.S.; Chae, H.-S.; Cho, Y.-S. Serum prohepcidin levels are lower in patients with atrophic gastritis. Gastroenterol. Res Pract. 2013, 2013, 201810. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J.; Pritchard, D.M.; Boxall, S.A.; Abuderman, A.A.; Williams, J.M.; Varro, A.; Crabtree, J.E. Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse. PLoS ONE 2012, 7, e50194. [Google Scholar] [CrossRef] [PubMed]
- Zuo, E.; Lu, Y.; Yan, M.; Pan, X.; Cheng, X. Increased expression of hepcidin and associated upregulation of JAK/STAT3 signaling in human gastric cancer. Oncol. Lett. 2017, 15, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
- Flores, S.E.; Day, A.S.; Keenan, J.I. Measurement of total iron in Helicobacter pylori-infected gastric epithelial cells. Biometals 2014, 28, 143–215. [Google Scholar] [CrossRef]
- Brasse–Lagnel, C.; Karim, Z.; Letteron, P.; Bekri, S.; Bado, A.; Beaumont, C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 2011, 140, 1261–1271.e1. [Google Scholar] [CrossRef]
- Pigeon, C.; Ilyin, G.; Courselaud, B.; Leroyer, P.; Turlin, B.; Brissot, P.; Loréal, O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001, 276, 7811–7819. [Google Scholar] [CrossRef]
- Blanchette, N.L.; Manz, D.H.; Torti, F.M.; Torti, S.V. Modulation of hepcidin to treat iron deregulation: Potential clinical applications. Expert Rev. Hematol. 2015, 9, 169–186. [Google Scholar] [CrossRef]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef]
- Furukawa, K.; Takahashi, T.; Arai, F.; Matsushima, K.; Asakura, H. Enhanced mucosal expression of interleukin-6 mRNA but not of interleukin-8 mRNA at the margin of gastric ulcer in Helicobacter pylori-positive gastritis. J. Gastroenterol. 1998, 33, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Pereira, J.; Delabio, R.; Smith, M.; Payão, S.; Carneiro, L.; Barbosa, M.; Rasmussen, L. Increased expression of interleukin-6 gene in gastritis and gastric cancer. Braz. J. Med Biol. Res. 2021, 54, e10687. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Han, Y.M.; Park, Y.J.; Hahm, K.B. Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis. J. Clin. Biochem. Nutr. 2021, 68, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guan, P.; Chen, Y.; Xu, M.; Wang, N.; Ji, E. Cyclovirobuxine D pretreatment ameliorates septic heart injury through mitigation of ferroptosis. Exp. Ther. Med. 2023, 26, 407. [Google Scholar] [CrossRef]
- Jeong, S.; Choi, E.; Petersen, C.P.; Roland, J.T.; Federico, A.; Ippolito, R.; D’Armiento, F.P.; Nardone, G.; Nagano, O.; Saya, H.; et al. Distinct metaplastic and inflammatory phenotypes in autoimmune and adenocarcinoma-associated chronic atrophic gastritis. United Eur. Gastroenterol. J. 2017, 5, 37–44. [Google Scholar] [CrossRef]
- Yang, T.; Wang, R.; Liu, H.; Wang, L.; Li, J.; Wu, S.; Chen, X.; Yang, X.; Zhao, Y. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis. Life Sci. 2021, 266, 118903. [Google Scholar] [CrossRef]
- Nairz, M.; Theurl, I.; Swirski, F.K.; Weiss, G. “Pumping iron”-how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflügers Arch. Eur. J. Physiol. 2017, 469, 397–418. [Google Scholar] [CrossRef]
- Wang, L.; Cai, J.; Qiao, T.; Li, K. Ironing out macrophages in atherosclerosis. Acta Biochim. Biophys. Sin. 2023, 55, 1–10. [Google Scholar] [CrossRef]
- Leng, J.; Xing, Z.; Li, X.; Bao, X.; Zhu, J.; Zhao, Y.; Wu, S.; Yang, J. Assessment of Diagnosis, Prognosis and Immune Infiltration Response to the Expression of the Ferroptosis-Related Molecule HAMP in Clear Cell Renal Cell Carcinoma. Int. J. Environ. Res. Public Health 2023, 20, 913. [Google Scholar] [CrossRef]
- Xiao, L.; Luo, G.; Guo, X.; Jiang, C.; Zeng, H.; Zhou, F.; Li, Y.; Yu, J.; Yao, P. Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158531. [Google Scholar] [CrossRef]
- Bao, X.; Luo, X.; Bai, X.; Lv, Y.; Weng, X.; Zhang, S.; Leng, Y.; Huang, J.; Dai, X.; Wang, Y.; et al. Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway. Free Radic. Biol. Med. 2023, 201, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Nishigaki, Y.; Sato, Y.; Sato, H.; Iwafuchi, M.; Terai, S. Influence of Helicobacter Pylori Infection on Hepcidin Expression in the Gastric Mucosa. Kurume Med. J. 2021, 68, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H. Morroniside protects against chronic atrophic gastritis in rat via inhibiting inflammation and apoptosis. Am. J. Transl. Res. 2019, 11, 6016–6023. [Google Scholar] [PubMed]
NAG | CAG | |
---|---|---|
Number | 20 | 18 |
Age range | 35–66 | 41–74 |
Age mean (±SD) | 50.7 ± 11.2 | 60.39 ± 10.62 |
Male/female | 9/11 | 9/9 |
H. pylori+ (%) | 10% | 67% |
Pathological feature | Mild to moderate chronic non-atrophic gastritis in the antrum | Mild to moderate atrophic gastritis in the antrum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhao, J.; Ma, H.; Han, Y.; Xu, W.; Wang, J.; Cai, Y.; Jia, X.; Jia, Q.; Yang, Q. High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis. Biomedicines 2023, 11, 2338. https://doi.org/10.3390/biomedicines11092338
Zhao Y, Zhao J, Ma H, Han Y, Xu W, Wang J, Cai Y, Jia X, Jia Q, Yang Q. High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis. Biomedicines. 2023; 11(9):2338. https://doi.org/10.3390/biomedicines11092338
Chicago/Turabian StyleZhao, Yashuo, Jianing Zhao, Hongyu Ma, Yan Han, Weichao Xu, Jie Wang, Yanru Cai, Xuemei Jia, Qingzhong Jia, and Qian Yang. 2023. "High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis" Biomedicines 11, no. 9: 2338. https://doi.org/10.3390/biomedicines11092338