Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Endotrophin Using ELISA
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afkarian, M.; Zelnick, L.R.; Hall, Y.N.; Heagerty, P.J.; Tuttle, K.; Weiss, N.S.; De Boer, I.H. Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988–2014. JAMA 2016, 316, 602–610. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef]
- De Rekeneire, N.; Peila, R.; Ding, J.; Colbert, L.H.; Visser, M.; Shorr, R.I.; Kritchevsky, S.B.; Kuller, L.H.; Strotmeyer, E.S.; Schwartz, A.V.; et al. Diabetes, hyperglycemia, and inflammation in older individuals: The Health, Aging and Body Composition study. Diabetes Care 2006, 29, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Ban, C.R.; Twigg, S.M. Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vasc. Health Risk Manag. 2008, 4, 575–596. [Google Scholar] [PubMed]
- Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019, 62, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- American Diabetes Association; ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; et al. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, 191–202. [Google Scholar]
- Rangaswami, J.; Bhalla, V.; De Boer, I.H.; Staruschenko, A.; Sharp, J.A.; Singh, R.R.; Lo, K.B.; Tuttle, K.; Vaduganathan, M.; Ventura, H.; et al. Cardiorenal Protection with the Newer Antidiabetic Agents in Patients with Diabetes and Chronic Kidney Disease: A Scientific Statement From the American Heart Association. Circulation 2020, 142, E265–E286. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Agarwal, R.; Alpers, C.E.; Bakris, G.L.; Brosius, F.C.; Kolkhof, P.; Uribarri, J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022, 102, 248–260. [Google Scholar] [CrossRef]
- Boor, P.; Ostendorf, T.; Floege, J. Renal fibrosis: Novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 2010, 6, 643–656. [Google Scholar] [CrossRef]
- Bohle, A.; Mackensen-Haen, S.; von Gise, H.; Grund, K.E.; Wehrmann, M.; Batz, C.; Bogenschütz, O.; Schmitt, H.; Nagy, J.; Müller, C.; et al. The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol. Res. Pract. 1990, 186, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Bülow, R.D.; Boor, P. Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold. J. Histochem. Cytochem. 2019, 67, 643. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Manon-Jensen, T.; Genovese, F.; Kristensen, J.H.; Nielsen, M.J.; Sand, J.M.B.; Hansen, N.U.B.; Bay-Jensen, A.C.; Bager, C.L.; Krag, A.; et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol.—Gastrointest. Liver Physiol. 2015, 308, G807–G830. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Scherer, P.E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Investig. 2012, 122, 4243–4256. [Google Scholar] [CrossRef]
- Sun, K.; Park, J.; Gupta, O.T.; Holland, W.L.; Auerbach, P.; Zhang, N.; Goncalves Marangoni, R.; Nicoloro, S.M.; Czech, M.P.; Varga, J.; et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 2014, 5, 3485. [Google Scholar] [CrossRef]
- Aydin Yoldemir, Ş.; Arman, Y.; Akarsu, M.; Altun, Ö.; Dikker, O.; Toprak, I.D.; Özcan, M.; Kalyon, S.; Kutlu, Y.; Irmak, S.; et al. The relationship between insulin resistance, obesity, and endotrophin. Int. J. Diabetes Dev. Ctries. 2020, 40, 191–195. [Google Scholar] [CrossRef]
- Aigner, T.; Hambach, L.; Söder, S.; Schlötzer-Schrehardt, U.; Pöschl, E. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem. Biophys. Res. Commun. 2002, 290, 743–748. [Google Scholar] [CrossRef]
- Heumüller, S.E.; Talantikite, M.; Napoli, M.; Armengaud, J.; Mörgelin, M.; Hartmann, U.; Sengle, G.; Paulsson, M.; Wagener, R.; Wagener, R. C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J. Biol. Chem. 2019, 294, 13769–13780. [Google Scholar] [CrossRef]
- Rasmussen, D.G.K.; Hansen, T.W.; Von Scholten, B.J.; Nielsen, S.H.; Reinhard, H.; Parving, H.H.; Tepel, M.; Karsdal, M.A.; Jacobsen, P.K.; Genovese, F.; et al. Higher Collagen VI Formation Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes and Microalbuminuria. Diabetes Care 2018, 41, 1493–1500. [Google Scholar] [CrossRef]
- Rasmussen, D.G.K.; Hansen, M.K.; Blair, J.; Jatkoe, T.A.; Neal, B.; Karsdal, M.A.; Genovese, F. Endotrophin is a risk marker of complications in CANagliflozin cardioVascular Assessment Study (CANVAS): A randomized controlled trial. Cardiovasc. Diabetol. 2022, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Tougaard, N.H.; Møller, A.L.; Rønn, P.F.; Hansen, T.W.; Genovese, F.; Karsdal, M.A.; Guldager Kring Rasmussen, D.; Rossing, P. Endotrophin as a Marker of Complications in a Type 2 Diabetes Cohort. Diabetes Care 2022, 45, 2746–2748. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Henriksen, K.; Karsdal, M.A.; Byrjalsen, I.; Rittweger, J.; Armbrecht, G.; Belavy, D.L.; Felsenberg, D.; Nedergaard, A.F. Collagen type III and VI turnover in response to long-term immobilization. PLoS ONE 2015, 10, e0144525. [Google Scholar] [CrossRef]
- DC-Ren. Available online: https://dc-ren.eu/ (accessed on 26 January 2023).
- Eder, S.; Leierer, J.; Kerschbaum, J.; Rosivall, L.; Wiecek, A.; De Zeeuw, D.; Mark, P.B.; Heinze, G.; Rossing, P.; Heerspink, H.L.; et al. A Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers (PROVALID)—Study Design and Baseline Characteristics. Kidney Blood Press. Res. 2018, 43, 181–190. [Google Scholar] [CrossRef]
- Thöni, S.; Keller, F.; Denicolò, S.; Buchwinkler, L.; Mayer, G. Biological variation and reference change value of the estimated glomerular filtration rate in humans: A systematic review and meta-analysis. Front. Med. 2022, 9, 1009358. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Mason, R.M.; Wahab, N.A. Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 2003, 14, 1358–1373. [Google Scholar] [CrossRef] [PubMed]
- Nerlich, A.G.; Schleicher, E.D.; Wiest, I.; Specks, U.; Timpl, R. Immunohistochemical localization of collagen VI in diabetic glomeruli. Kidney Int. 1994, 45, 1648–1656. [Google Scholar] [CrossRef]
- Vleming, L.J.; Baelde, J.J.; Westendorp, R.G.J.; Daha, M.R.; Van Es, L.A.; Bruijn, J.A. Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix. Clin. Nephrol. 1995, 44, 211–219. [Google Scholar]
- Rasmussen, D.G.K.; Fenton, A.; Jesky, M.; Ferro, C.; Boor, P.; Tepel, M.; Karsdal, M.A.; Genovese, F.; Cockwell, P. Urinary endotrophin predicts disease progression in patients with chronic kidney disease. Sci. Rep. 2017, 7, 17328. [Google Scholar] [CrossRef]
- Leong, A.; Ekinci, E.I.; Nguyen, C.; Milne, M.; Hachem, M.; Dobson, M.; MacIsaac, R.J.; Jerums, G. Long-term intra-individual variability of albuminuria in type 2 diabetes mellitus: Implications for categorization of albumin excretion rate. BMC Nephrol. 2017, 18, 355. [Google Scholar] [CrossRef] [PubMed]
- Waikar, S.S.; Rebholz, C.M.; Zheng, Z.; Hurwitz, S.; Hsu, C.-Y.; Feldman, H.I.; Xie, D.; Liu, K.D.; Mifflin, T.E.; Eckfeldt, J.H.; et al. Biological Variability of Estimated GFR and Albuminuria in CKD. Am. J. Kidney Dis. 2018, 72, 538–546. [Google Scholar] [CrossRef] [PubMed]
- MacIsaac, R.J.; Jerums, G. Diabetic kidney disease with and without albuminuria. Curr. Opin. Nephrol. Hypertens. 2011, 20, 246–257. [Google Scholar] [CrossRef]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Atsukawa, M.; Tsubota, A.; Mikami, S.; Haruki, U.; Yoshikata, K.; Ono, H.; Kawano, T.; Yoshida, Y.; Tanabe, T.; et al. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol. Commun. 2022, 6, 3073. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Li, J.; Neuen, B.L.; Neal, B.; Arnott, C.; Parikh, C.R.; Coca, S.G.; Perkovic, V.; Mahaffey, K.W.; Yavin, Y.; et al. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia 2021, 64, 2147–2158. [Google Scholar] [CrossRef]
- Dekkers, C.C.J.; Petrykiv, S.; Laverman, G.D.; Cherney, D.Z.; Gansevoort, R.T.; Heerspink, H.J.L. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes. Metab. 2018, 20, 1988–1993. [Google Scholar] [CrossRef]
- Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol.—Ren. Physiol. 2014, 306, 194–204. [Google Scholar] [CrossRef]
- Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet. Diabetologia 2017, 60, 364–376. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Neumiller, J.J.; Johnson, E.J.; Dieter, B.; Tuttle, K.R. Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes 2019, 68, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Naaman, S.; Bakris, G. Slowing Diabetic Kidney Disease Progression: Where Do We Stand Today? ADA Clin. Compend. 2021, 2021, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Merino, J.; Ahmad, A.; Aiken, C.; Benham, J.L.; Bodhini, D.; Clark, A.L.; Colclough, K.; Corcoy, R.; Cromer, S.J.; et al. Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nat. Med. 2023, 29, 2438–2457. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; Wilson, J.M.; Lin, Y.; Qian, H.-R.; Genovese, F.; Karsdal, M.A.; Duffin, K.L.; Botros, F.T. Indicators of Kidney Fibrosis in Patients With Type 2 Diabetes and Chronic Kidney Disease Treated With Dulaglutide. Am. J. Nephrol. 2023, 54, 74–82. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011. [Google Scholar] [CrossRef]
- Looker, H.C.; Colombo, M.; Hess, S.; Brosnan, M.J.; Farran, B.; Dalton, R.N.; Wong, M.C.; Turner, C.; Palmer, C.N.A.; Nogoceke, E.; et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015, 88, 888–896. [Google Scholar] [CrossRef]
- Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.L.; Currie, G.; Delles, C.; Dimos, I.; et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312. [Google Scholar] [CrossRef]
- Williams, L.; Layton, T.; Yang, N.; Feldmann, M.; Nanchahal, J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 2021, 289, 3603–3629. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/febs.16039 (accessed on 18 March 2022). [CrossRef]
- An, Y.A.; Xiong, W.; Chen, S.; Bu, D.; Rutkowski, J.M.; Berger, J.P.; Kusminski, C.M.; Zhang, N.; An, Z.; Scherer, P.E. Endotrophin neutralization through targeted antibody treatment protects from renal fibrosis in a podocyte ablation model. Mol. Metab. 2023, 69, 101680. [Google Scholar] [CrossRef]
- Kolkhof, P.; Delbeck, M.; Kretschmer, A.; Steinke, W.; Hartmann, E.; Bärfacker, L.; Eitner, F.; Albrecht-Küpper, B.; Schäfer, S. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc. Pharmacol. 2014, 64, 69–78. [Google Scholar] [CrossRef]
- Grune, J.; Beyhoff, N.; Smeir, E.; Chudek, R.; Blumrich, A.; Ban, Z.; Brix, S.; Betz, I.R.; Schupp, M.; Foryst-Ludwig, A.; et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifbrotic activity. Hypertension 2018, 71, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis behalf of the FIDELIO-DKD and FIGARO-DKD investigators. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef] [PubMed]
- FDA. Letter of Support (LOS) Initiative. Available online: https://www.fda.gov/media/151774/download (accessed on 16 March 2022).
All (n = 294) | Missing ETP (n = 55) | |
---|---|---|
RASi | 192 (65) | 3 (5.5) |
RASi + SGLT2i | 102 (35) | 52 (95) |
Age (years) | 65 ± 9 | 61 ± 10 |
Female sex | 144 (49) | 24 (44) |
BMI (kg/m2) | 32 ± 5 | 34 ± 6 |
Current or former smoker | 132 (45) | 23 (42) |
Systolic BP (mmHg) | 138 ± 16 | 140 ± 14 |
Diastolic BP (mmHg) | 78 ± 9.5 | 79 ± 8.8 |
Plasma ETP (ng/mL) | 12.2 ± 5.0 | |
eGFR (mL/min/1.73 m2) | 68 (54–78) | 69 (61–83) |
UACR (mg/g) | 10 (4.4–28) | 7.0 (3.6–24) |
Diabetes duration (years) | 14 ± 8 | 14 ± 6 |
HbA1c (%) | 7.5 ± 1.4 | 8.4 ± 5.8 |
C-reactive protein (mg/dL) | 0.3 (0.1–0.6) | 0.3 (0.1–0.7) |
Hemoglobin (g/dL) | 13.7 ± 1.5 | 13.9 ± 1.8 |
LDL cholesterol (mg/dL) | 98 ± 38 | 89 ± 36 |
HDL cholesterol (mg/dL) | 49 ± 14 | 43 ± 9.3 |
Serum triglycerides (mg/dL) | 157 (106–213) | 182 (133–246) |
Serum albumin (g/dL) | 4.5 (4.2–4.8) | 4.6 (4.3–4.9) |
Serum potassium (mmol/L) | 4.4 (4.1–4.7) | 4.4 (4.2–4.7) |
All (n = 239) | ETP < Median (n = 120) | ETP > Median (n = 119) | p | |
---|---|---|---|---|
RASi | 189 (79) | 92 (77) | 97 (82) | |
RASi + SGLT2i | 50 (21) | 28 (23) | 22 (19) | |
Age (years) | 66 ± 8 | 65 ± 7 | 67 ± 10 | 0.13 |
Female sex | 120 (50) | 65 (54) | 55 (46) | 0.27 |
BMI (kg/m2) | 31 ± 5 | 30 ± 4 | 31 ± 5 | 0.11 |
Current or former smoker | 109 (46) | 54 (45) | 55 (46) | 0.70 |
Systolic BP (mmHg) | 137 ± 16 | 138 ± 18 | 136 ± 13 | 0.23 |
Diastolic BP (mmHg) | 78 ± 10 | 78 ± 10 | 78 ± 9 | 0.83 |
Plasma ETP (ng/mL) | 12.2 ± 5.0 | 8.7 ± 1.7 | 15.8 ± 4.6 | <0.001 |
eGFR (mL/min/1.73 m2) | 66 (52–78) | 74 (63–81) | 59 (45–72) | <0.001 |
UACR (mg/g) | 11 (4.7–30) | 8 (4.4–23) | 15 (5.3–39) | 0.03 |
Diabetes duration (years) | 14 ± 8 | 13 ± 8 | 14 ± 8 | 0.32 |
HbA1c (%) | 7.3 ± 1.2 | 7.3 ± 1.3 | 7.2 ± 1.1 | 0.43 |
C-reactive protein (mg/dL) | 0.3 (0.1–0.5) | 0.3 (0.1–0.5) | 0.2 (0.1–0.5) | 0.45 |
Hemoglobin (g/dL) | 13.6 ± 1.4 | 13.9 ± 1.4 | 13.4 ± 1.5 | 0.01 |
LDL cholesterol (mg/dL) | 100 ± 38 | 102 ± 41 | 97 ± 36 | 0.30 |
HDL cholesterol (mg/dL) | 50 ± 15 | 52 ± 15 | 48 ± 15 | 0.08 |
Serum triglycerides (mg/dL) | 142 (100–204) | 142 (98–195) | 151 (104–213) | 0.41 |
Serum albumin (g/dL) | 4.5 (4.2–4.8) | 4.5 (4.2–4.8) | 4.5 (4.2–4.8) | 0.45 |
Serum potassium (mmol/L) | 4.4 (4.1–4.7) | 4.3 (4.1–4.6) | 4.5 (4.1–4.7) | 0.14 |
RASi | RASi + SGLT2i | p | |
---|---|---|---|
eGFR (mL/min/1.73 m2) | −1.96 ± 12 | −0.27 ± 10 | 0.07 |
UACR (mg/g) | 2.51 ± 165 | −7.56 ± 121 | 0.44 |
Serum albumin (g/dL) | −0.04 ± 0.3 | 0.00 ± 0.4 | 0.16 |
Hemoglobin (g/dL) | −0.06 ± 1.2 | 0.32 ± 1.6 | 0.001 |
Serum potassium (mmol/L) | 0.06 ± 0.5 | −0.02 ± 0.4 | 0.05 |
Serum triglycerides (mg/dL) | 4.36 ± 125 | 0.54 ± 113 | 0.71 |
BMI (kg/m2) | 0.00 ± 1.5 | −0.53 ± 2.2 | <0.001 |
Systolic BP (mmHg) | 0.05 ± 16.7 | −3.19 ± 14.5 | 0.02 |
Diastolic BP (mmHg) | 0.06 ± 9.7 | −1.74 ± 8.8 | 0.02 |
HbA1c (%) | 0.13 ± 1.0 | −0.24 ± 1.4 | <0.001 |
C-reactive protein (mg/dL) | 0.01 ± 2.6 | 0.09 ± 2.1 | 0.72 |
LDL cholesterol (mg/dL) | −1.72 ± 32.6 | −0.68 ± 40.7 | 0.77 |
HDL cholesterol (mg/dL) | −0.36 ± 10.1 | 0.91 ± 8.2 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Møller, A.L.; Thöni, S.; Keller, F.; Sharifli, S.; Rasmussen, D.G.K.; Genovese, F.; Karsdal, M.A.; Mayer, G. Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes. Biomedicines 2023, 11, 3084. https://doi.org/10.3390/biomedicines11113084
Møller AL, Thöni S, Keller F, Sharifli S, Rasmussen DGK, Genovese F, Karsdal MA, Mayer G. Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes. Biomedicines. 2023; 11(11):3084. https://doi.org/10.3390/biomedicines11113084
Chicago/Turabian StyleMøller, Alexandra Louise, Stefanie Thöni, Felix Keller, Samir Sharifli, Daniel Guldager Kring Rasmussen, Federica Genovese, Morten Asser Karsdal, and Gert Mayer. 2023. "Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes" Biomedicines 11, no. 11: 3084. https://doi.org/10.3390/biomedicines11113084
APA StyleMøller, A. L., Thöni, S., Keller, F., Sharifli, S., Rasmussen, D. G. K., Genovese, F., Karsdal, M. A., & Mayer, G. (2023). Combination Therapy of RAS Inhibition and SGLT2 Inhibitors Decreases Levels of Endotrophin in Persons with Type 2 Diabetes. Biomedicines, 11(11), 3084. https://doi.org/10.3390/biomedicines11113084