An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches
Abstract
:1. Introduction
1.1. Heterocycles as HCV-NS5B Inhibitors
1.2. Rational Designed and SAR of Previously Reported Heterocycles
1.3. In Silico Anti-HCV NS5B Inhibitory Work Flow via CADD Approach
2. Materials and Methods
2.1. Chemistry of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15
2.2. Molecular Docking of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15
2.3. ADMET and Drug-Likeness Studies of Benzofuran-1,3,4-Oxadiazoles BF1-7 and-1,2,4-Triazoles BF8-15
2.4. MD Simulation of the Most Bioactive BF-9, BF-12 and BF-13 Derivatives
2.5. MM-PBSA Binding Free Energy Calculations of the Most Bioactive BF-9, BF-12, and BF-13 Derivatives
2.6. DFT Studies of the Most Bioactive BF-9, BF-12, and BF-13 Derivatives
3. Results and Discussion
3.1. Chemistry
3.2. Computational Biological Screening of Benzofuran-1,3,4-Oxadiazoles BF1–BF7 and-1,2,4-Triazoles BF8–BF15 Using CADD Approach
3.3. Structure–Activity Relationship (SAR) of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13
3.4. ADMET and Drug-Likeness Investigations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13
3.5. MD Simulations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13
3.6. MM-PBSA Investigations of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13
3.7. Energy Decomposition Analysis
3.8. DFT Studies of the Most Bioactive Benzofurans BF-9, BF-12, and BF-13
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, M. Discovery of the Hepatitis C Virus. Liver Int. 2009, 29, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Payne, S. Introduction to animal viruses. In Viruses; Academic Press: Cambridge, MA, USA, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- World Health Organization. Global Hepatitis Report; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241565455. [Google Scholar]
- Ganta, N.M.; Gedda, G.; Rathnakar, B.; Satyanarayana, M.; Yamajala, B.; Ahsan, M.J.; Jadav, S.S.; Balaraju, T. A review on HCV inhibitors: Significance of non-structural Polyproteins. Eur. J. Med. Chem. 2019, 164, 576–601. [Google Scholar] [CrossRef] [PubMed]
- Zając, M.; Muszalska, I.; Sobczak, A.; Dadej, A.; Tomczak, S.; Jelińska, A. Hepatitis C—New drugs and treatment prospects. Eur. J. Med. Chem. 2019, 165, 225–249. [Google Scholar] [CrossRef]
- Seley-Radtke, K.L.; Thames, J.E.; Waters, C.D. Broad Spectrum Antiviral Nucleosides—Our Best Hope for the Future. Annu. Rep. Med. Chem. 2021, 57, 109–132. [Google Scholar]
- Eltahla, A.A.; Luciani, F.; White, P.A.; Lloyd, A.R.; Bull, R.A. Inhibitors of the Hepatitis C Virus Polymerase; Mode of Action and Resistance. Viruses 2015, 7, 5206–5224. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Arias, L. Mechanisms of Resistance to Nucleoside Analogue Inhibitors of HIV-1 Reverse Transcriptase. Virus Res. 2008, 134, 124–146. [Google Scholar] [CrossRef]
- Chen, J.; Peng, C.; Wang, J.; Zhu, W. Exploring Molecular Mechanism of Allosteric Inhibitor to Relieve Drug Resistance of Multiple Mutations in HIV-1 Protease by Enhanced Conformational Sampling. Proteins Struct. Funct. Bioinform. 2018, 86, 1294–1305. [Google Scholar] [CrossRef]
- Elhefnawi, M.; El-Gamacy, M.; Fares, M. Multiple virtual screening approaches for finding new hepatitis C virus RNA-dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinform. 2012, 13 (Suppl. S17), S5. [Google Scholar] [CrossRef]
- Diab, S.; McQuade, D.T.; Gupton, B.F.; Gerogiorgis, D.I. Process Design and Optimization for the Continuous Manufacturing of Nevirapine, an Active Pharmaceutical Ingredient for HIV Treatment. Org. Process Res. Dev. 2019, 23, 320–333. [Google Scholar] [CrossRef]
- Gentles, R.G. Discovery of Beclabuvir: A Potent Allosteric Inhibitor of the Hepatitis C Virus Polymerase. Top. Med. Chem. 2019, 31, 193–228. [Google Scholar]
- Zhao, F.; Liu, N.; Zhan, P.; Jiang, X.; Liu, X. Discovery of HCV NS5B Thumb Site I Inhibitors: Core-Refining from Benzimidazole to Indole Scaffold. Eur. J. Med. Chem. 2015, 13, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Delang, L.; Neyts, J.; Vliegen, I.; Abrignani, S.; Neddermann, P.; De-Francesco, R. Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. Curr. Top. Microbiol. Immunol. 2013, 369, 289–320. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, S.; Prasad, B.V.L.S.; Selvarajan, R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Arce-Ramos, L.; Castillo, J.C.; Becerra, D. Synthesis and Biological Studies of Benzo[b]furan Derivatives: A Review from 2011 to 2022. Pharmaceuticals 2023, 16, 1265. [Google Scholar] [CrossRef]
- Aziz, H.; Zahoor, A.F.; Shahzadi, I.; Irfan, A. Recent Synthetic Methodologies Towards the Synthesis of Pyrazoles. Polycycl. Aromat. Comp. 2019, 41, 698–720. [Google Scholar] [CrossRef]
- Chawla, S.; Sharma, S.; Kashid, S.; Verma, P.K.; Sapra, A. Therapeutic Potential of Thiophene Compounds: A Mini-Review. Mini. Rev. Med. Chem. 2023, 23, 1514–1534. [Google Scholar] [CrossRef]
- Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-Oxadiazole Topsentin Analogs with Antiproliferative Activity against Pancreatic Cancer Cells, Targeting GSK3β Kinase. ChemMedChem. 2021, 16, 537–554. [Google Scholar] [CrossRef]
- Pecoraro, C.; De Franco, M.; Carbone, D.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Moro, S.; et al. 1,2,4-Amino-triazine derivatives as pyruvate dehydrogenase kinase inhibitors: Synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2023, 249, 115134. [Google Scholar] [CrossRef]
- Rubab, L.; Anum, A.; Al-Hussain, S.A.; Irfan, A.; Ahmad, S.; Ullah, S.; Al-Mutairi, A.A.; Zaki, M.E.A. Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts 2022, 12, 1329. [Google Scholar] [CrossRef]
- Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Sarkar, S.; Majee, A. Recent advances on heterocyclic compounds with antiviral properties. Chem. Heterocycl. Comp. 2021, 57, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Henary, M. Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules 2022, 27, 2700. [Google Scholar] [CrossRef]
- Chan, L.; Das, S.K.; Reddy, T.J.; Poisson, C.; Proulx, M.; Pereira, O.; Courchesne, M.; Roy, C.; Wang, W.; Siddiqui, A.; et al. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: Sulfonamides. Bioorg. Med. Chem. Lett. 2004, 9, 793–796. [Google Scholar]
- Watkins, W.J. Evolution of HCV NS5B Non-Nucleoside Inhibitors. Top. Med. Chem. 2019, 8, 614–634. [Google Scholar]
- Makhova, N.N.; Belen’kii, L.I.; Gazieva, G.A.; Dalinger, I.L.; Konstantinova, L.S.; Kuznetsov, V.V.; Kravchenko, A.N.; Krayushkin, M.M.; Rakitin, O.A.; Starosotnikov, A.M.; et al. Progress in the Chemistry of Nitrogen-, Oxygen- and Sulfur-Containing Heterocyclic Systems. Russ. Chem. Rev. 2020, 89, 55. [Google Scholar] [CrossRef]
- Frank, É.; Szőllősi, G. Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications. Molecules 2021, 26, 4617. [Google Scholar] [CrossRef]
- Faisal, S.; Lal Badshah, S.; Kubra, B.; Sharaf, M.; Emwas, A.H.; Jaremko, M.; Abdalla, M. Computational Study of SARS-CoV-2 Rna Dependent Rna Polymerase Allosteric Site Inhibition. Molecules 2022, 27, 223. [Google Scholar] [CrossRef]
- Yeung, K.-S.; Beno, B.R.; Parcella, K.; Bender, J.A.; Grant-Young, K.A.; Nickel, A.; Gunaga, P.; Anjanappa, P.; Bora, R.O.; Selvakumar, K.; et al. Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies. J. Med. Chem. 2017, 25, 4369–4385. [Google Scholar] [CrossRef]
- Hang, J.Q.; Yang, Y.; Harris, S.F.; Leveque, V.; Whittington, H.J.; Rajyaguru, S.; Ao-Ieong, G.; McCown, M.F.; Wong, A.; Giannetti, A.M.; et al. Slow binding inhibition and mechanism of resistance of non-nucleoside polymerase inhibitors of hepatitis C virus. J. Biol. Chem. 2009, 284, 15517–15529. [Google Scholar] [CrossRef]
- Irfan, A.; Faiz, S.; Rasul, A.; Zafar, R.; Zahoor, A.F.; Kotwica-Mojzych, K.; Mojzych, M. Exploring the Synergistic Anticancer Potential of Benzofuran–Oxadiazoles and Triazoles: Improved Ultrasound-and Microwave-Assisted Synthesis, Molecular Docking, Hemolytic, Thrombolytic and Anticancer Evaluation of Furan-Based Molecules. Molecules 2022, 27, 1023. [Google Scholar] [CrossRef] [PubMed]
- Faiz, S.; Zahoor, A.F.; Ajmal, M.; Kamal, S.; Ahmad, S.; Abdelgawad, A.M.; Elnaggar, M.E. Design, Synthesis, Antimicrobial Evaluation, and Laccase Catalysis Effect of Novel Benzofuran–Oxadiazole and Benzofuran–Triazole Hybrids. J. Heterocycl. Chem. 2019, 56, 2839–2852. [Google Scholar] [CrossRef]
- Barnes-Seeman, D.; Boiselle, C.; Capacci-Daniel, C.; Chopra, R.; Hoffmaster, K.; Jones, C.T.; Kato, M.; Lin, K.; Ma, S.; Pan, G.; et al. Design and Synthesis of Lactam-Thiophene Carboxylic Acids as Potent Hepatitis C Virus Polymerase In-hibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systèmes. Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: Vélizy-Villacoublay, France, 2023. [Google Scholar]
- Gana, A.S.; Baraniuk, J.N. Identification of a New Drug Binding Site in the RNA-Dependent-RNA-Polymerase (RdRp) Domain. Bio. Med. Inform. 2023, 3, 885–907. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comb. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Saunders, W.R.; Grant, J.; Müller, E.H. Long Range Forces in a Performance Portable Molecular Dynamics Framework. Adv. Parallel. Comput. 2018, 22, 37–46. [Google Scholar]
- Paquet, E.; Viktor, H.L. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review. BioMed. Res. Int. 2015, 2015, 183918. [Google Scholar] [CrossRef]
- Shao, X. Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J. Chem. Phys. 2017, 146, 124108. [Google Scholar]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J. XMGRACE, Version 5.1. 19; Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2005. [Google Scholar]
- Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the Performance of MM/PBSA ad MM/GBSA Methods. 5. Improved Docking Performance Using High Solute Dielectric Constant MM/GBSA and MM/PBSA Rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5.0; Gaussian: Wallingford, CT, USA, 2008. [Google Scholar]
- Muhammed, M.T.; Aki-Yalcin, E. Computational insight into the mechanism of action of DNA gyrase inhibitors; revealing a new mechanism. Curr. Comput. Aided Drug. Des. 2023, 20, 224–235. [Google Scholar] [CrossRef]
- Lu, S.; Huang, W.; Wang, Q.; Shen, Q.; Li, S.; Nussinov, R.; Zhang, J. The Structural Basis of ATP as an Allosteric Modulator. PLoS Comput. Biol. 2014, 10, e1003831. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Song, K.; Shen, Q.; Ni, D.; Li, Q.; He, X.; Zhang, H.; Wang, Q.; Chen, Y.; et al. Unraveling Allosteric Landscapes of Allosterome with ASD. Nucleic Acids Res. 2020, 48, D394–D401. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Zhao, X.E. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4684–4701. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Wang, G.; Li, S.; Liu, X.; Lu, S.; Chen, Z.; Song, K.; Yan, J.; Geng, L.; Huang, Z.; et al. ASD v3.0: Unraveling Allosteric Regulation with Structural Mechanisms and Biological Networks. Nucleic Acids Res. 2016, 44, D527–D535. [Google Scholar] [CrossRef]
- Kaniskan, H.Ü.; Eram, M.S.; Zhao, K.; Szewczyk, M.M.; Yang, X.; Schmidt, K.; Luo, X.; Xiao, S.; Dai, M.; He, F.; et al. Discovery of Potent and Selective Allosteric Inhibitors of Protein Arginine Methyltransferase 3 (PRMT3). J. Med. Chem. 2018, 61, 1204–1217. [Google Scholar] [CrossRef]
- Zeyrek, C.T.; Arpacı, T.; Arısoy, M.; Onurdağ, F.K. Synthesis, antimicrobial activity, density functional modelling and molecular docking with COVID-19 main protease studies of benzoxazole derivative: 2-(p-chloro-benzyl)-5-[3-(4-ethly-1-piperazynl) propionamido]-benzoxazole. J. Mol. Struct. 2021, 1237, 130413. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Peng, E.; Huang, N.; Huang, Q.; Huq, A.; Lau, M.; Colonno, R.; Li, L. Discovery of novel potent HCV NS5B polymerase non-nucleoside inhibitors bearing a fused benzofuran scaffold. Bioorg. Med. Chem. Lett. 2018, 28, 963–968. [Google Scholar] [CrossRef]
- Arslan, G.; Gökçe, B.; Muhammed, M.T.; Albayrak, Ö.; Önkol, T.; Özçelik, A.B. Synthesis, DFT Calculations, and Molecular Docking Study of Acetohydrazide-Based Sulfonamide Derivatives as Paraoxonase 1 Inhibitors. Chem. Select. 2023, 8, e202204630. [Google Scholar] [CrossRef]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1978, 68, 3801. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity index. Chem. Rev. 2006, 106, 2065–2091. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, T. About the assignment of wave functions and eigenvalues to the individual electrons of an atom. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Akman, S.; Akkoc, S.; Zeyrek, C.T.; Muhammed, M.T.; Ilhan, I.O. Density functional modeling, and molecular docking with SARS-CoV-2 spike protein (Wuhan) and omicron S protein (variant) studies of new heterocyclic compounds including a pyrazoline nucleus. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef]
- Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A.R.; Hatamjafari, F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and subs. J. Chem. Res. 2021, 45, 147–158. [Google Scholar] [CrossRef]
- Ruiz-Morales, Y. HOMO-LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. J. Phys. Chem. A 2002, 106, 11283–11308. [Google Scholar] [CrossRef]
- Han, M.I.; Dengiz, C.; Doğan, D.; Gündüz, M.G.; Köprü, S.; Özkul, C. Isoquinolinedione-urea hybrids: Synthesis, antibacterial evaluation, drug-likeness, molecular docking and DFT studies. J. Mol. Struct. 2022, 1252, 132007. [Google Scholar] [CrossRef]
- Smith, R.D.; Lu, J.; Carlson, H.A. Are There Physicochemical Differences between Allosteric and Competitive Ligands? PLoS Comput. Biol. 2017, 13, e1005813. [Google Scholar] [CrossRef] [PubMed]
Compounds | Binding Affinities with NS5B PS-II (Kcal/mol) | Hydrogen Bonds with PS-II Residues | Hydrophobic Interactions with PS-II Residues | Other Interactions, e.g., Sulfur-X, Pi-Sulfur, and Halogen Interactions with PS-II Residues |
---|---|---|---|---|
BF-9 | −16.09 | CYS316, SER365, CYS366,SER368, TYR415 | LEU204, LEU 314,VAL321, ILE363,SER365, CYS366, LEU384 | CYS316, CYS366, ARG200, TYR555 |
BF-12 | −15.75 | CYS366, SER368, LEU384,PRO197, LEU384, TYR383, ARG200 | VAL201,LEU314, VAL321, CYS316, PRO417, HIS467, CYS366, LEU384 | HIS467, MET414, |
BF-13 | −15.82 | CYS316, ARG200, SER368, | LEU204, LEU 314, VAL321, ILE363, SER365, CYS366, LEU384, TYR415 MET414, PRO197, TYR448 | CYS366, ARG200 |
Nesbuvir | −15.42 | CYS316, SER368, ASP319, ARG200, LEU314 | CYS366, SER365, LEU384, PHE193, CYS316, LEU204, VAL321, SER365, TYR448 | MET414, CYS316 |
ADMET and Drug-Likeness Profile | BF-9 | BF-12 | BF-13 |
---|---|---|---|
LogS | −4.022 | −5.624 | −5.157 |
LogD | 2.544 | 3.786 | 4.019 |
TPSA | 85.420 | 72.950 | 72.950 |
HIA | +ive | +ive | +ive |
AMES Toxic | No | Yes | Yes |
MDCK cells permeability | Medium | Low | Low |
Lipinski’s Rule | Accepted | Accepted | Accepted |
Golden Triangle | Accepted | Accepted | Accepted |
BBB penetration | +ive | +ive | +ive |
Acute Toxicity Rule | 0-Alerts | 0-Alerts | 0-Alerts |
Energy Parameter | BF-9+NS5B Complex | BF-12+NS5B Complex | BF-13+NS5B Complex |
---|---|---|---|
MM-GBSA | |||
Van der Waals | −69.25 | −70.06 | −65.22 |
Electrostatic | −28.09 | −29.10 | −25.97 |
Delta Ggas | −97.34 | −99.16 | −91.19 |
Delta Gsolv | 20.01 | 21.00 | 19.88 |
DeltaTotal | −77.33 | −78.16 | −71.31 |
MM-PBSA | |||
Van der Waals | −69.25 | −70.06 | −65.22 |
Electrostatic | −28.09 | −29.10 | −25.97 |
Delta Ggas | −97.34 | −99.16 | −91.19 |
Delta Gsolv | 22.00 | 23.77 | 20.11 |
DeltaTotal | −75.34 | −75.39 | −71.08 |
Residues | Complex | ||
---|---|---|---|
BF-9 | BF-12 | BF-13 | |
Arg200 | −3.04 | −4.20 | −3.08 |
Arg386 | −1.67 | −1.08 | −1.63 |
Asn369 | −1.34 | −1.05 | −1.64 |
Asp319 | −1.02 | −1.11 | −1.05 |
Cys316 | −1.10 | −1.64 | −1.60 |
Cys316 | −1.06 | −1.00 | −1.04 |
Cys366 | −4.62 | −3.10 | −2.85 |
His467 | −1.03 | −1.05 | −1.12 |
Leu384 | −1.36 | −1.14 | −1.67 |
Met414 | −3.2 | −5.36 | −3.36 |
Phe193 | −1.36 | −1.05 | −1.67 |
Pro197 | −1.10 | −1.05 | −1.87 |
Ser365 | −1.05 | −1.36 | −1.45 |
Ser368 | −1.05 | −1.41 | −1.36 |
Tyr415 | −1.03 | −1.01 | −1.0 |
Tyr555 | −2.68 | −1.67 | −1.39 |
Val370 | −1.02 | −1.09 | −1.54 |
Parameters | BF-9 | BF-12 | BF-13 |
---|---|---|---|
Etotal | −37,010.927 | −38,200.867 | −37,639.591 |
EHOMO | −5.961 | −6.008 | −5.914 |
ELUMO | −1.913 | −1.686 | −1.865 |
ΔE | 4.048 | 4.322 | 4.049 |
Ionization potential (IP = −EHOMO) | 5.961 | 6.008 | 5.914 |
Electron affinity (A = −ELUMO) | 1.913 | 1.686 | 1.865 |
Chemical potential (µ = −(I + A)/2) | −3.937 | −3.847 | −3.890 |
Hardness (η = (I − A)/2) | 2.024 | 2.161 | 2.025 |
Mulliken electronegativity (χ = (I + A)/2) [60] | 3.937 | 3.847 | 3.890 |
Softness (S = 1/2η) | 0.247 | 0.231 | 0.249 |
Electrophilicity index (ω = µ2/2η) [61] | 3.828 | 3.419 | 3.768 |
Maximum charge transfer (ΔNmax = (I + A)/2(I − A)) [62] | 0.973 | 0.890 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, A.; Faisal, S.; Ahmad, S.; Saif, M.J.; Zahoor, A.F.; Khan, S.G.; Javid, J.; Al-Hussain, S.A.; Muhammed, M.T.; Zaki, M.E.A. An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines 2023, 11, 3085. https://doi.org/10.3390/biomedicines11113085
Irfan A, Faisal S, Ahmad S, Saif MJ, Zahoor AF, Khan SG, Javid J, Al-Hussain SA, Muhammed MT, Zaki MEA. An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines. 2023; 11(11):3085. https://doi.org/10.3390/biomedicines11113085
Chicago/Turabian StyleIrfan, Ali, Shah Faisal, Sajjad Ahmad, Muhammad Jawwad Saif, Ameer Fawad Zahoor, Samreen Gul Khan, Jamila Javid, Sami A. Al-Hussain, Muhammed Tilahun Muhammed, and Magdi E. A. Zaki. 2023. "An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches" Biomedicines 11, no. 11: 3085. https://doi.org/10.3390/biomedicines11113085
APA StyleIrfan, A., Faisal, S., Ahmad, S., Saif, M. J., Zahoor, A. F., Khan, S. G., Javid, J., Al-Hussain, S. A., Muhammed, M. T., & Zaki, M. E. A. (2023). An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines, 11(11), 3085. https://doi.org/10.3390/biomedicines11113085