VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Software Description
2.2. Dataset for Developing VinegarScan Tool
2.3. Software Architecture
2.4. Model Development
3. Results and Discussion
3.1. Brief Mathematical Background Resulting from Training Datasets
3.2. Format of the Spectral File
3.3. GUI Design and Operating Procedure for Vinegar Authentication
3.4. Test Results
3.5. Future Software Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.D.; Bu, L.J.; Peng, X.W.; Li, Z.X. Ultraviolet Spectroscopy Method for Classifying Vinegars. Adv. Mater. Res. 2011, 346, 865–874. [Google Scholar] [CrossRef]
- Chapman, J.; Gangadoo, S.; Truong, V.K.; Cozzolino, D. Spectroscopic approaches for rapid beer and wine analysis. Curr. Opin. Food Sci. 2019, 28, 67–73. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P.A. Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem. 2011, 126, 673–678. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Camiña, J.M.; Callejón, R.M.; Azcarate, S.M. Spectralprint techniques for wine and vinegar characterization, authentication and quality control: Advances and projections. TrAC—Trends Anal. Chem. 2021, 134, 116121. [Google Scholar] [CrossRef]
- Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. Ultraviolet-visible spectroscopy for food quality analysis. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Southston, UK, 2019; pp. 91–104. ISBN 9780128142172. [Google Scholar]
- Casale, M.; Bagnasco, L.; Casolino, C.; Lanteri, S.; Leardi, R. Spectroscopic fingerprinting techniques for food characterisation. Acta IMEKO 2016, 5, 32–35. [Google Scholar] [CrossRef] [Green Version]
- BOJA 15/10 Inscripción de la Denominación de Origen Protegida “Vinagre de Jerez”. Boletín Oficial de la Junta de Andalucía 2008, 184, 29–35. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/areas/industrias-agroalimentarias/calidad/paginas/denominaciones-calidad-vinagres.html (accessed on 15 January 2021).
- BOJA 03/11 Inscripción de la Denominación de Origen Protegida “Vinagre de Montilla-Moriles”. Boletín Oficial de la Junta de Andalucía. 2008. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/areas/industrias-agroalimentarias/calidad/paginas/denominaciones-calidad-vinagres.html (accessed on 15 January 2021).
- BOJA 15/10 Inscripción de la Denominación de Origen Protegida “Vinagre del Condado de Huelva”. Boletín Oficial de la Junta de Andalucía 2008, 184, 35–40. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/areas/industrias-agroalimentarias/calidad/paginas/denominaciones-calidad-vinagres.html (accessed on 15 January 2021).
- Ríos-Reina, R.; Segura-Borrego, M.P.; García-González, D.L.; Morales, M.L.; Callejón, R.M. A comparative study of the volatile profile of wine vinegars with protected designation of origin by headspace stir bar sorptive extraction. Food Res. Int. 2019, 123, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Segura-Borrego, M.P.; Morales, M.L.; Callejón, R.M. Characterization of the aroma profile and key odorants of the Spanish PDO wine vinegars. Food Chem. 2020, 311, 126012. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; García-González, D.L.; Callejón, R.M.; Amigo, J.M. NIR spectroscopy and chemometrics for the typification of Spanish wine vinegars with a protected designation of origin. Food Control 2018, 89, 108–116. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Callejón, R.M.; Oliver-Pozo, C.; Amigo, J.M.; García-González, D.L. ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control 2017, 78, 230–237. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Elcoroaristizabal, S.; Ocaña-González, J.A.; García-González, D.L.; Amigo, J.M.; Callejón, R.M. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chem. 2017, 230, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Geana, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [Green Version]
- Torrecilla, J.S.; Aroca-Santos, R.; Cancilla, J.C.; Matute, G. Linear and non-linear modeling to identify vinegars in blends through spectroscopic data. LWT—Food Sci. Technol. 2016, 65, 565–571. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.; Callejón, R.M.; Amigo, J.M. Application of hierarchical classification models and reliability estimation by bootstrapping, for authentication and discrimination of wine vinegars by UV–vis spectroscopy. Chemom. Intell. Lab. Syst. 2019, 191, 42–53. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.M.; Callejón, R.M. Sensory and spectroscopic characterization of Argentinean wine and balsamic vinegars: A comparative study with European vinegars. Food Chem. 2020, 323, 126791. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. Potential of ultraviolet-visible spectroscopy for the differentiation of spanish vinegars according to the geographical origin and the prediction of their functional properties. Foods 2021, 10, 1830. [Google Scholar] [CrossRef]
- Ballabio, D.; Vasighi, M. A MATLAB toolbox for Self Organizing Maps and supervised neural network learning strategies. Chemom. Intell. Lab. Syst. 2012, 118, 24–32. [Google Scholar] [CrossRef]
- Bro, R. Multiway calibration. Multilinear PLS. J. Chemom. 1996, 10, 47–61. [Google Scholar] [CrossRef]
- Caballero, D.; Caro, A.; Rodríguez, P.G.; Durán, M.L.; Del Mar Ávila, M.; Palacios, R.; Antequera, T.; Pérez-Palacios, T. Modeling salt diffusion in Iberian ham by applying MRI and data mining. J. Food Eng. 2016, 189, 115–122. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine learning and data mining. Commun. ACM 1999, 42, 30–36. [Google Scholar] [CrossRef]
- Molano, R.; Rodríguez, P.G.; Caro, A.; Durán, M.L. Finding the largest area rectangle of arbitrary orientation in a closed contour. Appl. Math. Comput. 2012, 218, 9866–9874. [Google Scholar] [CrossRef]
- Gil-Sánchez, L.; Garcia-Breijo, E.; Garrigues, J.; Alcañiz, M.; Escriche, I.; Kadar, M. Classification of honeys of different floral origins by artificial neural networks. Proc. IEEE Sens. 2011, 1780–1783. [Google Scholar] [CrossRef]
- Mishra, P.; Roger, J.M.; Marini, F.; Biancolillo, A.; Rutledge, D.N. FRUITNIR-GUI: A graphical user interface for correcting external influences in multi-batch near infrared experiments related to fruit quality prediction. Postharvest Biol. Technol. 2021, 175, 111414. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. SIRITOOL: A Matlab graphical user interface for image analysis in structured-illumination reflectance imaging for fruit defect detection. Am. Soc. Agric. Biol. Eng. 2020, 63, 1037–1047. [Google Scholar] [CrossRef]
- Predic, B.; Ilic, M.; Spalevic, P.; Trajkovic, S.; Jovic, S.; Stanic, A. Data mining based tool for early prediction of possible fruit pathogen infection. Comput. Electron. Agric. 2018, 154, 314–319. [Google Scholar] [CrossRef]
- Blanchette, J.; Summerfield, M. C++ GUI Programming with Qt 4; Robbins, A., Ed.; Prentice Hall Publishing: Westford, MA, USA, 2008; ISBN 978-0-13-714397-9. [Google Scholar]
- Vens, C.; Struyf, J.; Schietgat, L.; Džeroski, S.; Blockeel, H. Decision trees for hierarchical multi-label classification. Mach. Learn. 2008, 73, 185–214. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A.; Holden, N. Comparing several approaches for hierarchical classification of proteins with decision trees. In Brazilian Symposium on Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4643, pp. 126–137. [Google Scholar] [CrossRef] [Green Version]
- Drazin, S.; Montag, M. Decision Tree Analysis using Weka. In Machine Learning-Project II; University of Miami: Coral Gables, FL, USA, 2012; pp. 1–3. [Google Scholar]
- Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn. 1994, 16, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Caballero, D.; Asensio, M.; Fernández, C.; Martín, N.; Silva, A. Classifying different Iberian pig genetic lines by applying chemical–instrumental parameters of dry-cured Iberian shoulders. J. Food Sci. Technol. 2018, 55, 4589–4599. [Google Scholar] [CrossRef]
- Caballero, D.; Asensio, M.; Fernández, C.; Reina, R.; García-Casco, J.; Martín, N.; Silva, A. Chemical-instrumental-sensory traits and data mining for classifying dry-cured Iberian shoulders from pigs with different diets. J. Food Meas. Charact. 2019, 13, 2935–2950. [Google Scholar] [CrossRef]
- Anyanwu, M.N.; Shiva, S. Comparative Analysis of Serial Decision Tree Classification Algorithms. Int. J. Comput. Sci. Secur. 2009, 3, 230–240. [Google Scholar]
- Priyam, A.; Gupta, R.; Rathee, A.; Srivastava, S. Comparative Analysis of Decision Tree Classification Algorithms. Int. J. Curr. Eng. Technol. 2013, 3, 334–337. [Google Scholar]
- Bramer, M. Principles of Data Mining; Springer: London, UK, 2016; ISBN 9781447173076. [Google Scholar]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Cantarelli, M.Á.; Pellerano, R.G.; Marchevsky, E.J.; Camiña, J.M. Classification of argentinean sauvignon blanc wines by UV spectroscopy and chemometric methods. J. Food Sci. 2013, 78, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Sen, I.; Tokatli, F. Differentiation of wines with the use of combined data of UV-visible spectra and color characteristics. J. Food Compos. Anal. 2016, 45, 101–107. [Google Scholar] [CrossRef] [Green Version]
Type | Geographical Indication | PDO | Geographical Origin | Category | Ageing Time | Code | N 1 |
---|---|---|---|---|---|---|---|
Aged | PDO | “Vinagre de Jerez” | South of Spain (Andalusia) | - | ≥6 months | JCR | 7 |
“Reserva” | ≥2 years | JRE | 9 | ||||
“Vinagre de Montilla-Moriles” | “Crianza” | ≥6 months | MCR | 6 | |||
“Reserva” | ≥2 years | MRE | 7 | ||||
“Vinagre de Condado de Huelva” | “Solera” | ≥6 months | CSO | 7 | |||
“Reserva” | ≥2 years | CRE | 7 | ||||
Not aged | PDO | “Vinagre de Condado de Huelva” | - | - | CSC | 7 | |
Without PDO (Rapid vinegars) | - | Different Spanish locations | - | - | RV | 7 | |
Different Argentinian locations | - | - | RV | 10 |
Sample | Results | % Probability |
---|---|---|
CRE1 | CRE | 87 |
CRE2 | CRE | 84 |
CSC1 | CSC | 83 |
CSC2 | CSC | 79 |
CSO1 | CSO | 51 |
CSO2 | CSO | 50 |
JCR1 | JCR | 53 |
JCR2 | JCR | 55 |
JRE1 | JRE | 66 |
JRE2 | JRE | 66 |
JRE3 | JRE | 52 |
JRE4 | JRE | 52 |
MCR1 | MCR | 51 |
MCR2 | MCR | 52 |
MRE1 | MRE | 58 |
MRE2 | MRE | 58 |
RV1 | RV | 53 |
RV2 | RV | 54 |
RV3 | RV | 53 |
RV4 | RV | 55 |
RV5 | RV | 54 |
RV6 | RV | 53 |
RV7 | RV | 58 |
RV8 | RV | 58 |
RV9 | RV | 60 |
RV10 | RV | 60 |
RV11 | RV | 50 |
RV12 | RV | 50 |
RV13 | RV | 55 |
RV14 | RV | 57 |
RV15 | RV | 56 |
RV16 | RV | 58 |
RV17 | RV | 58 |
RV18 | RV | 66 |
RV19 | RV | 58 |
RV20 | RV | 58 |
RV21 | RV | 61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Reina, R.; Caballero, D.; Azcarate, S.M.; García-González, D.L.; Callejón, R.M.; Amigo, J.M. VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars. Chemosensors 2021, 9, 296. https://doi.org/10.3390/chemosensors9110296
Ríos-Reina R, Caballero D, Azcarate SM, García-González DL, Callejón RM, Amigo JM. VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars. Chemosensors. 2021; 9(11):296. https://doi.org/10.3390/chemosensors9110296
Chicago/Turabian StyleRíos-Reina, Rocío, Daniel Caballero, Silvana M. Azcarate, Diego L. García-González, Raquel M. Callejón, and José M. Amigo. 2021. "VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars" Chemosensors 9, no. 11: 296. https://doi.org/10.3390/chemosensors9110296
APA StyleRíos-Reina, R., Caballero, D., Azcarate, S. M., García-González, D. L., Callejón, R. M., & Amigo, J. M. (2021). VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars. Chemosensors, 9(11), 296. https://doi.org/10.3390/chemosensors9110296