Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors
Abstract
:1. Introduction
2. Methods for the Synthesis and Characterization of Perovskites
2.1. Sol-Gel Synthesis
2.2. Microwave Irradiation Process
2.3. Coprecipitation Process
2.4. Solid-State Synthesis Technique
2.5. Other Synthesis Techniques
2.6. Characterization Methods
3. Perovskite-Based Electrochemical Sensors for the Detection of Hydrogen Peroxide
4. Perovskite-Based Electrochemical Sensors for the Detection of Glucose
5. Perovskite-Based Electrochemical Sensors for the Detection of DA
6. Comparison of Perovskite-Based Electrochemical Sensors with Ni and Co Oxide-Based Electrochemical Sensors
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human cells. Cancer Res. 1991, 51, 794–798. [Google Scholar]
- Lockhart, M.J.; Smith, D. Should continuous glucose monitoring systems be offered to all patients with type 1 diabetes mellitus? Ir. J. Med. Sci. 2021, 1–14, Online ahead of print. [Google Scholar] [CrossRef]
- Sackner-Bernstein, J. Estimates of Intracellular Dopamine in Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Parkinsons Dis. 2021, 11, 1011–1018. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, N. Electrochemical Biosensors Based on Micro-fabricated Devices for Point-of-care Testing: A Review. Electroanalysis 2021, 33, 1–17. [Google Scholar]
- Mass, M.; Veiga, L.S.; Garate, O.; Longinotti, G.; Moya, A.; Ramón, E.; Villa, R.; Ybarra, G.; Gabriel, G. Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles. Nanomaterials 2021, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Li, G.; Xu, T.; Su, L.; Yan, D.; Zhang, X. Ruthenium-based Conjugated Polymer and Metal-organic Framework Nanocomposites for Glucose Sensing. Electroanalysis 2021, 33, 1902–1910. [Google Scholar] [CrossRef]
- Baluta, S.; Zaja, D.; Szyszka, A.; Malecha, K.; Cabaj, J. Enzymatic Platforms for Sensitive Neurotransmitter Detection. Sensors 2020, 20, 423. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, T.; Ellialtioglu, S. Electronic and Optical Properties of d-Band Perovskites; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780511541292. [Google Scholar]
- Szafraniak, B.; Fusnik, L.; Xu, J.; Gao, F.; Brudnik, A.; Rydosz, A. Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: A review. Coatings 2021, 11, 185. [Google Scholar] [CrossRef]
- Atta, N.F.; El-Ads, E.H.; Galal, A. Perovskites: Smart Nanomaterials for Sensory Applications in Designing Nanosensors for Chemical and Biological Applications; Atta, N.F., Ed.; International Frequency Sensor Association Publishing: Barcelona, Spain, 2017; pp. 149–205. ISBN 978-84-697-3290-8. [Google Scholar]
- Assirey, E.A.R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Ramachandran, R.; Chen, S.M.; Kavitha, N.; Dinakaran, K.; Kannan, R.; Anushya, G.; Bhuvana, N.; Jeyapragasam, T.; Mariyappan, V.; et al. Developing low-cost, high performance, robust and sustainable perovskite electrocatalytic materials in the electrochemical sensors and energy sectors: “An overview”. Catalysts 2020, 10, 938. [Google Scholar] [CrossRef]
- Chen, T.W.; Ramachandran, R.; Chen, S.M.; Anushya, G.; Ramachandran, K. Graphene and perovskite-based nanocomposite for both electrochemical and gas sensor applications: An overview. Sensors 2020, 20, 6755. [Google Scholar] [CrossRef] [PubMed]
- Thatikayala, D.; Ponnamma, D.; Sadasivuni, K.K.; Cabibihan, J.J.; Al-Ali, A.K.; Malik, R.A.; Min, B. Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2. Biosensors 2020, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Jesna, G.K.; Halali, V.V.; Sanjayan, C.G.; Suvina, V.; Sakar, M.; Balakrishna, R.G. Perovskite nanomaterials as optical and electrochemical sensors. Inorg. Chem. Front. 2020, 7, 2702–2725. [Google Scholar]
- Moure, C.; Pena, O. Recent advances in perovskites: Processing and properties. Prog. Solid State Chem. 2015, 43, 123–148. [Google Scholar] [CrossRef]
- Deganello, F.; Marcì, G.; Deganello, G. Citrate—nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. J. Eur. Ceram. Soc. 2009, 29, 439–450. [Google Scholar]
- Luque, G.L.; Ferreyra, N.F.; Leyva, A.G.; Rivas, G.A. Characterization of carbon paste electrodes modified with manganese based perovskites-type oxides from the amperometric determination of hydrogen peroxide. Sens. Actuat. B Chem. 2009, 142, 331–336. [Google Scholar] [CrossRef]
- Vijayaraghavan, T.; Sivasubramanian, R.; Shamima Hussain, S.; Ashok, A. A facile synthesis of LaFeO3-based perovskites and their application towards sensing of neurotransmitters. Chem. Select 2017, 2, 5570–5577. [Google Scholar] [CrossRef]
- Wang, B.; Gu, S.; Ding, Y.; Chu, Y.; Zhang, Z.; Ba, X.; Zhang, Q.; Li, X. A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing. Analyst 2013, 138, 362–367. [Google Scholar] [CrossRef]
- Anh, D.T.V.; Olthuis, W.; Bergveld, P. Sensing properties of perovskite oxide La1-xSrxCoO3-δ obtained by using pulsed laser deposition. Sens. Actuat. B Chem. 2004, 103, 165–168. [Google Scholar] [CrossRef]
- Deganello, F.; Liotta, L.F.; Leonardi, S.G.; Neri, G. Electrochemical properties of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide oxidation. Electrochim. Acta 2016, 190, 939–947. [Google Scholar] [CrossRef]
- He, J.; Zhou, W.; Sunarso, J.; Xu, X.; Zhong, Y.; Shao, Z.; Chen, X.; Zhu, H. 3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. Electrochim. Acta 2018, 260, 372–383. [Google Scholar] [CrossRef]
- Shimizu, Y.; Komatsu, H.; Michishita, S.; Miura, N.; Yamazo, N. Sensing characteristics of hydrogen peroxide sensor using carbon-based electrode loaded with perovskite-type oxide. Sens. Actuat. B Chem. 1996, 34, 493–498. [Google Scholar] [CrossRef]
- Xu, D.; Li, L.; Ding, Y.; Cui, S. Electrochemical hydrogen peroxide sensors based on electrospun La0.7Sr0.3Mn0.75Co0.25O3 nanofiber modified electrodes. Anal. Methods 2015, 7, 6083–6088. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, S.; Ding, Y.; Jin, J. A novel nonenzymatic sensor based on LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose. Anal. Chim. Acta 2012, 745, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gu, S.; Ding, Y.; Zhang, F.; Jin, J. Determination of hydrogen peroxide and glucose using a novel sensor platform based on Co0.4Fe0.6LaO3 nanoparticles. Microchim. Acta 2013, 180, 1043–1049. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Y.; Luo, L.; Ding, Y.; Wang, Y.; Liu, X.; Xing, L.; Peng, J. A novel non-enzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode. Colloid Surf. B Biointerfaces 2012, 89, 10–14. [Google Scholar] [CrossRef]
- Liotta, L.F.; Puleo, F.; La Parola, V.; Leonardi, S.G.; Donato, N.; Aloisio, D.; Neri, G. La0.6Sr0.4FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ Perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis 2015, 27, 684–692. [Google Scholar] [CrossRef]
- He, J.; Sunarso, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Zhou, W.; Shao, Z. High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sens. Actuat. B Chem. 2017, 244, 482–491. [Google Scholar] [CrossRef]
- Karuppiah, C.; Kohila rani, K.; Wang, S.F.; Devasenathipathy, R.; Yang, C.C. Dry particle coating preparation of highly conductive LaMnO3@C composite for the oxygen reduction reaction and hydrogen peroxide sensing. J. Taiwan Inst. Chem. Eng. 2018, 93, 94–102. [Google Scholar] [CrossRef]
- Ahmadi, E.; Mohammad Bagher Gholivand, M.B.; Karamic, C. Enzyme-less amperometric sensor manufactured using a Nafion–LaNiO3 nanocomposite for hydrogen peroxide. RSC Adv. 2020, 10, 23457–23465. [Google Scholar] [CrossRef]
- Boubezari, I.; Zazoua, A.; Bessueille, F.; Errachid, A.; Jaffrezic-Renault, N. Design of a new non-enzymatic sensor based on a substituted A2BO4+δ perovskite for the voltammetric detection of glucose. Electroanalysis 2020, 32, 1642–1650. [Google Scholar] [CrossRef]
- El Ads, E.H.; Galal, A.; Atta, N.F. The effect of A-site doping in a strontium palladium perovskite and its applications for non-enzymatic glucose sensing. RSC Adv. 2016, 6, 16183–16196. [Google Scholar] [CrossRef]
- Sivakumar, M.; Pandi, K.; Chen, S.M.; Cheng, Y.H.; Sakthivel, M. Facile synthesis of perovskite-type NdNiO3 nanoparticles for an effective electrochemical non-enzymatic glucose biosensor. New J. Chem. 2017, 41, 11201–11207. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; El-Ads, E.H. Effect of B-site doping on Sr2PdO3 perovskite catalyst activity for non-enzymatic determination of glucose in biological fluids. J. Electroanal. Chem. 2019, 852, 113523. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Luo, L.; Ding, Y.; Liu, X.; Huang, A. A novel sensitive nonenzymatic glucose sensor based on perovskite LaNi0.5Ti0.5O3-modified carbon paste electrode. Sens. Actuat. B Chem. 2010, 151, 65–70. [Google Scholar] [CrossRef]
- Xu, D.; Luo, L.; Ding, Y.; Xu, P. Sensitive electrochemical detection of glucose based on electrospun La0.88Sr0.12MnO3 nanofibers modified electrode. Anal. Biochem. 2015, 489, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.F.; Zhong, H.; Zhang, W.G.; Li, X.R.; Wang, G.Y.; Song, J.; Cheng, Z.P.; Yin, J.Z.; Guo, L.P. A novel nonenzymatic ECL glucose sensor based on perovskite LaTiO3-Ag0.1 nanomaterials. Sens. Actuat. B Chem. 2015, 212, 174–182. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhong, H.; Li, X.M.; Jia, F.F.; Shi, Y.X.; Zhang, W.G.; Cheng, Z.P.; Zhang, L.L.; Wang, J.K. Perovskite LaTiO3–Ag0.2 nanomaterials for non-enzymatic glucose sensor with high performance. Biosens. Bioelectron. 2013, 48, 56–60. [Google Scholar] [CrossRef] [PubMed]
- El Ads, E.H.; Galal, A.; Atta, N.F. Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode–towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 2015, 749, 42–52. [Google Scholar] [CrossRef]
- Thirumalairajan, S.; Girija, K.; Mastelaro, V.R.; Ganesh, V.; Ponpandian, N. Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO3 microspheres made up of nanospheres. RSC Adv. 2014, 4, 25957–25962. [Google Scholar] [CrossRef]
- Priyatharshni, S.; Tamilselvan, A.; Viswanathan, C.; Ponpandian, N. LaCoO3 nanostructures modified glassy carbon electrode for simultaneous electrochemical detection of dopamine, ascorbic acid and uric Acid. J. Electrochem. Soc. 2017, 164, B152–B158. [Google Scholar] [CrossRef]
- Tohidinia, M.; Sabbaghi, N.; Shaybani, S.; Noroozifar, M. Simultaneous determination of dopamine, acetaminophen and xanthine by modified carbon ceramic micro-electrode with nanosized LaFe0.2Ni0.8O3 perovskite. Anal. Bioanal. Electrochem. 2018, 10, 1525–1537. [Google Scholar]
- Kumar, Y.; Pramanik, S.; Das, D.P. Lanthanum ortho-ferrite (LaFeO3) nano-particles based electrochemical sensor for the detection of dopamine. Biointerface Res. Appl. Chem. 2020, 10, 6182–6188. [Google Scholar]
- Shafi, P.M.; Joseph, N.; Karthik, R.; Shim, J.J.; Bose, A.C.; Ganesh, V. Lemon juice-assisted synthesis of LaMnO3 perovskite nanoparticles for electrochemical detection of dopamine. Microchem. J. 2021, 164, 105945. [Google Scholar] [CrossRef]
- Thomas, J.; Anitha, P.K.; Thomas, T.; Thomas, N. The influence of B-site cation in LaBO3 (B = Fe, Co, Ni) perovskites on the nanomolar sensing of neurotransmitters. Sens. Actuat. B Chem. 2021, 332, 129362. [Google Scholar] [CrossRef]
- Atta, N.F.; Ali, S.M.; El Ads, E.H.; Galal, A. Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim. Acta 2014, 128, 16–24. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Marini, S.; Espro, C.; Iannazzo, D.; Leonardi, S.G.; Neri, G. NdFeO3 as a new electrocatalytic material for the electrochemical monitoring of dopamine. Anal. Bioanal. Chem. 2019, 411, 7681–7688. [Google Scholar] [CrossRef]
- Aparna, T.K.; Sivasubramanian, R. FeTiO3 nanohexagons based electrochemical sensor for the detection of dopamine in presence of uric acid. Mater. Chem. Phys. 2019, 233, 319–328. [Google Scholar] [CrossRef]
- Durai, L.; Badhulika, S. A facile, solid-state reaction assisted synthesis of a berry-like NaNbO3 perovskite structure for binder-free, highly selective sensing of dopamine in blood samples. New J. Chem. 2019, 43, 11994–12003. [Google Scholar] [CrossRef]
- Gopi, P.K.; Muthukutty, B.; Chen, S.M.; Chen, T.W.; Liu, X.; Alothman, A.A.; Ali, M.A.; Wabaidur, S.M. Platelet-structured strontium titanate perovskite decorated on graphene oxide as a nanocatalyst for electrochemical determination of neurotransmitter dopamine. New J. Chem. 2020, 44, 18431–18441. [Google Scholar] [CrossRef]
- Durai, L.; Badhulika, S. Facile synthesis of large area pebble-like β-NaFeO2 perovskite for simultaneous sensing of dopamine, uric acid, xanthine and hypoxanthine in human blood. Mater. Sci. Eng. C Biomimetic Supramol. 2020, 109, 110631. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Neri, G. Gas sensing and electrochemical properties of rare earthferrite, LnFeO3 (Ln = Nd, Sm). Ceram. Int. 2020, 46, 26682–26688. [Google Scholar] [CrossRef]
- Durai, L.; Badhulika, S. One pot hydrothermal synthesis of large area nano cube like ZnSnO3 perovskite for simultaneous sensing of uric acid and dopamine using differential pulse voltammetry. IEEE Sensors J. 2020, 20, 13212–13219. [Google Scholar] [CrossRef]
- Wu, S.; Sun, T.; Wang, H.; Fan, Z.; Li, L.; Fan, B.; Liu, L.; Ma, J.; Tong, Z. A sandwich-structured, layered CoTMPyP/Sr2Nb3O10 nanocomposite for simultaneous voltammetric determination of dopamine and ascorbic acid. J. Electroanal. Chem. 2020, 873, 114403. [Google Scholar] [CrossRef]
- Li, Z.; Kang, Q.; Chen, L.; Zhang, B.; Zou, G.; Shen, D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochim. Acta 2020, 330, 135332. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Nafady, A.; Soomro, R.A.; Sirajuddin Shrazi, S.T.H.; Abro, M.I.; Willander, M. Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 2015, 5, 18773–18781. [Google Scholar] [CrossRef]
- Mishra, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing. Nanoscale Res. Lett. 2018, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, N.; Banerjee, S.; Bhaumik, A. A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid Interface Sci. 2018, 516, 121–127. [Google Scholar] [CrossRef]
- Heyser, C.; Schrebler, R.; Grez, P. New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor. J. Electroanal. Chem. 2019, 832, 189–195. [Google Scholar] [CrossRef]
- Ahmad, R.; Khan, M.; Tripathy, N.; Khan, M.I.R.; Khosla, A. Hydrothermally synthesized nickel oxide nanosheets for non-enzymatic electrochemical glucose. J. Electrochem. Soc. 2020, 167, 107504. [Google Scholar] [CrossRef]
- Reddy, S.; Swany, B.E.K.; Ramakrishana, S.; He, L.; Jayadevappa, H. NiO nanoparticles based carbon paste as a sensor for detection of dopamine. Int. J. Electrochem. Sci. 2018, 13, 5748–5761. [Google Scholar] [CrossRef]
- Emran, M.Y.; Shenashen, M.A.; Mekawy, M.; Azzam, A.M.; Akhtar, N.; Gomaa, H.; Selim, M.M.; Faheem, A.; El-Safty, S.A. Ultrasensitive in-vitro monitoring of monoamine neurotranmetters from dopaminergic cells. Sens. Actuat. B Chem. 2018, 259, 114–124. [Google Scholar] [CrossRef]
- Althagafi, Z.T.; Althakafy, J.T.; Al Jahdaly, B.A.; Awad, M.I. Differential electroanalysis of dopamine in the presence of a large excess of ascorbic acid at a nickel oxide nanoparticle-modified glassy carbon electrode. J. Sensors 2020, 2020, 8873930. [Google Scholar] [CrossRef]
- Han, L.; Yang, D.P.; Liu, A. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens. Bioelectron. 2015, 63, 145–152. [Google Scholar] [CrossRef]
- Kang, L.; He, D.; Bie, L.; Jiang, P. Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection. Sens. Actuat. B Chem. 2015, 220, 888–894. [Google Scholar] [CrossRef]
- Soomro, R.A.; Nafady, A.; Ibupoto, Z.H.; Sirajuddin; Sherazi, S.T.H.; Willander, M.; Abro, M.I. Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mat. Sci. Semicond. Process. 2015, 34, 373–381. [Google Scholar] [CrossRef]
Type of Perovskite Electrode | Perovskite Preparation | Sensitivity | Linear Range | Detection Limit (LOD) | Lifetime | Applications | References |
---|---|---|---|---|---|---|---|
Sr0.85Ce0.15FeO3 Perovskite + Nafion®/SPE | citrate-nitrate smoldering autocombustion | 60 µA/mM/cm2 | 0–500 µM | 10 µM | 12 months | [24] | |
SmCoO3 Perovskite + conductive carbon + Nafion®/GCE | EDTA-citrate complexing sol-gel + calcination | 715 µA/mM/cm2 | 0.1–5000 µM | 0.004 µM | [25] | ||
La0.6Ca0.4MnO3 CPE | Malic acid—nitrate Sol-gel method + calcination | 0–0.5 mM | [26] | ||||
La0.7Sr0.3Mn0.75Co0.2503 CPE | Metal salts mixed with polyvinylpyrrolidone (PVP) Electrospinning and calcination | 1371 µA/mM | 0.5–1000 µM | 0.17 µM | 30 days | Toothpaste Medical hydrogen peroxide | [27] |
LaNi0.6Co0.4O3 CPE | Citrate-nitrate Sol-gel method + calcination | 1812 µA/mM/cm2 | 10 nM–100 µM | 1 nM | 20 days | Toothpaste | [28] |
Co0.4Fe0.6LaO3 CPE | Citrate-nitrate Sol-gel method | 2376.7 nA/µM | 0.01–800 µM | 2 nM | 3 weeks | [29] | |
La0.66Sr0.33MnO3 CPE | Microwave irradiation of nitric solution | 1770 µA/M | Cleaning product | [20] | |||
LaNiO3 CPE | Metal salts mixed with PVP Electrospun nanofibers | 1135.88 µA/mM/cm2 | 0.05–1000 µM | 33.9 nM | 4 weeks | [22] | |
LaNi0.5Ti0.5O3/CoFe2O3 GCE | Citrate-nitrate Sol-gel method + calcination | 3.21 µA/mM/cm2 | 0.1 µM–8.2 mM | 23 nM | 4 weeks | Toothpaste | [30] |
La0.6Sr0.4Co0.2Fe0.8O3-δ | Citrate-nitrate Sol-gel method + calcination | 580 µA/mM/cm2 | 0 mM | 5 µM | [31] | ||
La0.5Sr0.5CoO3-δ EMOSFET | Pulsed laser deposition technique | 1 mM | [23] | ||||
La0.6Sr0.4CoO3-δ Perovskite + Nafion®/GCE | EDTA-citrate complexing sol-gel + calcination | 280 µA/mM/cm2 | 0.4–3350 µM | 0.12 µM | [32] | ||
La0.6Sr0.4CoO3-δ Perovskite + RGO + Nafion®/GCE | EDTA-citrate complexing sol-gel + calcination | 500 µA/mM/cm2 | 0.2–3350 µM | 0.05 µM | [32] | ||
LaMnO3/conductive carbon black GCE | Precipitation method + calcination + carbon coating | 897.6 µA/mM/cm2 | 5–5550 µM | 0.807 nM | 30 days | [33] | |
Nafion-LaNiO3 GCE | Citrate-nitrate Sol-gel method + calcination | 0.2 µM–50 µM | 35 nM | Serum samples | [34] |
Type of Perovskite Electrode | Perovskite Preparation | Sensitivity | Linear Range | LOD | Lifetime | Applications | References |
---|---|---|---|---|---|---|---|
Pr1.92Ba0.08NiO0.95Zn0.05O4+δ gold electrode | Citrate-nitrate Sol-gel method + calcination | 101 µA/logC 604 µA/logC | 1.5–50 µM 0.05–7 mM | 0.5 µM | Human serum | [35] | |
Sr1.7Ca0.3PdO3 Graphite electrode | Glycine-nitrate method + calcination | 306.9 µA/mM 54.17 µA/mM | 5 µM–1.4 mM 1.8–5.6 mM | 8.45 nM | 50 cycles | Human urine samples | [36] |
NdNiO3 GCE | Hydrothermal method Co-precipitation | 1105.1 µA/mM/cm2 | 0.0005–4.6 mM | 0.3 µM | 15 days | Human blood samples | [37] |
Sr2Pd0.7Au0.3O3 Graphite electrode | Glycine-nitrate method + calcination | 1.44 x 104 µA/mM/cm2 1639 µA/mM/cm2 | 0.4–10 µM 20 µM–100 µM | 2.11 nM 18.5 nM | Urine samples | [38] | |
La0.6Sr0.4Co0.2Fe0.8O3-δ | Citrate-nitrate Sol-gel method + calcination | 285 µA/mM/cm2 | 0–200 µM | 7 µM | [31] | ||
La0.6Sr0.4CoO3-δ Perovskite + Nafion®/GCE | EDTA-citrate complexing sol-gel + calcination | 275 µA/mM/cm2 | 5–1500 µM | 0.15 µM | [32] | ||
La NiO3 CPE | Metal salts mixed with PVP Electrospun nanofibers | 42.321 µA/mM/cm2 | 1–1000 µM | 0.32 µM | 4 weeks | [22] | |
Co0.4Fe0.6LaO3 CPE | Citrate-nitrate Sol-gel method | 1013.8 µA/mM/cm2 | 0.05–5 and 5–500 µM | 0.01 µM | 3 weeks | [29] | |
LaNi0.6Co0.4O3 CPE | Sol-gel method + calcination | 643 µA/mM/cm2 | 0.05–200 µM | 8.0 nM | 20 days | [28] | |
LaNi0.5Ti0.5O3 CPE | Citrate-nitrate Sol-gel method + calcination | 1630 µA/mM/cm2 | 0.2–20 µM 0.02–1 mM | 0.07 µM | 40 days | Human blood serum | [39] |
La0.88Sr0.12MnO3 CPE | Metal salts mixed with PVP Electrospun nanofibers | 1111.11 µA/mM/cm2 | 0.05–100 µM | 31.2 nM | 15 days | Serum samples | [40] |
La0.6Sr0.4CoO3-δ Perovskite + RGO + Nafion®/GCE | EDTA-citrate complexing sol-gel + calcination | 330 µA/mM/cm2 | 2–3350 µM | 0.063 µM | [32] | ||
LaTiO3–Ag0.1 GCE ECL sensor | Glycine-nitrate method + calcination | 782 µA/mM/cm2 | 0.1 µM–0.1 mM | 2.5 nM | 4 weeks | Human serum samples | [41] |
La TiO3–Ag0.2 GCE | Sol-gel method Butyl titanate in nitric acid + calcination | 784.14 µA/mM/cm2 | 2.5 µM–4 mM | 0.21 µM | One month | Blood serum samples | [42] |
SrPdO3 + AuNP modified graphite electrode | Citrate-nitrate method + calcination | 422.3 µA/mM/cm2 | 0.1–6 mM | 10.1 µM | 7 weeks | [43] |
Type of Detected Molecule | Type of Perovskite Electrode Perovskite Preparation | Sensitivity | Dynamic Range | LOD | Lifetime | Applications | References |
---|---|---|---|---|---|---|---|
DA in the presence of ascorbic acid and uric acid | LaFeO3 GCE Solid state synthesis | 10–100 µM 120–180 µM | 10 nM | 10 days | Blood samples | [21] | |
DA | LaFeO3 microspheres GCE Sol-gel method Nitrate+ ethylene glycol | 0.02–1.6 µM | 59 nM | [44] | |||
DA in the presence of AA and UA | LaCoO3 GCE Hydrothermal process | 0.033 µA/µM | 1–100 µM 0.5–5 mM 0.5–5 mM | 3.53 µM | [45] | ||
DA, acetaminophen, xanthine | LaFe0.2Ni0.8O3 Carbon ceramic microelectrode Hydrothermal method Co-precipitation | 0.0109 µA/µM 0.008 µA/µM 0.0274 µA/µM | 6.6–131 µM 10–131 µM 3–115 µM | 2.1 µM 3.2 µM 1.3 µM | [46] | ||
DA | LaFeO3 Graphite powder Combustion technique | 5–200 µM | 600 nM | 20 days | [47] | ||
DA | LaMnO3 GCE Natural lemon juice– nitrate sol-gel method | 1–600 µM | 32 nM | Human urine saliva | [48] | ||
DA | LaNiO3 Citrate + glycine method + calcination CPE | 63.59 µA/mM | 80 nM–20 µM | 9 nM | One month | Urine and serum | [49] |
Simultaneous detection of DA in the presence of ascorbic acid and uric acid | SrPdO3 CPE Citrate + glycine + urea method + calcination | 0.88 µA/µM | 7–70 µM | 9.3 nM | Human urine samples | [50] | |
DA | NdFeO3 SPCE Metal salts mixed with PVP + calcination | 0.5–100 µM 150–400 µM | 0.27 µM | Urine | [51] | ||
DA UA | FeTiO3 coprecipitation + calcination | 1.56 µA/µM/cm2 | 1–90 µM 1–150 µM | 1.3 nM 30 nM | One week | Human serum | [52] |
DA | NaNbO3 GCE Solvothermal method NbCl3 + ethanol Nb2O5 + Na2CO3 | 99 nA/nM/cm2 77 nA/nM/cm2 75 nA/nM/cm2 | 10–50 nM 100–500 nM 1–500 µM | 6.8 nM | Simulated blood samples | [53] | |
DA | SrTiO3/GO GCE Citrate-nitrate method + calcination | 0.0126 µA/µM/cm2 | 0.05–531 µM | 10 nM | Blood serum Urine | [54] | |
DA | β-NaFeO2 GCE Solid-state reaction assisted synthesis Na2CO3 + Fe2O3 | DA 27.16 µA/µM/cm2 | DA 0.010–40 µM | DA 2.12 nM | Simulated blood samples | [55] | |
DA | NdFeO3 Nitrates + PVP + calcination | 0.5–400 µM | 270 nM | [56] | |||
DA | ZnSnO3 nano cube One-pot hydrothermal technique GCE | 10 nM–5 µM | 2.6 nM | Blood serum | [57] | ||
DA | CoTMPPyP/Sr2Nb3O10 GCE Solid-state reaction assisted synthesis | 0.02–1.62 mM | 7.6 µM | 30 days | Human urine | [58] | |
DA | CsPbBr3 nanocrystals encapsulated in conductive silica gel Sol-gel method | 0.01–10 µM | 3 nM | [59] |
Target | Oxide Preparation Electrode | Sensitivity | Linear Range | LOD | Lifetime | Applications | References |
---|---|---|---|---|---|---|---|
NiO nanomaterials | |||||||
Glucose | Hydrothermal synthetic approach NiO hollow cages on a Nafion/GCE | 2476.4 µA/mM/cm2 | 0.1–5.0 mM | 0.1 µM | 8 weeks | Human serum | [60] |
Glucose | NiO nanopetals on FTO/glass | 3.9 μA/μM/cm2 | 100 μM–1.2 mM | 1 µM | [61] | ||
Glucose | Sol-gel hydrothermal route NiO on ITO | 24 µA/mM/cm2 | 0.01–83 mM | 8.1 µM | [62] | ||
Glucose | Ultrasound-assisted anodization of nickel foils | 206.9 μA/mM/cm2 | 0.1–10.0 mM | 1.16 µM | 30 days | [63] | |
Glucose | Hydrothermal synthetic approach NiO on a gold electrode | 1618.4 μA/mM/cm2 | 0.25–3.75 mM | 2.5 µM | [64] | ||
DA | CTAB-NiO prepared by co-precipitation CPE | 1–800 µM | 0.68 µM | Human blood serum | [65] | ||
DA | Hydrothermal synthetic approach NiO/ITO | 0.064 µA/µM | 0.5–5 µM | 85 nM | Dopamine release from PC12 cells | [66] | |
DA | Electrodeposited nanoNiOx on a GCE | 0.329 µA/µM/cm2 | 80.0–800 µM | 0.69 µM | Vitamin C | [67] | |
Co3O4 nanomaterials | |||||||
H2O2 | 3D porous Co3O4 on a Nafion/GCE | 389.7 μA/mM/cm2 | 0.4–200 µM | 0.24 µM | [68] | ||
Glucose | Hydrothermal growth of Co3O4 nanowires on a Nafion/GCE | 300.8 µA/mM/cm2 | 5–570 µM | 5 µM | One month | Human serum | [69] |
Glucose | Hydrothermal growth of Co3O4 nanodiss on a Nafion/GCE | 27.33 µA/mM/cm2 | 0.5–5.0 mM | 0.8 µM | Blood serum samples | [70] | |
Glucose | 3D porous Co3O4 on a Nafion/GCE | 471.5 μA/mM/cm2 | 1 µM–12.5 mM | 0.1 µM | 60 days | Human serum samples | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubezari, I.; Zazoua, A.; Errachid, A.; Jaffrezic-Renault, N. Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors. Chemosensors 2021, 9, 289. https://doi.org/10.3390/chemosensors9100289
Boubezari I, Zazoua A, Errachid A, Jaffrezic-Renault N. Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors. Chemosensors. 2021; 9(10):289. https://doi.org/10.3390/chemosensors9100289
Chicago/Turabian StyleBoubezari, Imane, Ali Zazoua, Abdelhamid Errachid, and Nicole Jaffrezic-Renault. 2021. "Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors" Chemosensors 9, no. 10: 289. https://doi.org/10.3390/chemosensors9100289
APA StyleBoubezari, I., Zazoua, A., Errachid, A., & Jaffrezic-Renault, N. (2021). Sensitive Electrochemical Detection of Bioactive Molecules (Hydrogen Peroxide, Glucose, Dopamine) with Perovskites-Based Sensors. Chemosensors, 9(10), 289. https://doi.org/10.3390/chemosensors9100289