Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials
Abstract
:1. Introduction
2. Carbon Nanomaterials
3. Aptasensor Assembly
3.1. Aptamer Immobiization
3.2. Aptasensor Assembling
- Synthesis or preliminary treatment of carbon nanomaterials
- Electrode cleaning and treatment
- Aptamer modification/immobilization
- Labels/indicators implementation
3.3. Signal Measurement Modes
- Measurement of the changes in the permeability of the surface layer using diffusionally free redox indicator.
- Monitoring signals of the redox active labels remaining attached to the electrode interface.
- Application of biochemical approaches of signal amplification based on the use of enzymes, sandwich assay and amplification of the DNA strands in the exonuclease assisted reaction cycles.
4. Carbon Nanomaterials in the Assembly of Electrochemical Aptasensors
4.1. Carbon Nanotubes
Target | Surface Layer Content | Signal Measurement Protocol | Linearity Range/LOD | Ref. |
---|---|---|---|---|
Aflatoxin B1 | Au electrode covered with nafion-chitosan film. Capturing DNA probe is covalently attached to the surface via glutaraldehyde binding. Aptamer modified with CNTs is immobilized by hybridization | EIS measurements of charge transfer resistance | 0.15–10 nM, LOD 0.074 nM | [117] |
Bisphenol A | GCE covered with carboxylated MWCNTs-chitosan composite. Aminated DNA strand is covalently attached via carbodiimide binding and ferrocene labeled aptamer by hybridization | DPV current of the ferrocene redox label | 0.2–2.0 nM, LOD 0.38 nM | [152] |
Au screen-printed electrode covered with carbon tape and physically adsorbed MWCNTs covered with Au layer. Pinhole aptamer covalently attached to Au via terminal -SH group | Aptamer is saturated with the MB molecules, analyte released MB from the surface layer so that its signal recorded with SWV decreases with bisphenol A concentration | 10 fM–1 nM, LOD 8 fM | [135] | |
GCE covered with MWCNTs covered with thiolated magnetic particles of CuFe2O4 bearing Au nanoparticles and aptamer | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.05–9 nM, LOD 25 pM | [153] | |
GCE covered with carboxylated MWCNTs modified with poly(ethylene imine), Pt nanoparticles and capturing DNA probe complementary to the aptamer | DPV current of the [Fe(CN)6]3-/4- redox probe | 1–400 nM, LOD 210 pM | [149] | |
GCE covered with carboxylated MWCNTs modified with Prussian blue and Au nanoparticles and covalently attached capturing DNA hybridized with the aptamer | EIS measurements of charge transfer resistance | 0.1–1 pM and 10 pM–10 nM, LOD 0.045 pM | [154] | |
Ceruloplasmin | GCE covered with MWCNTs, treated with diazonium salt and aminated aptamer was immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.02–3.0, 3.0–80 ng/mL, LOD 3.7 pM | [155] |
Chlorpyrifos | GCE covered with nafion and carboxylated SWCNTs with the CuO nanoflowers. Aminated capturing probe is attached to carboxylic groups by carbodiimide binding, signaling aptamer is hybridized with capturing probe and then saturated with MB | DPV measurements of the MB released in target interaction so that its signal decreases with the chlorpyrifos concentration | 0.1–150 ng/mL, LOD 70 pg/mL | [156] |
Ciprofloxacin | Screen-printed carbon electrode modified with MWCNTs–V2O5–chitosan composite. Aminated aptamer immobilized by carbodiimide binding | EIS measurements of relative shift of the charge transfer resistance | 0.5–8.0 ng/mL, LOD 0.5 ng/mL | [157] |
Codeine | GCE covered with MWCNTs modified with aminated Fe3O4-Au composite, aminated aptamer is linked to the composite by glutaraldehyde | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.01–1 and 10–900 nM, LOD 3.2 pM | [150] |
Diclofenac | GCE covered with carboxylated MWCNTs followed by electrodeposition of Ag-Pt nanoparticles. Aminated capturing DNA is immobilized by carbodiimide binding, complementary DNA by hybridization | EIS measurements of charge transfer resistance | 10 pM–800 nM, LOD 2.8 pM | [158] |
Dopamine | GCE covered with carboxylated MWCNTs and electrodeposited Pt and Au nanoparticles. Aminated capturing DNA strand immobilized by carbodiimide binding, complementary aptamer by hybridization | Aptamer is saturated with the MB molecules, analyte released MB from the surface layer so that its signal recorded with DPV decreases with dopamine concentration | 1–30 nM, LOD 0.22 nM | [159] |
Au electrode modified with Au nanoparticles and carboxylated MWCNTs, aminated capturing DNA strand is immobilized by carbodiimide binding and complementary aptamer by hybridization | Aptamer is saturated with the MB molecules, analyte released MB from the surface layer so that its signal recorded with DPV decreases with dopamine concentration | 5–300 nM, LOD 2.10 nM | [160] | |
GCE covered with carboxylated MWCNTs and chemically synthesized Au nanoparticles and Prussian blue in chitosan matrix. Aptamer immobilized by carbodiimide binding | DPV measurement of the Prussian blue signal decreasing with dopamine concentration | 0.50–50.0 nM, LOD 0.2 nM | [161] | |
Epirubicine | Carboxylated MWCNTs attached to GCE are treated with ethylene diamine and then covered with Au nanoparticles. Thiolated aptamer immobilized by Au-SH binding | DPV measurement of the curcumin signal after addition of the DNA strand complementary to the aptamer | 0.007–7.0 μM, LOD 3.0 nM | [162] |
17β-Estradiol | Origami paper folded planar electrode with microfluidic channels modified with aminated SWCNTs, Au nanoparticles and New Methylene Blue redox indicator. Aptamer immobilized via terminal SH group | DPV signal of New Methylene Blue redox indicator | 10–500 pg/mL, LOD 5 mg/mL | [163] |
GCE covered with MWCNTs with adsorbed thionine and Au nanoparticles, thiolated aptamer immobilized via Au-SH binding | DPV measurement of thionine and estradiol oxidation peaks | 12 pM–60 nM, LOD 1.5 pM | [164] | |
Furaneol | Silver electrode covered with monolayer of cysteamine followed by CNTs immobilization and covalent attachment of capturing DNA strand hybridized with the aptamer nearing Methylene blue as redox indicator | Displacement protocol with SWV determination of decreasing signal of Methylene blue oxidation | 1 fM–35 μM, LOD 0.557 fM | [165] |
Ibuprofen | GCE covered with MWCNTs treated with terephtalaldehyde. Aminated capturing DNA strand is immobilized by carbodiimide binding and complementary aptamer by hybridization. | Aptamer is saturated with the MB molecules, analyte released MB from the surface layer so that its signal recorded with DPV decreases with ibuprofen concentration | 70 pM–6 μM, LOD 20 pM | [166] |
Kanamycin | GCE covered with MWCNTs suspension of MoSe2 nanoflowers and MWCNTs followed by electrodeposition of Au nanoparticles. Aptamer immobilized by carbodiimide binding | EIS measurements of charge transfer resistance | 1 pM–0.1 nM, 100 nM–10 μM, LOD 0.28 pM | [167] |
Malathion | Fluorine tin oxide sheet covered with PEDOT and carboxylated MWCNTs composite, aminated aptamer covalently attached onto the layer | DPV measurement of intrinsic PEDOT activity | 0.1 fM–1 μM, LOD 0.1 fM | [168] |
Mucin | Screen-printed carbon electrode covered with MWCNTs treated with diazonium salt. Aminated aptamer immobilized to the benzoic acid residues by carbodiimide binding | EIS measurements of relative shift of the charge transfer resistance | 0.1–2 U/mL, LOD 0.02 U/mL | [169] |
Myoglobin | GCE covered with MWCNTs and chemically synthesized Pt-Sn nanoparticles. Aminated aptamer immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.01–1 nM, 10–200 nM, LOD 2.2 pM | [170] |
Nitenpyram | GCE covered with bilayer of hydroxylated MWCNTs ad carbon nanohorn particles | DPV measurement of the analyte reduction peak current | 20–2000 nM, LOD 40 nM | [171] |
Oxytetracycline | Thin-film planar Au electrode with thiolated DNA strand. Carboxylated MWCNTs with adsorbed thionine and Au nanoparticles bearing aptamer are attached to the surface via hybridization of the aptamer with capturing DNA strand | DPV current of thionine oxidation | 1 × 10−13–1 × 10−5 g/mL, LOD 3.1 × 10−14 g/mL | [172] |
Potassium ion | Field effect transistor with SWCNT as a gate and aptamer immobilized via 1-pyrene butanoic acid | Changes in conductivity of SWCNT | 1 pM–11 nM, LOD 10 pM | [173] |
Profenofos | Screen-printed electrode modified with graphitized MWCNTs and Au nanoparticles. Thiolated or aminated aptamers are immobilized by covalent bonds formed in carbodiimide binding or Au-SH interactions | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.1–1 × 105 ng/mL, LOD 0.052 ng/mL | [174] |
Prostate specific antigen (PSA) | GCE covered with carboxylated MWCNTs in chitosan matrix. Aminated capturing DNA strand is immobilized by glutaraldehyde binding and complementary aptamer by hybridization | Aptamer is saturated with the MB molecules, analyte released MB from the surface layer so that its signal recorded with DPV decreases with PSA concentration | 0.85–12.5, 12.5–500 ng/mL, LOD 0.75 ng/mL | [118] |
Salmonella | Indium-Tin Oxide (ITO) electrode covered with carboxylated MWCNTs followed by covalent attachment of aminated aptamer by carbodiimide binding | EIS measurements of charge transfer resistance | LOD 55 CFU/mL and 67 CFU/mL for S. Enteritidis and S. Typhimurium, | [175] |
Saxitoxin | Carboxylated MWCNTs are physically adsorbed on the Au electrode modified with octadecanethiol. MB is electrostatically adsorbed onto the MWCNTs layer and aminated aptamer immobilized by carbodiimide binding. | DPV measurement of the MB signal decrease | 0.9–30 nM, LOD 0.38 nM | [176] |
Streptomycin | GCE covered with MWCNTs-chitosan composite with implemented Pd nanoparticles. Aminated aptamer is immobilized by glutaraldehyde binding | EIS measurements of charge transfer resistance | 0.1–1500 nM, LOD 18 pM | [177] |
GCE covered with MWCNTs decorated with Fe3O4-Au nanoparticles and nanoporous Pt-Ti alloy | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.05–100 ng/mL, LOD 7.8 pg/mL | [178] | |
GCE covered with porous carbon nanorods and MWCNTs bearing CuO and Au nanoparticles. Thiolated aptamer is immobilized via Au-SH binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.05–300 ng/mL, LOD 0.036 ng/mL | [179] | |
Sulfadimidine | Bare Au electrode modified with 2-aminoethanethiol and MWCNTs decorated with Au nanoparticles. Thiolated aptamer was immobilized via Au-SH binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.1–50 ng/mL, LOD 0.055 ng/mL | [180] |
Tetracycline | GCE covered with MWCNTs with adsorbed thionine and Au nanoparticles. Thiolated capturing DNA strand is immobilized via Au-SH binding and aptamer by hybridization | DPV measurement of thionine oxidation | 0.1 nM–1 μM, LOD 0.06 nM | [181] |
GCE covered with MWCNTs and electropolymerized L-glutamic acid, aminated aptamer immobilized by carbodiimide binding | EIS measurements of charge transfer resistance | 1.0 × 10−16–1.0 × 10−6 M), LOD 3.7 × 10−17 M | [182] | |
Interdigitated microelectrode array covered with MWCNTs in chitosan matrix, aptamer is physically adsorbed on the surface layer | EIS measurements of charge transfer resistance | 1.0 nM–1.0 mM | [183] | |
Thrombin | GCE covered with suspension of the MWCNT-TiO2 composite, chitosan and 3-[(2-hydroxypropyl)imino]in- doline-2-one. Aptamer is physically adsorbed on the surface layer | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.00005–10 nM, LOD 1.0 fM | [184] |
GCE covered with MWCNTs, which were previously modified with chemically either electrochemically synthesized polyaniline. Thiolated aptamer is physically adsorbed on the surface layer | Changes in intrinsic redox activity of polyaniline measured by peak currents on cyclic voltammogram | 0.0001–4 nM, LOD 0.08 pM | [185] | |
Tryptophan | Graphite screen-printed electrode modified with MWCNTs-chitosan composite and Au nanoparticles. Thiolated capturing DNA strand is immobilized via Au-SH binding and aptamer by hybridization | Changes in the DPV peak of redox indicator ([Fe(bpy)3](p-CH3C6H4SO2)2) | 3.0 nM–100 μM, LOD 1.0 nM | [186] |
Au electrode modified with MWCNTs; aptamer physically adsorbed on the surface layer | Potentiometric stripping analysis of tryptophan signals | 1.0 × 10−10–1.0 × 10−5, 1.0 × 10−5–3.0 × 10−4 M, LOD 6.4 10−11 M | [187] | |
Golden screen-printed electrode modified with MWCNTs | Potentiometric stripping analysis of tryptophan signals | 1.0 × 10−11 -1.0 × 10−4 M, LOD 4.9 × 10−12 M | [188] | |
Urea | GCE covered with MWCNTs with electrochemically deposited Au nanoparticles. Thiolated aptamer with urea immobilized on the Au by Au-SH binding. Then, dopamine was electropolymerized and urea removed | EIS measurements of charge transfer resistance | 0.005–0.1 nM, 1.00–500 nM, LOD 900 fM | [189] |
Zearalenon | Au electrode covered with PEI-MoS2-MWCNTs composite and Pt@Au nanoparticles followed by thiolated aptamer immobilization | Toluidine blue (redox indicator) signal measured by cyclic voltammetry | 0.5 pg/mL–50 ng/mL, LOD 0.17 pg/mL | [190] |
4.2. Graphene Materials
4.3. Other Carbon Nanomaterials
Target | Surface Layer Content | Signal Measurement Protocol | Linearity Range/LOD | Ref. |
---|---|---|---|---|
Acetamiprid | Graphene quantum dots (QDs) modified with histidine are bound on graphite oxide on GCE and treated with Ag+ ions to form silver nanoparticles followed by covalent immobilization of thiolated aptamer via Ag-SH binding | DPV signal of ferricyanide redox indicator | 1.0 × 10−16–5.0 × 10−12 M, LOD 4.0 × 10−17 M | [191] |
Aflatoxin B1 | GCE covered with alternated layer of N-doped graphene, carboxylated polystyrene and PDDA, aptamer attached by carbodiimide binding | EIS measurements of the relative shift of the charge transfer resistance | 0.001–0.1 ng/mL, LOD 0.002 ng/mL | [192] |
Carcinoembryonic antigen (CEA) | GCE electrografted with p-nitrophenyldiazonium cation reduced to aminophenyl monolayer, GO deposited onto the layer and then cathodically reduced | Homogeneous aptamer-based assay based on T7 exonuclease (T7Exo)-assisted target analog recycling and detection of the Methylene blue labels in the synthesized long single stranded DNA | 80 ag/mL–950 fg/mL, LOD 80 ag/mL | [193] |
GCE covered with N-doped graphene decorated with Au nanoparticles; graphene QDs are deposited on the surface and capturing DNA strand is immobilized via carbodiimide binding. Signaling aptamer is attached to hemin aptamer by glutaraldehyde | Aptasensor is consecutive treated with analyte and hemin-signaling aptamer conjugate. After sandwich complex formation, peroxidase like activity of hemin is measured by DPV in the presence of hydrogen peroxide | 1.0 × 10−5–200.0 ng/mL, LOD 3.2 fg/mL | [194] | |
Digoxin | Au screen-printed electrode modified with Au nanoparticles with monolayer of mercaptopropionic acid, aminated aptamer immobilized via carbodiimide binding. Composite of Ag nanoparticles GO was adsorbed onto the aptamer as redox indicator | DPV measurement of Ag nanoparticles dissolution | 1 pM–1 μM, LOD 0.3 pM | [136] |
Dopamine | GCE covered with collagen–GO composite, aptamer physically adsorbed on the composite layer | DPV signal of dopamine | 1–1000 nM, LOD 0.75 nM | [195] |
GCE covered with GO followed by Nile blue adsorption and Au nanoparticles deposition. Thiolated aptamer immobilized by Au-SH binding | DPV signal of dopamine and Nile blue as redox indicator | 10 nM–0.2 mM, LOD 1 nM | [196] | |
Liposaccharides | GCE modified with rGO and Au nanoparticles. Aptamer immobilized by Au-SH binding | SWV and EIS measurements with ferrocyanide redox indicator, SWV of Mg containing carbon dots | 0.1–0.9 pg/mL, LOD 1 fg/mL | [121] |
Lysozyme | GCE covered with rGO-chitosan-carbon dots composite and covalently attached aminated aptamer | DPV and EIS measurement of the ferricyanide redox indicator signal | 20 fM–10 nM (DPV), 10 fM–100 nM (EIS), LOD 3.7 fM (DPV), 1.9 fM (EIS) | [122] |
Mucin | Fluorine tin oxide electrode modified with Au nanoparticle, GO and electropolymerized PEDOT layer; aptamer immobilized by avidin-biotin interaction | DPV current of the [Fe(CN)6]3-/4- redox indicator | 3.13 aM–31.25 nM, LOD 0.031 fM | [197] |
Myoglobin | Indium-tin oxide (ITO) electrode modified with rGO modified with poly(ethylene imine) and electrostatically accumulated aptamer | DPV reduction peak referred to the myoglobin redox activity | 0.001 − 1000 ng/mL, LOD 0.97 pg/mL | [198] |
Ochratoxin A | Indium-tin oxide (ITO) electrode covered with rGO covalently attached to chitosan by carbodiimide binding, aptamer immobilized by streptavidin-biotin interaction | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.01 ng/mL–100 fg/mL, LOD 1 fg/mL | [199] |
Organophosphate pesticides | Screen-printed carbon electrode with electrodeposited layer of GO and aminated aptamer and Cu nanoparticles | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.01–100 (profenofos), 1- 1000 (phorate), 0.1–1000 (isocarbophos) and 1–500 nM (omethoate), LOD 0.003 (profenofos), 0.3 (phorate), 0.03 (isocarbophos) and 0.3 nM (omethoate) | [123] |
Pb2+ | GCE covered with capturing Au–MoS2–rGO nanocomposite and thiolated capturing aptamer hybridized with DNAzyme bearing metal-organic framework with AuPd nanoalloy particles | DPV signal of electrocatalytic reduction of H2O2 decreasing with increased Pb2+ concentration due to cleavage of the aptamer strand and removal of metal nanoparticles | 5.0 pM–2.0 μM, LOD 0.07 pM | [200] |
Thrombin | GCE covered with rGO and Au nanoparticles, Then, thiolated aptamer was mixed with thrombin and immobilized by Au-SH binding. Finally, thionine was electropolymerized and template washed out | DPV signal of polythionine | 2.5 × 10−9–1.3 × 10−6 mg/mL, LOD 1.6 × 10−10 mg/mL | [124,125] |
Au microelectrode modified with thiolated capturing aptamer, signaling aptamer attached to the rGO - Ag nanoparticle composite | DPV signal of Ag nanoparticles recorded after formation of sandwich complex capturing aptamer - thrombin - signaling aptamer | 0.05–5 nM, LOD 0.03 nM | [201] | |
GCE covered GO with covalently attached double-stranded DNA decorated with electrodeposited Au nanoparticles and immobilized thiolated aptamer | EIS measurements of charge transfer resistance | 0.1–100 nM, LOD 0.06 nM | [202] | |
Tuberculosis antigen ESAT-6 | GCE with deposited rGO doped with metal-organic framework and adsorbed toluidine blue. Thiolated aptamer immobilized onto the Pt@Au nanoparticles | DC voltammetry measurements of toluidine blue redox peak currents | 1.0 × 10−4–2.0 × 102 ng/mL, LOD 3.3 × 10−5 ng/mL | [203] |
Zearalenon | Au electrode covered with Pt nanotubes, nafion and thiolated aptamer. Thionine labeled GO physically adsorbed on the aptamer layer | DPV measurement of the thionine oxidation current | 0.0005–500 ng/mL, LOD 0.000167 ng/mL | [137] |
Aptasensors on graphene–CNTs composite | ||||
Cancer antigen CA125 | rGO deposited in the gate of the field effect transistor and covered with carboxylated MWCNTs nearing aptamer | Shift of the drain-source current | 1.0 × 10−9–1.0 U/mL, LOD 5.0 × 10−10 U/mL | [146] |
Carcinoembryonic antigen (CEA) | GCE covered with rGO, hemin and MWCNTs, thiolated aptamer immobilized by Au-SU binding | DPV measurement of hemin redox activity | 1.0 fg/mL–10 ng/mL, LOD 0.68 fg/mL | [204] |
Diazinon | GCE covered with VS2 quantum dots-graphene nanoplateles and carboxylated MWCNTs | DPV signal of ferricyanide redox indicator and EIS measurement of charge transfer resistance | 5.0 × 10−14–1.0 × 10−8 (DPV), 1.0 × 10−14–1.0 × 10−8 M (EIS), LOD 1.1 × 10−14 (DPV) and 2.0 × 10−15 M (EIS) | [205] |
Diclofenac | GCE covered with the mixture of GO, Fe3O4 and MWCNTs, preliminary heated and autoclaved. Aminated aptamer immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 100–1300 p[M, LOD 33 pM | [206] |
Dopamine | GCE covered with composite obtained by mixing GO, MWCNTs and Ag nanoparticles, aptamer immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 3–110 nM, LOD 0.7 nM | [207] |
Edifenphos | GCE covered with GO-carboxylated MWCNTs and then polarized to reduce GO into rGO, aminated aptamer immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.001–1300 nM, LOD 0.1 pM | [208] |
Lysozyme | GCE covered with GO and MWCNTs films decorated with Au nanoparticles taken in various combinations | EIS measurements of the charge transfer resistance shift | 0.02–250 pM, LOD 9 fM (for the best content of the layer) | [209] |
Oxaliplatin | GCE covered with rGO and carboxylated MWCNTs followed by deposition of Au-Pd nanoparticles and aminated aptamer immobilized by carbodiimide binding | EIS measurements of the charge transfer resistance shift | 0.1–170 nM, LOD 60 pM | [210] |
Platelet-derived growth factor-BB | CGE covered with Se doped graphene–MWCNTs suspension followed by electrodeposition of Au nanoparticles and attachment of capturing hairpin aptamer | Interaction of the aptamer resulted in opening hairpin structure and interaction with two auxiliary sequences to form Y-junction DNA that released analyte and bonded hemin molecules generating DPV signal | 0.0001–10 nM, LOD 27 fM | [145] |
Prostate specific antigen (PSA) | GCE covered with GO-carboxylated MWCNTs composite then polarized to reduce GO into rGO and decorated with Au nanoparticles, thiolated aptamer immobilized by Au-SH binding | DPV and EIS measurement of the [Fe(CN)6]3-/4- redox indicator signal | 0.005– 20 ng/mL (DPV) and 0.005–100 (EIS) ng/mL, LOD 1.0 pg/mL | [211] |
Salmonella ATCC 50761 | GCE covered with GO-carboxylated MWCNTs composite then polarized to reduce GO into rGO, aminated aptamer immobilized by carbodiimide binding | EIS measurements of the charge transfer resistance shift | 75–7.5 × 105 CFU/mL, LOD 25 CFU/mL | [212] |
Salmonella enterica | GCE covered with rGO-MWCNTs composite prepared by hydrothermal method, aminated aptamer immobilized by carbodiimide binding | DPV current of the [Fe(CN)6]3-- redox indicator | 10–108 CFU/mL, LOD 10 CFU/mL | [213] |
Sulfamethazine | Bare Au electrode covered with suspension of GO and carboxylated MWCNTs followed by electrodeposition of Au nanoparticles and immobilization of thiolated aptamer by Au-SH binding | DPV current of the [Fe(CN)6]3-/4- redox indicator | 0.01–50 ng/mL, LOD0.0052 ng/mL | [138] |
Target | Surface Layer Content | Signal Measurement Protocol | Linearity Range/LOD | Ref. |
---|---|---|---|---|
g-C3N4 | ||||
Amoxicillin | GCE covered with TiO2-g-C3N4 composite obtained by hydrothermal method from (NH4)2TiF6, glucose and melamine. Then, Au nanoparticles were electrochemically deposited and thiolated aptamer immobilized by Au-SH binding | EIS measurements of the charge transfer resistance shift | 0.5–3 nM LOD 0.2 nM | [214] |
Cadmium (II) | GCE covered with the mixture of rGO and g-C3N4, aminated aptamer immobilized by carbodiimide binding | Differential anodic stripping voltammetry signal | 1 μM–1 mM, LOD 0.337 nM | [215] |
Ochratoxin A | Au electrode covered with a monolayer of capturing single-stranded DNA complementary to aptamer immobilized by hybridization. In target reaction, aptamer interacts with the analyte and leaves the electrode surface | g-C3N4 interacted with single DNA strand and catalyzed H2O2 oxidation monitored by DC voltammetry | 0.2–500 nM, LOD 0.073 nM | [139] |
Prostate specific antigen | Au electrode modified with nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets obtained by hydrothermal method from melamine and decorated with chitosan-stabilized Au nanoparticles. Thiolated aptamer immobilized by Au-SH binding | EIS measurements of the charge transfer resistance shift | 1 pg/mL–1.0 ng/mL, LOD 0.71 pg/mL | [216] |
Thrombin | GCE covered with g-C3N4 from melamine decorated with chemically synthesized Ag nanoparticles. Thiolated aptamer immobilized by Ag-SH binding | EIS measurements of the charge transfer resistance shift | 100 fM–20 nM, LOD 38 fM | [217] |
Fullerene | ||||
Prostate specific antigen (PSA) | Screen-printed carbon electrode covered with MWCNTs and C60-chitosan–ionic liquid composite. Au nanoparticles electrochemically deposited onto the layer, thiolated aptamer immobilized by Au-SH binding | DPV and EIS measurement of the [Fe(CN)6]3-/4- redox indicator signal | 1–200 (EIS), 2.5–90 (DPV) pg/mL, LOD 0.5 (EIS), 1.5 (DPV) pg/mL | [218] |
Sulfadimethoxine | Au electrode modified with thiolated capturing DNA strand and complementary aptamer, rGO-C60 nanohybrid with physically adsorbed toluidine blue used as a terminal label of signaling FNA strand | Analyte mixed with RecJf exonuclease initiates catalytic cycle resulted in removal aptamer from the electrode interface, after that, toluidine blue signal was measured using DPV technique | 10 fg/mL–10 ng/mL, LOD 10 fg/mL | [140] |
GCE covered with PDDA modified C60 and rGO, physically adsorbed glucose oxidase and Pt@Au–C60–rGO nanocomposite with thiolated capturing aptamer immobilized by Au-SH binding | DPV measurement of direct electron transfer to glucose oxidase | 10 fg/mL–50 ng/mL, LOD 8.68 fg/mL | [219] | |
2,4,6-Trinitrotoluene | GCE consecutively covered with C60, Au nanoparticles and thiolated aptamer | EIS measurements of the charge transfer resistance shift | 0.50 fM–5 μM, LOD 0.17 fM | [220] |
Tuberculosis antigen MPT-64 | GCE covered with Fe-containing metal-organic framework particles modified with poly(ethylene imine) and Au nanoparticles, thiolated aptamer immobilized via Au-SH binding | Sandwich assay with signaling aptamer modified with C60-GO-N-doped CNTs composite. DPV signal of C60 | 1–106 fg/mL LOD 0.33 fg/mL | [221] |
GCE covered with thiolated capturing aptamer | Sandwich assay with polyaniline–C60 composite decorated with Au nanoparticles bonded to signaling aptamer. DPV signal of ascorbic acid reducing polyaniline | 0.02–1000 pg/mL, LOD 20 fg/mL | [222] | |
Carbon black, CDs and related nanomaterials | ||||
Bisphenol A | GCE covered with N,S,P-doped CDs obtained by hydrothermal method from cucumber juice, chemically synthesized Au nanoparticles and thiolated aptamer | DPV and EIS measurement of the [Fe(CN)6]3-/4- redox indicator signal | 0.01 -120 μM, LOD 0.53 nM | [223] |
Cadmium(II) | Screen-printed carbon electrode with drop casted carbon black, electrodeposited Au nanoparticles and thiolated aptamer immobilized by Au-SH binding | SWV measurement of the [Fe(CN)6]3-/4- redox indicator signal | 1 50 ppb, LOD 0.14 ppb | [224] |
Chlorpyrifos | GCE covered with CB in chitosan matrix, GO@Fe3O4 prepared by solvothermal method and physically adsorbed aptamer | DC voltammetry measurement of the [Fe(CN)6]3-/4- redox indicator signal | 0.1–105 ng/mL, LOD 0.033 ng/mL | [225] |
Insulin | GCE covered with CDs obtained from candle soot and dispersed in chitosan. Aminated aptamer immobilized by glutaraldehyde cross-linking | EIS measurements of the charge transfer resistance shift | 0.5–10 nM, LOD 106.8 pM | [226] |
Protein tyrosine kinase-7 | GCE covered with porous amorphous carbon - MnO2/Fe2O3 composite followed by aptamer covalent attachment | EIS measurements of the charge transfer resistance shift | 0.0001–10 ng/mL, LOD 44 fg/mL | [227] |
Tobramycin | Au electrode covered with suspension of carbon nanospheres embedded with SnOx@TiO2 obtained by calcination of the mixture of bovine serum albumin, Na2SnO3 and butyl titanate. Aptamer immobilized by electrostatic adsorption | EIS measurements of the charge transfer resistance shift | 0.01–5 ng/mL, LOD 6.7 pg/mL | [228] |
5. Conclusions
- Transfer from general label-free measurement protocols to more specific modes with increased reliability of the results, especially in real sample assay.
- Synthesis and application of more complex and sophisticated materials that combine advantages of various components, e.g., electropolymerized materials, molecularly imprinted polymers, polyelectrolyte complexes on the support of carbon nanomaterials.
- Using the simplest and most reliable approaches to the assembling of the surface layer, especially form microfluidics and microsensor devices based on carbon paper and origami constructs.
- Varying redox labels/indicators as a route to higher robustness of the signal, especially in multicomponent samples.
- Few works are devoted to the multiplex assay and simultaneous determination of several analytes. Meanwhile, this might be critical for the implementation of aptasensors in diagnostic tools or environmental monitoring stations.
- Most of the works do not consider the problems related to the changes in the aptasensor performance during the storage/operation period. Real sample assay is often presented by very simple tasks (analysis of drinking water, spiked samples of biological fluids etc.).
- The assessment of metrological characteristics is often formal and assumes extrapolation of calibration graphs by several orders of magnitude of concentration (LOD calculation). The uncertainty in the preparation of solutions with extra-low concentration of an analyte (below 1 pM) is not considered or taken into account.
- Most of the newly proposed aptasensors require labor- and time-consuming operation and multistep synthesis of necessary reactants. One-step measurement is the main goal and main advantage of biosensors as an alternative to conventional laboratory instrumentation.
- The number of aptamers used in aptasensor assembly remains limited. This might result from present tasks in appropriate areas of their application, but needs further extension, meaning future progress in medicine, the food industry and environmental pollution.
Author Contributions
Funding
Conflicts of Interest
References
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Chemical and biological sensors for food quality monitoring and smart packaging. Foods 2018, 7, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.K.; Robinson, A.; Miller, D.R.; Davis, M.J. Overview of sensors and needs for environmental monitoring. Sensors 2005, 5, 4–37. [Google Scholar] [CrossRef]
- Pendley, B.D.; Lindner, E. Medical sensors for the diagnosis and management of disease: The physician perspective. ACS Sens. 2017, 2, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, J.; Yan, H. Environmental sensor networks: A review of critical issues. In Advances in Multimedia, Software Engineering and Computing; Jin, D., Lin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 425–429. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Zaukuu, J.L.Z.; Bazar, G.; Gillay, Z.; Kovacs, Z. Emerging trends of advanced sensor based instruments for meat, poultry and fish quality—A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Adley, C.C. Past, present and future of sensors in food production. Foods 2014, 3, 491–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primiceri, E.; Chiriacò, M.S.; Notarangelo, F.M.; Crocamo, A.; Ardissino, D.; Cereda, M.; Bramanti, A.P.; Bianchessi, M.A.; Giannelli, G.; Maruccio, G. Key enabling technologies for point-of-care diagnostics. Sensors 2018, 18, 3607. [Google Scholar] [CrossRef] [Green Version]
- Walper, S.A.; Aragonés, G.L.; Sapsford, K.E.; Brown, C.W.; Rowland, C.E.; Breger, J.C.; Medintz, I.L. Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sens. 2018, 3, 1894–2024. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, S.; Trung, T.Q.; Lee, N.-E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 2020, 49, 1812–1866. [Google Scholar] [CrossRef]
- Weng, X.; Kang, Y.; Guo, Q.; Peng, B.; Jiang, H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens. Bioelectron. 2019, 132, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dong, M.; Rigatto, C.; Liu, Y.; Lin, F. Lab-on-chip technology for chronic disease diagnosis. Digit. Med. 2018, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- van Reenen, A.; de Jong, A.M.; den Toonder, A.M.J.; Prins, M.W.J. Integrated lab-on-chip biosensing systems based on magnetic particle actuation—A comprehensive review. Lab Chip 2014, 14, 1966–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, D.R.; Tóth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 148, 133–153. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, K.D.; Cho, S. Review—In vivo and in vitro microneedle based enzymatic and non-enzymatic continuous glucose monitoring biosensors. ECS J. Solid State Sci. Technol. 2018, 7, Q3159–Q3171. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef]
- Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016, 18, S2. [Google Scholar] [CrossRef] [Green Version]
- Aydin, E.B.; Aydin, M.; Sezginturk, M.K. Biosensors in drug discovery and drug analysis. Curr. Anal. Chem. 2019, 15, 467–484. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Liu, Y.; Wang, X.; Li, Y.; Ma, P.; Gu, B.; Li, H. Recent advances in rapid pathogen detection method based on biosensors. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1021–1037. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M. Infectious pathogens meet point-of-care diagnostics. Biosens. Bioelectron. 2018, 106, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Brooks, G.A.; Klonoff, D.C. Wearable physiological systems and technologies for metabolic monitoring. J. Appl. Phys. 2018, 124, 548–556. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Yang, Q.; Yuan, N.; Zhang, W. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors 2019, 19, 4916. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.L.L.; Maslova, A.; Hsing, I.-M. Rational design of electrochemical DNA biosensors for point-of-care applications. Chem. Electro Chem. 2017, 4, 795–805. [Google Scholar] [CrossRef]
- Ozer, T.; Geiss, B.J.; Henry, C.S. Review—Chemical and biological sensors for viral detection. J. Electrochem. Soc. 2020, 167, 037523. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, C.; Economou, A.; Prodromidis, M.I. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. TrAC Trends Anal. Chem. 2016, 79, 88–105. [Google Scholar] [CrossRef]
- Xiao, X.; Zhu, L.; He, W.; Luo, Y.; Xu, W. Functional nucleic acids tailoring and its application. TrAC Trends Anal. Chem. 2019, 118, 138–157. [Google Scholar] [CrossRef]
- Ilgu, M.; Nilsen-Hamilton, M. Aptamers in analytics. Analyst 2016, 141, 1551–1568. [Google Scholar] [CrossRef] [Green Version]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Famulok, M.; Szostak, J.W. In vitro selection of specific ligand-binding nucleic acids. Angew. Chem. 1992, 31, 979–988. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hossain, M.M.; Tamiya, E. Electrochemical biosensors for medical and food applications. Electroanalysis 2008, 20, 616–626. [Google Scholar] [CrossRef]
- Ríos, Á.; Zougagh, M.; Avila, M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal. Chim. Acta 2012, 740, 1–11. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, M. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Maduraiveeran, G. Bionanomaterial-based electrochemical biosensing platforms for biomedical applications. Anal. Methods 2020, 12, 1688–1701. [Google Scholar] [CrossRef]
- Dimcheva, N. Nanostructures of noble metals as functional materials in biosensors. Curr. Opin. Electrochem. 2020, 19, 35–41. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Satyanarayana, M.; Kummari, S.; Gobi, K.V. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchim. Acta 2020, 29, 187. [Google Scholar] [CrossRef]
- Kaur, H.; Shorie, M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Adv. 2019, 1, 2123–2138. [Google Scholar] [CrossRef] [Green Version]
- Vasilescu, A.; Hayat, A.; Gáspár, S.; Marty, J.-L. Advantages of carbon nanomaterials in electrochemical aptasensors for food analysis. Electroanalysis 2018, 30, 2–19. [Google Scholar] [CrossRef]
- Sharifi, C.; Vahed, S.Z.; Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Khalilov, R.; Ahmadi, M.; Hamidi-Aslh, E.; Labib, M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. Bioelectron. 2020, 150, 111933. [Google Scholar] [CrossRef] [PubMed]
- Tretyakov, Y.D.; Goodilin, E.D. Key trends in basic and application-oriented research on nanomaterials. Russ. Chem. Rev. 2009, 78, 801–820. [Google Scholar] [CrossRef]
- Valcarcel, M.; Cardenas, S.; Simonet, B.M.; Moliner-Martinez, Y.; Lucena, R. Carbon nanostructures as sorbent materials in analytical processes. TrAC Trends Anal. Chem. 2008, 27, 34–43. [Google Scholar] [CrossRef]
- Sarapuu, A.; Kibena-Põldsepp, E.; Borghei, M.; Tammeveski, K. Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A 2018, 6, 776–804. [Google Scholar] [CrossRef]
- Pieta, I.S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M.; Zboril, R. Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl. Catal. B 2019, 244, 272–283. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672. [Google Scholar] [CrossRef]
- Neto, C.A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGovern, I.T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran-Van, A.F.; Wegner, H.A. Strategies in organic synthesis for condensed arenes, coronene, and graphene. Top. Curr. Chem. 2013, 349, 121–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.B.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Xu, S.; Duo, H.; Zheng, C.; Zhao, S.; Song, S.; Simon, G. Novel approach to fabrication of DNA biosensor based on a carboxylated graphene oxide decorated with Fe3O4 NPs for the detection of typhoidal salmonella. Int. J. Electrochem. Sci. 2019, 14, 1248–1269. [Google Scholar] [CrossRef]
- Chen, S.-L.; Chen, C.-Y.; Hsieh, J.C.-H.; Yu, Z.-Y.; Cheng, S.-J.; Hsieh, K.Y.; Yang, J.-W.; Kumar, P.V.; Lin, S.-F.; Chen, G.-Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials 2019, 9, 1725. [Google Scholar] [CrossRef] [Green Version]
- Rowley-Neale, S.J.; Randviir, E.P.; Dena, A.S.A.; Banks, C.E. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Es’haghi, Z. A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. J. Electroanal. Chem. 2017, 801, 439–449. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. 2016, 55, 13296–13300. [Google Scholar] [CrossRef]
- Wang, G.; Ji, Y.; Lei, Y.; Wang, Y.; Wang, Y.; Li, Y.; Wang, S. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Energy Lett. 2018, 3, 1183–1191. [Google Scholar] [CrossRef]
- Chen, L.; Han, J.; Ito, U.; Fujita, T.; Huang, G.; Hu, K.; Hirata, A.; Watanabe, K.; Chen, M. Heavily doped and highly conductive hierarchical nanoporous graphene for electrochemical hydrogen production. Angew. Chem. 2018, 130, 13486–13491. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, H.; Xiao, C.; Zheng, S.; Shi, X.; Qin, J.; Fu, Q.; Bao, X.; Feng, X.; Müllen, K.; et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 2018, 140, 8198–8205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, J.; Xiao, Y.; Wang, J.; Sun, G.; Zhao, Y.; Qu, L. Regulation of 2D graphene materials for electrocatalysis. Chem. Eur. J. 2020, 15, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.L. Nanotubes, nanoscience, and nanotechnology. Mater. Sci. Eng. C 2001, 15, 1–11. [Google Scholar] [CrossRef]
- Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 2007, 19, 3214–3228. [Google Scholar] [CrossRef] [Green Version]
- Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 2002, 365, 69–74. [Google Scholar] [CrossRef]
- Frackowiak, E.; Delpeux, S.; Jurewicz, K.; Szostak, K.; Cazorla-Amoros, D.; Béguin, F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 2002, 336, 35–41. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Rel. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Kuo, T.F.; Chi, C.C.; Lin, I.N. Synthesis of carbon nanotubes by laser ablation of graphites at room temperature. Jpn. J. Appl. Phys. 2001, 40, 7147–7150. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Eklund, P.C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705–814. [Google Scholar] [CrossRef]
- Thorogood, C.A.; Wildgoose, G.G.; Crossley, A.; Jacobs, R.M.J.; Jones, J.H.; Compton, R.G. Differentiating between ortho- and para-quinone surface groups on graphite, glassy carbon, and carbon nanotubes using organic and inorganic voltammetric and X-ray photoelectron spectroscopy labels. Chem. Mater. 2007, 19, 4964–4974. [Google Scholar] [CrossRef]
- Patil, I.M.; Reddy, V.; Lokanathan, M.; Kakade, B. Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction. Appl. Surf. Sci. 2018, 449, 697–704. [Google Scholar] [CrossRef]
- Song, S.; Zhang, L.; Su, Y.; Lv, Y. Recent advances in graphitic carbon nitride-based chemiluminescence, cataluminescence and electrochemiluminescence. J. Anal. Test. 2017, 1, 274–290. [Google Scholar] [CrossRef]
- Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustain. Energy Fuels 2019, 3, 2907–2925. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, Y.; Tian, X.; Zheng, B.; Li, Y.; Yuanm, H.; Xiao, D.; Xie, S.; Choim, M.M.F. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal. Chem. 2012, 84, 4754–4759. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef]
- Hindermann-Bischoff, M.; Ehrburger-Dolle, F. Electrical conductivity of carbon black–polyethylene composites: Experimental evidence of the change of cluster connectivity in the PTC effect. Carbon 2001, 39, 375–382. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Sagadevan, S.; Johan, R.B.; Shah, S.T.; Adebesi, A.; Md, S.I.; Rafique, R.F. A review on electrochemically modified carbon nanotubes (CNTs) membrane for desalination and purification of water. Mater. Res. Express 2018, 5, 102001. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Mazzaracchio, V.; Scognamiglio, V.; Amine, A.; Moscone, D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens. Bioelectron. 2020, 156, 112033. [Google Scholar] [CrossRef] [PubMed]
- Shuai, H.-L.; Huang, K.-J.; Chen, Y.-X. A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J. Mater. Chem. B 2016, 4, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, Y.H.; Park, S. Enzyme electrode platform using methyl viologen electrochemically immobilized on carbon materials. J. Electrochem. Soc. 2016, 163, G93–G98. [Google Scholar] [CrossRef]
- Ramsden, J.J. Carbon based nanomaterials and devices. In Nanotechnology, 1st ed.; Ramsden, J., Ed.; Elsevier: Cambridge, MA, USA, 2011; pp. 189–197. [Google Scholar] [CrossRef]
- Alekseyev, N.I.; Dyuzhev, G.A. Fullerenee formation in an arc discharge. Carbon 2003, 41, 1343–1348. [Google Scholar] [CrossRef]
- Kozlov, B.N.; Kirillov, S.N.; Mamyrin, B.A. Formation of fullerenes in laser ablation of graphite in a vacuum. Proc. SPIE 1997, 3093. [Google Scholar] [CrossRef]
- Fink, D.; Chadderton, L.T.; Vacik, J.; Hnatowicz, V.; Zawislak, F.C.; Behar, M.; Grande, D.L. Damage and sputtering of fullerene by low energy medium and heavy ions. Nucl. Instr. Meth. Phys. Res. B 1996, 113, 244–247. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Fullerenes in electrochemical catalytic and affinity biosensing: A review. J. Carbon. Res. 2017, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Gergeroglu, H.; Yildirim, S.; Ebeoglugil, M.F. Nano-carbons in biosensor applications: An overview of carbon nanotubes (CNTs) and fullerenes (C60). SN Appl. Sci. 2020, 2, 603. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Tuerhong, M.; Xu, Y.; Yin, X.-B. Review on carbon dots and their applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Sciortino, A.; Cannizzo, A.; Messina, F. Carbon nanodots: A review—From the current understanding of the fundamental photophysics to the full control of the optical response. C J. Carbon Res. 2018, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, O.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020, 10, 15406–15429. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Guo, X.; Huang, J.; Shen, H.; Zeng, Q.; Wang, L. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one step electrochemical exfoliation. Carbon 2018, 140, 508–520. [Google Scholar] [CrossRef]
- Viculis, L.M.; Mack, J.J.; Mayer, O.M.; Hahn, H.T.; Kaner, R.B. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 2005, 15, 974–978. [Google Scholar] [CrossRef]
- Hong, G.L.; Zhao, H.L.; Deng, H.H.; Yang, H.J.; Peng, H.P.; Liu, Y.H.; Chen, W. Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. Int. J. Nanomed. 2018, 13, 4807–4815. [Google Scholar] [CrossRef] [Green Version]
- Titirici, M.M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116. [Google Scholar] [CrossRef]
- Baccile, N.; Antonietti, M.; Titirici, M.-M. One-step hydrothermal synthesis of nitrogen-doped nanocarbons: Albumin directing the carbonization of glucose. Chem. Sustain. Chem. 2010, 3, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Antonietti, M.; Yu, S.-H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2006, 2, 756–759. [Google Scholar] [CrossRef]
- Ding, X.; Niu, Y.; Zhang, G.; Xu, Y.; Li, J. Electrochemistry in carbon-based quantum dots. Chem. Asian J. 2020, 15, 1214–1224. [Google Scholar] [CrossRef]
- Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 2018, 3, 12010–12018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, T.; Zhou, R.; Zhang, Y.; Hao, L.; Cai, X.; Zhu, B. AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging. Cell Prolif. 2020, 53, 312713. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, T.N.; Porfireva, A.V.; Evtugyn, G.A.; Hianik, T. Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination. Electroanalysis 2019, 31, 1913–1924. [Google Scholar] [CrossRef]
- Palchetti, I.; Mascini, M. Electrochemical adsorption technique for immobilization of single-stranded oligonucleotides onto carbon screen-printed electrodes. In Immobilisation of DNA on Chips II. Topics in Current Chemistry; Wittmann, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; p. 261. [Google Scholar] [CrossRef]
- Du, Y.; Chen, C.; Li, B.; Zhou, M.; Wang, E.; Dong, S. Layer-by-layer electrochemical biosensor with aptamer-appended activepolyelectrolyte multilayer for sensitive protein determination. Biosens. Bioelectron. 2010, 25, 1902–1907. [Google Scholar] [CrossRef]
- Kim, P.J.P.; Lee, B.Y.; Hong, S.; Sim, S.J. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 2008, 381, 193–198. [Google Scholar] [CrossRef]
- Zhang, X.; Servos, M.R.; Liu, J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J. Am. Chem. Soc. 2012, 134, 7266–7269. [Google Scholar] [CrossRef] [Green Version]
- Oberhaus, F.V.; Frense, D.; Beckmann, D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A review. Biosensors 2020, 10, 45. [Google Scholar] [CrossRef]
- Cammarata, C.R.; Hughes, M.E.; Ofner, C.M., III. Carbodiimide induced cross-linking, ligand addition, and degradation in gelatin. Mol. Pharm. 2015, 12, 783–793. [Google Scholar] [CrossRef]
- Baranton, S.; Bélanger, D. Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. J. Phys. Chem. B 2005, 109, 24401–24410. [Google Scholar] [CrossRef]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Ocaña, C.; Marty, J.-L. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Anal. Chim. Acta 2015, 889, 106–112. [Google Scholar] [CrossRef]
- Witt, M.; Walter, J.-G.; Stahl, F. Aptamer microarrays—Current status and future prospects. Microarrays 2015, 4, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balamurugan, S.; Obubuafo, A.; McCarley, R.L.; Soper, S.A.; Spivak, D.A. Effect of linker structure on surface density of aptamer monolayers and their corresponding protein binding efficiency. Anal. Chem. 2008, 80, 9630–9634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont-Filliard, A.; Billon, M.; Livache, T.; Guillerez, S. Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Anal. Chim. Acta 2004, 515, 271–277. [Google Scholar] [CrossRef]
- Baghbaderani, S.S.; Noorbakhsh, A. Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As(III) aptasensor. Biosens. Bioelectron. 2019, 131, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, F.; Noorbakhsh, A. Sensitive electrochemical prostate specific antigen aptasensor: Effect of carboxylic acid functionalized carbon nanotube and glutaraldehyde linker. Electroanalysis 2016, 28, 1134–1145. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E.W. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient synthesis of graphene oxide based on improved Hummers method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef] [Green Version]
- Pourmadadi, M.; Shayeh, J.; Omidi, M.; Yazdian, F.; Alebouyeh, M.; Tayebi, L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim. Acta 2019, 186, 787. [Google Scholar] [CrossRef]
- Rezaei, B.; Jamei, H.R.; Ensafi, A.A. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/chitosan/carbon quantum dot for the detection of lysozyme. Biosens. Bioelectron. 2018, 115, 37–44. [Google Scholar] [CrossRef]
- Fu, J.; An, X.; Yao, Y.; Guo, Y.; Sun, X. Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens. Actuators B Chem. 2019, 287, 503–509. [Google Scholar] [CrossRef]
- Yang, S.; Teng, Y.; Cao, Q.; Bai, C.; Fang, Z.; Xu, W. Electrochemical sensor based on molecularly imprinted polymer-aptamer hybrid receptor for voltammetric detection of thrombin. J. Electrochem. Soc. 2019, 166, B23–B28. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Cao, Q.; Zheng, Y.; Bai, C.; Teng, Y.; Xu, W. A molecularly imprinted polythionine-modified electrode based on a graphene-gold nanoparticle composite (MIP/AuNPs/rGO/GCE) for the determination of thrombin. Int. J. Electrochem. Sci. 2018, 13, 9333–9345. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Jiao, B.; Wang, L. Post-SELEX optimization of aptamers. Anal. Bioanal. Chem. 2016, 408, 4567–4573. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Lu, Z.; Jiang, H.; Yang, Z.; Liu, X.; Ding, H.; Li, H.; Dong, J.; Huang, A.; Fang, T.; et al. Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens. Bioelectron. 2018, 110, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wen, J.; Song, L.; Qu, J.; He, W.; Liu, S. One-step fabrication and electromagnetic wave absorption of graphene/Ag@polyaniline ternary nanocomposites. Nanotechnology 2020, 31, 225606. [Google Scholar] [CrossRef]
- Romero, A.; Lavín-López, M.P.; de la Osa, A.R.; Ordoñez, S.; de Lucas-Consuegra, A.; Valverde, J.L.; Patón, A. Different strategies to simultaneously N-doping and reduce graphene oxide for electrocatalytic applications. J. Electroanal. Chem. 2020, 857, 113695. [Google Scholar] [CrossRef]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the stability of gold electrodes by ferri-/ferrocyanide redox couple electrolytes during electrochemical impedance spectroscopy. Anal. Chem. 2016, 88, 682–687. [Google Scholar] [CrossRef]
- Roxo, C.; Kotkowiak, W.; Pasternak, A. G-Quadruplex-forming aptamers—Characteristics, applications, and perspectives. Molecules 2019, 24, 3781. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.-L.; Zhang, Z.; Wang, M.; Lu, L.; Zhong, H.-J.; Leung, C.-H. Recent developments in G-quadruplex probes. Chem. Biol. 2015, 22, 812–828. [Google Scholar] [CrossRef] [Green Version]
- Chai, H.; Ma, X.; Meng, F.; Mei, Q.; Tang, Y.; Miao, P. Electrochemical aptasensor based on a potassium ion-triggered DNA conformation transition and self-assembly on an electrode. New J. Chem. 2019, 43, 7928–7931. [Google Scholar] [CrossRef]
- Lubin, A.A.; Plaxco, K.W. Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Acc. Chem. Res. 2010, 43, 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Ding, S.; Wang, W.; Lv, Q.; Wang, Z.; Bai, H.; Zhang, Q. Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA-dye complex. Microchim. Acta 2019, 186, 860. [Google Scholar] [CrossRef] [PubMed]
- Mashhadizadeh, M.H.; Naser, N.; Mehrgardi, M.A. A digoxin electrochemical aptasensor using Ag nanoparticle decorated graphene oxide. Anal. Methods 2016, 8, 7247–7253. [Google Scholar] [CrossRef]
- He, B.; Yan, X. An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Microchim. Acta 2019, 186, 383. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Li, M.; Li, M. Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Microchim. Acta 2020, 187, 274. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Kou, F.; Xu, X.; Han, Y.; Yang, G.; Huang, X.; Chen, W.; Chie, Y.; Lin, Z. Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sens. Actuators B Chem. 2018, 270, 263–269. [Google Scholar] [CrossRef]
- You, H.; Bai, L.; Yuan, Y.; Zhou, J.; Bai, Y.; Mu, Z. An amperometric aptasensor for ultrasensitive detection of sulfadimethoxine based on exonuclease-assisted target recycling and new signal tracer for amplification. Biosens. Bioelectron. 2018, 117, 706–712. [Google Scholar] [CrossRef]
- HJornbeck, P. Enzyme-Linked Immunosorbent Assays. Curr. Protoc. Immun. 1992, 1. [Google Scholar] [CrossRef]
- Ferrua, B.; Vincent, C.; Revillard, J.P.; Pettazzi, G.; Maiolini, T.; Viot, G.; Masseyeff, R. A sandwich method of enzyme immunoassay. III. Assay for human beta-2 microglobulin compared with radioimmunoassay. J. Immun. Methods 1980, 36, 149–158. [Google Scholar] [CrossRef]
- Jarczewska, M.; Malinowska, E. The application of antibody–aptamer hybrid biosensors in clinical diagnostics and environmental analysis. Anal. Methods 2020, 12, 3183–3199. [Google Scholar] [CrossRef]
- Song, Q.; Wang, R.; Sun, F.; Chen, H.; Wang, Z.; Na, N.; Ouyang, J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens. Bioelectron. 2017, 87, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Chen, Y.-X.; Wu, X.; Huang, K.-J. Electrochemical biosensor based on Se-doped MWCNTs-graphene and Y- shaped DNA-aided target-triggered amplification strategy. Colloids Surf. B 2018, 172, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Majd, S.M.; Salimi, A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal. Chim. Acta 2018, 1000, 273–282. [Google Scholar] [CrossRef]
- Gao, N.; Gao, T.; Yang, X.; Dai, X.; Zhou, W.; Zhang, A.; Lieber, C.M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Nalt. Acad. Sci. USA 2016, 113, 14633–14638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khung, Y.L.; Narducci, D. Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens. Bioelectron. 2013, 50, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Derikvandi, Z.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. Design of ultrasensitive bisphenol A aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes. Anal. Biochem. 2016, 512, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, A.; Abbasi, A.R. Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing. J. Mater. Sci. 2019, 30, 3432–3442. [Google Scholar] [CrossRef]
- Ghanbari, K.; Roushani, M. A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sens. Actuators B Chem. 2018, 258, 1066–1071. [Google Scholar] [CrossRef]
- Nazari, M.; Kashanian, S.; Rafipour, R.; Omidfar, K. Biosensor design using an electroactive label-based aptamer to detect bisphenol A in serum samples. J. Biosci. 2019, 44, 105. [Google Scholar] [CrossRef]
- Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Label-free electrochemical bisphenol A aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis 2018, 30, 2160–2166. [Google Scholar] [CrossRef]
- Azadbakht, A.; Roushani, M.; Abbasi, A.R.; Derikvand, Z. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels. Anal. Biochem. 2016, 512, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, E.; Madrakian, T.; Afkhami, A.; Nabiabad, H.S. An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes. J. Iran. Chem. Soc. 2019, 16, 593–602. [Google Scholar] [CrossRef]
- Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 2018, 178, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Goud, K.Y.; Kumar, V.S.; Catanante, G.; Li, Z.; Zhu, Z.; Marty, J.L. Disposable electrochemical aptasensor based on carbon nanotubes- V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sens. Actuators B Chem. 2018, 268, 278–286. [Google Scholar] [CrossRef]
- Shiravand, T.; Azadbakht, A. Impedimetric biosensor based on bimetallic AgPt nanoparticle-decorated carbon nanotubes as highly conductive film surface. J. Solid State Electrochem. 2017, 21, 1699–1711. [Google Scholar] [CrossRef]
- Azadbakht, A.; Roushani, M.; Abbasi, A.R.; Derikvand, Z. Design and characterization of electrochemical dopamine aptamer as convenient and integrated sensing platform. Anal. Biochem. 2016, 507, 47–57. [Google Scholar] [CrossRef]
- Azadbakht, A.; Roushani, M.; Abbasi, A.R.; Menati, S.; Derikvand, Z.A. label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine. Mater. Sci. Eng. C 2016, 68, 585–593. [Google Scholar] [CrossRef]
- Beiranvand, S.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. A simple and label-free aptasensor based on amino group-functionalized gold nanocomposites-Prussian blue/carbon nanotubes as labels for signal amplification. J. Electroanal. Chem. 2016, 776, 170–179. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Raoof, J.B.; Ojani, R. Preparation of epirubicin aptasensor using curcumin as hybridization indicator: Competitive binding assay between complementary strand of aptamer and epirubicin. Electroanalysis 2018, 30, 378–385. [Google Scholar] [CrossRef]
- Ming, T.; Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xing, Y.; Xiao, G.; Jin, H.; Cai, X. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17β-estradiol. ACS Sens. 2019, 4, 3186–3194. [Google Scholar] [CrossRef]
- Liu, X.; Deng, K.; Wang, H.; Li, C.; Zhang, S.; Huang, H. Aptamer based ratiometric electrochemical sensing of 17β-estradiol using an electrode modified with gold nanoparticles, thionine, and multiwalled carbon nanotubes. Microchim. Acta 2019, 186, 347. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Shahdost-fard, F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C 2016, 68, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Douaki, A.; Abera, B.D.; Cantarella, G.; Shkodra, B.; Mushtaq, A.; Ibba, P.; Inam, A.S.; Petti, L.; Lugli, P. Flexible screen printed aptasensor for rapid detection of furaneol: A comparison of CNTs and AgNPs effect on aptasensor performance. Nanomaterials 2020, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, A.; Abbasi, A.R. Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe2 nanoflowers and gold nanoparticles as signal amplifiers. Microchim. Acta 2019, 186, 23. [Google Scholar] [CrossRef]
- Kaur, N.; Thakur, H.; Prabhakar, N. Multiwalled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem. J. 2019, 147, 393–402. [Google Scholar] [CrossRef]
- Nawaz, M.A.H.; Rauf, S.; Catanante, G.; Nawaz, M.H.; Nunes, G.; Marty, J.L.; Hayat, A. One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 2016, 16, 1651. [Google Scholar] [CrossRef] [Green Version]
- Nia, N.G.; Azadbakht, A. Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin. Microchim. Acta 2018, 185, 333. [Google Scholar] [CrossRef]
- Wang, H.; Pan, L.; Liu, Y.; Ye, Y.; Yao, Y. Electrochemical sensing of nitenpyram based on the binary nanohybrid of hydroxylated multiwall carbon nanotubes/single-wall carbon nanohorns. J. Electroanal. Chem. 2020, 862, 113955. [Google Scholar] [CrossRef]
- He, B.; Wang, L.; Dong, X.; Yan, X.; Li, M.; Yan, S.; Yan, D. Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem. 2019, 300, 125179. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Alsager, O.A.; Zhu, B.; Travas-Sejdic, J.; Hodgkiss, J.M.; Plank, N.O.V. Electrostatic gating in carbon nanotube aptasensors. Nanoscale 2016, 8, 13659–13668. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Cheng, S.; Liu, H.; Li, F.; Guo, Y.; Sun, X. A dual-amplification electrochemical aptasensor for profenofos detection. J. Electrochem. Soc. 2020, 167, 027515. [Google Scholar] [CrossRef]
- Hasan, M.R.; Pulingam, T.; Appaturi, J.N.; Zifruddin, A.N.; Teh, S.J.; Lim, T.W.; Ibrahim, F.; Leo, B.F.; Thong, K.L. Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal. Biochem. 2018, 554, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Jiang, L.; Song, Y.; Ding, Y.; Zhang, J.; Wu, X.; Tang, D. Amperometric aptasensor for saxitoxin sing a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe. Microchim. Acta 2016, 183, 1971–1980. [Google Scholar] [CrossRef]
- Aghajari, R.; Azadbakht, A. Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube. Anal. Biochem. 2018, 547, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Qin, X.; Wang, Q.; Yin, Y. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy. RSC Adv. 2016, 6, 39401–39408. [Google Scholar] [CrossRef]
- Yin, J.; Guo, W.; Qin, X.; Pei, M.; Wang, L.; Ding, F. A regular “signal attenuation” electrochemical aptasensor for highly sensitive detection of streptomycin. New J. Chem. 2016, 40, 9711–9718. [Google Scholar] [CrossRef]
- He, B.; Du, G. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. Anal. Bioanal. Chem. 2018, 410, 2901–2910. [Google Scholar] [CrossRef]
- He, B.-S.; Yan, S. Electrochemical aptasensor based on aptamer complimentary strand conjugate and thionine for sensitive detection of tetracycline with multiwalled carbon nanotubes and gold nanoparticles amplification. Anal. Methods 2018, 10, 783–790. [Google Scholar] [CrossRef]
- Benvidi, A.; Yazdanparast, S.; Rezaeinasab, M.; Tezerjani, M.D.; Abbasi, S. Designing and fabrication of a novel sensitive electrochemical aptasensor based on poly (L-glutamic acid)/MWCNTs modified glassy carbon electrode for determination of tetracycline. J. Electroanal. Chem. 2018, 808, 311–320. [Google Scholar] [CrossRef]
- Hou, W.; Shi, Z.; Guo, Y.; Sun, X.; Wang, X. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst. Eng. 2017, 40, 1419–1425. [Google Scholar] [CrossRef]
- Heydari-Bafrooei, E.; Amini, M.; Ardakani, M.H. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosens. Bioelectron. 2016, 85, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Xu, X.; Xu, H.; Zhang, Y.; Li, C.; Ma, Y.; Song, D.; Xie, Q. Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim. Acta 2017, 184, 1677–1682. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Raoof, J.B. Ultrasensitive and reusable electrochemical aptasensor for detection of tryptophan using of [Fe(bpy)3](p-CH3C6H4SO2)2 as an electroactive indicator. J. Pharm. Biomed. Anal. 2019, 163, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Majidi, M.R.; Karami, P.; Johari-Aharc, M.; Omidi, Y. Direct detection of tryptophan for rapid diagnosis of cancer cell metastasis competence by an ultra- sensitive and highly selective electrochemical biosensor. Anal. Methods 2016, 8, 7910–7919. [Google Scholar] [CrossRef]
- Majidi, M.R.; Omidi, Y.; Karami, P.; Johari-Ahar, M. Reusable potentiometric screen-printed sensor and label-free aptasensor with pseudo-reference electrode for determination of tryptophan in the presence of tyrosine. Talanta 2016, 150, 425–433. [Google Scholar] [CrossRef]
- Yarahmadi, S.; Azadbakht, A.; Derikvand, R.M. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea. Microchim. Acta 2019, 186, 71. [Google Scholar] [CrossRef]
- Ma, L.; Bai, L.; Zhao, M.; Zhou, J.; Chen, Y.; Mu, Z. An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS2-MWCNTs nanocomposite for signal enhancement. Anal. Chim. Acta 2019, 1060, 71–78. [Google Scholar] [CrossRef]
- Dan, X.; Ruiyi, L.; Zaijun, L.; Haiyan, Z.; Zhiguo, G.; Guangli, W. Facile strategy for synthesis of silver-graphene hybrid with controllable size and excellent dispersion for ultrasensitive electrochemical detection of acetamiprid. Appl. Surf. Sci 2020, 512, 145628. [Google Scholar] [CrossRef]
- Lin, T.; Shen, Y. Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly. J. Electroanal. Chem. 2020, 870, 114247. [Google Scholar] [CrossRef]
- Ge, L.; Wang, W.; Sun, X.; Hou, T.; Li, F. Affinity-mediated homogeneous electrochemical aptasensor on a graphene platform for ultrasensitive biomolecule detection via exonuclease-assisted target-analog recycling amplification. Anal. Chem. 2016, 88, 2212–2219. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchim. Acta 2019, 186, 530. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Zhong, H.; Wang, L.; Liu, Y.; Xu, Y.; Zhang, J.; Xu, C.; He, L.; Wang, H. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. Intern. J. Biol. Macromol. 2019, 135, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhao, C.; Gui, R.; Gao, X.; Wang, Z. Reduced graphene oxide/nile blue/gold nanoparticles complex- modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta 2018, 1025, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Bharti, A.; Kaur, N.; Singh, S.; Prabhakar, N. An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly(3,4-ethylenedioxythiophene) nanocomposite for detection of MUC1. J. Electroanal. Chem. 2018, 813, 102–108. [Google Scholar] [CrossRef]
- Sharma, A.; Bhardwaj, J.; Jang, J. Label-free, highly sensitive electrochemical aptasensors using polymer-modified reduced graphene oxide for cardiac biomarker detection. ACS Omega 2020, 5, 3924–3931. [Google Scholar] [CrossRef]
- Kaur, N.; Bharti, A.; Batra, S.; Rana, S.; Rana, S.; Bhalla, A.; Prabhakar, N. An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem. J. 2019, 144, 102–109. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Zhang, G.; Zhang, Y.; Wang, H.; Cao, W.; Li, T.; Wei, Q. An electrochemical aptasensor based on gold-modified MoS2/rGO nanocomposite and gold-palladium-modified Fe-MOFs for sensitive detection of lead ions. Sens. Actuators B Chem. 2020, 319, 128313. [Google Scholar] [CrossRef]
- Qin, B.; Yang, K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Microchim. Acta 2018, 185, 407. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Zhang, Y.; Deng, D.; He, H.; Luo, L.; Wang, Z. A label-free electrochemical aptasensor based on graphene oxide/double-stranded DNA nanocomposite. Colloids Surf. B 2016, 145, 160–166. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Y.; Chen, Y.; Zhang, P.; Bai, Y.; Bai, L. Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Microchim. Acta 2018, 185, 379. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Tavakolian-Ardakani, Z.; Sahraei, N.; Moshtaghioun, S.M. Fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite. Biosens. Bioelectron. 2019, 129, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A.A. Ultrasensitive voltammetric and impedimetric aptasensor for diazinon pesticide detection by VS2 quantum dots-graphene nanoplatelets/ carboxylated multiwalled carbon nanotubes as a new group nanocomposite for signal enrichment. Anal. Chem. Acta 2020, 1111, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, A.; Derikvandi, Z. Aptamer-based sensor for diclofenac quantification using carbon nanotubes and graphene oxide decorated with magnetic nanomaterials. J. Iran. Chem. Soc. 2018, 15, 595–606. [Google Scholar] [CrossRef]
- Bahrami, S.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification. Talanta 2016, 159, 307–316. [Google Scholar] [CrossRef]
- Arvand, M.; Gholami, J. A label-free electrochemical aptasensor for sensitive edifenphos detection in rice. Anal. Methods 2020, 12, 1237–1243. [Google Scholar] [CrossRef]
- Heydari-Bafrooei, E.; Askari, S. Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix. Microchim. Acta 2017, 184, 3405–3413. [Google Scholar] [CrossRef]
- El-Wekil, M.M.; Darweesh, M.; Shaykoond MSh, A.; Ali, R. Enzyme-free and label-free strategy for electrochemical oxaliplatin aptasensing by using rGO/MWCNTs loaded with AuPd nanoparticles as signal probes and electro-catalytic enhancers. Talanta 2020, 217, 121084. [Google Scholar] [CrossRef]
- Heydari-Bafrooei, E.; Shamszadeh, N.S. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens. Bioelectron. 2017, 91, 284–292. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Dai, R.; Wang, Z.; Li, X. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim. Acta 2016, 183, 337–344. [Google Scholar] [CrossRef]
- Appaturi, J.N.; Pulingam, T.; Thong, K.L.; Muniandy, S.; Ahmad, N.; Leo, B.F. Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor. Anal. Biochem. 2020, 589, 113489. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Jiang, N.; Zheng, S.; Mu, T.; Meng, L.; Liu, Y.; Liu, J.; Chen, G. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. J. Hazard. Mater. 2020, 391, 122024. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, W.; Yan, W.; Li, P.; Zou, H.; Wei, Z.; Guan, W.; Ma, Y.; Wu, S.; Yu, Y.; et al. A Novel aptasensor based on graphene/graphite carbon nitride nanocomposites for cadmium detection with high selectivity and sensitivity. ACS Appl. Nano Mater. 2018, 1, 2341–2346. [Google Scholar] [CrossRef]
- Duan, F.; Zhang, S.; Yang, L.; Zhang, Z.; He, L.; Wang, M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal. Chim. Acta 2018, 1036, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, T.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xing, Y.; Song, Y.; Zhang, Z.; et al. An electrochemical thrombin aptasensor based on the use of graphite-like C3N4 modified with silver nanoparticles. Microchim. Acta 2020, 187, 163. [Google Scholar] [CrossRef] [PubMed]
- Jalalvand, A.R. Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Intern. J. Biol. Macromol. 2019, 126, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Mu, Z.; Zhao, M.; Zhou, J.; Chen, Y.; Bai, L. Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase. Microchim. Acta 2019, 186, 1. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Shahdost-fard, F.; Azadbakht, A. Using Au@nano-C60 nanocomposite as an enhanced sensing platform in modeling a TNT aptasensor. Anal. Biochem. 2017, 534, 78–85. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Guo, S.; Cao, J.; Zhou, J.; Zuo, J.; Bai, L. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60 NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials 2019, 216, 119253. [Google Scholar] [CrossRef]
- Bai, L.; Chen, Y.; Bai, Y.; Chen, Y.; Zhou, J.; Huang, A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 2017, 133, 11–19. [Google Scholar] [CrossRef]
- Yao, J.; Liu, C.; Yang, M. An ultrasensitive and highly selective electrochemical aptasensor for environmental endocrine disrupter bisphenol A determination using gold nanoparticles/nitrogen, sulfur, and phosphorus co-doped carbon dots as signal enhancer and its electrochemical kinetic research. J. Electrochem. Soc. 2019, 166, B1161–B1170. [Google Scholar] [CrossRef]
- Fakude, C.T.; Arotiba, O.A.; Mabuba, N. Electrochemical aptasensing of cadmium (II) on a carbon black-gold nanoplatform. J. Electroanal. Chem. 2020, 858, 113796. [Google Scholar] [CrossRef]
- Jiao, Y.; Hou, W.; Fu, J.; Guo, Y.; Sun, X.; Wang, X.; Zhao, J. A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sens. Actuators B Chem. 2017, 243, 1164–1170. [Google Scholar] [CrossRef]
- Abazar, F.; Noorbakhsh, A. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem. 2020, 304, 127281. [Google Scholar] [CrossRef]
- Hu, M.; Li, Z.; Guo, X.; Wang, M.; He, L.; Zhang, Z. Hollow core-shell nanostructured MnO2/Fe2O3 embedded within amorphous carbon nanocomposite as sensitive bioplatform for detecting protein tyrosine kinase-7. Appl. Surf. Sci. 2019, 489, 13–24. [Google Scholar] [CrossRef]
- Wang, M.; Hu, B.; Yang, C.; Zhang, Z.; He, L.; Fang, S.; Qu, X.; Zhang, Q. Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnOx and TiO2 nanocrystals for sensitive detection of tobramycin. Biosens. Bioelectron. 2018, 99, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Suib, S.L. A Review of recent developments of mesoporous materials. Chem. Rec. 2017, 17, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evtugyn, G.; Porfireva, A.; Shamagsumova, R.; Hianik, T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors 2020, 8, 96. https://doi.org/10.3390/chemosensors8040096
Evtugyn G, Porfireva A, Shamagsumova R, Hianik T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors. 2020; 8(4):96. https://doi.org/10.3390/chemosensors8040096
Chicago/Turabian StyleEvtugyn, Gennady, Anna Porfireva, Rezeda Shamagsumova, and Tibor Hianik. 2020. "Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials" Chemosensors 8, no. 4: 96. https://doi.org/10.3390/chemosensors8040096
APA StyleEvtugyn, G., Porfireva, A., Shamagsumova, R., & Hianik, T. (2020). Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors, 8(4), 96. https://doi.org/10.3390/chemosensors8040096