Development of a NanoMIPs-SPR-Based Sensor for β-Lactoglobulin Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Preparation of BLG Immobilized Glass Beads
2.3. The Solid-Phase Synthesis of NanoMIPs
2.4. NanoMIPs Characterization
2.5. Development of the SPR Sensor Surface
2.6. Development of the BLG nanoMIP Based Sensor
2.7. Development of the BLG nanoMIP Cumulative Assay
2.8. Selectivity Studies of the BLG nanoMIP Sensor
3. Results and Discussion
3.1. NanoMIPs Solid-phase Synthesis
3.2. NanoMIP Characterization
3.3. Development of the BLG nanoMIP Sensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BLG | β-lactoglobulin |
nanoMIP(s) | molecularly imprinted polymer nanoparticle(s) |
SPR | surface plasmon resonance |
LOD | limit of detection |
QCM | quartz crystal microbalance |
ELISA | enzyme-linked immunosorbent assay |
SD | standard deviation |
DLS | dynamic light scattering |
TEM | transmission electron microscope |
PDI | polydispersity index |
KD | dissociation constant |
FBOs | food business operators |
PAL | precautionary allergen labelling |
VITAL | voluntary incidental trace allergen labelling |
References
- Tang, M.L.K.; Mullins, R.J. Food allergy: Is prevalence increasing? Intern. Med. J. 2017, 47, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 2014, 133, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Gendel, S.M. Comparison of international food allergen labeling regulations. Regul. Toxicol. Pharmacol. 2012, 63, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Hoffmann-Sommergruber, K.; Holzhauser, T.; Poulsen, L.K.; Gowland, M.H.; Akdis, C.A.; Mills, E.N.C.; Papadopoulos, N.; Roberts, G.; Schnadt, S.; et al. EAACI Food Allergy and Anaphylaxis Guidelines. Protecting consumers with food allergies: Understanding food consumption, meeting regulations and identifying unmet needs. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.B.; Hattersley, S.; Allen, K.J.; Beyer, K.; Chan, C.-H.; Godefroy, S.B.; Hodgson, R.; Mills, E.N.C.; Muñoz-Furlong, A.; Schnadt, S.; et al. Can we define a tolerable level of risk in food allergy? Report from a EuroPrevall/UK Food Standards Agency workshop. Clin. Exp. Allergy 2012, 42, 30–37. [Google Scholar] [CrossRef]
- Schubert-Ullrich, P.; Rudolf, J.; Ansari, P.; Galler, B.; Führer, M.; Molinelli, A.; Baumgartner, S. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem. 2009, 395, 69–81. [Google Scholar] [CrossRef]
- Ivens, K.O.; Baumert, J.L.; Taylor, S.L. Commercial Milk Enzyme-Linked Immunosorbent Assay (ELISA) Kit Reactivities to Purified Milk Proteins and Milk-Derived Ingredients. J. Food Sci. 2016, 81, T1871–T1878. [Google Scholar] [CrossRef]
- Jackson, L.S.; Al-Taher, F.M.; Moorman, M.; DeVries, J.W.; Tippett, R.; Swanson, K.M.J.; Fu, T.-J.; Salter, R.; Dunaif, G.; Estes, S.; et al. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations. J. Food Prot. 2008, 71, 445–458. [Google Scholar] [CrossRef]
- Stephan, O.; Weisz, N.; Vieths, S.; Weiser, T.; Rabe, B.; Vatterott, W. Protein quantification, sandwich ELISA, and real-time PCR used to monitor industrial cleaning procedures for contamination with peanut and celery allergens. J. AOAC Int. 2004, 87, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of MIP Nanoparticles for α-Casein Detection using SPR as a Milk Allergen Sensor. ACS Sens. 2018, 3, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Yang, Y.; Ni, X.; Peng, J.; Lai, W. Fluorescent microspheres lateral flow assay for sensitive detection of the milk allergen casein. Food Agric. Immunol. 2017, 28, 1–12. [Google Scholar] [CrossRef]
- Courtney, R.C.; Taylor, S.L.; Baumert, J.L. Evaluation of Commercial Milk-Specific Lateral Flow Devices. J. Food Prot. 2016, 79, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.E.; Rigby, N.M.; Dainty, J.R.; Mackie, A.R.; Immer, U.U.; Rogers, A.; Titchener, P.; Shoji, M.; Ryan, A.; Mata, L.; et al. A multi-laboratory evaluation of a clinically-validated incurred quality control material for analysis of allergens in food. Food Chem. 2014, 148, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Groves, K.; Cryar, A.; Walker, M.; Quaglia, M. Assessment of Recovery of Milk Protein Allergens from Processed Food for Mass Spectrometry Quantification. J. AOAC Int. 2018, 101, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Losito, I.; Palmisano, F.; Visconti, A. Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 4300–4305. [Google Scholar] [CrossRef]
- Gasilova, N.; Gassner, A.-L.; Girault, H.H. Analysis of major milk whey proteins by immunoaffinity capillary electrophoresis coupled with MALDI-MS. Electrophoresis 2012, 33, 2390–2398. [Google Scholar] [CrossRef] [Green Version]
- Desmet, G.; Eeltink, S. Fundamentals for LC miniaturization. Anal. Chem. 2013, 85, 543–556. [Google Scholar] [CrossRef]
- Pilolli, R.; Monaci, L.; Visconti, A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC—Trends Anal. Chem. 2013, 47, 12–26. [Google Scholar] [CrossRef]
- Neethirajan, S.; Weng, X.; Tah, A.; Cordero, J.O.; Ragavan, K.V. Nano-biosensor platforms for detecting food allergens—New trends. Sens. Bio-Sens. Res. 2018, 18, 13–30. [Google Scholar] [CrossRef]
- Eissa, S.; Tlili, C.; L’Hocine, L.; Zourob, M. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens. Bioelectron. 2012, 38, 308–313. [Google Scholar] [CrossRef]
- Surucu, O.; Abaci, S. Electrochemical determination of β-lactoglobulin in whey proteins. J. Food Meas. Charact. 2020, 14, 11–19. [Google Scholar] [CrossRef]
- Hohensinner, V.; Maier, I.; Pittner, F. A “gold cluster-linked immunosorbent assay”: Optical near-field biosensor chip for the detection of allergenic ß-lactoglobulin in processed milk matrices. J. Biotechnol. 2007, 130, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wen, F.; Li, Z.; Zheng, N.; Jiang, J.; Xu, D. Simultaneous detection of α-Lactoalbumin, β-Lactoglobulin and Lactoferrin in milk by Visualized Microarray. BMC Biotechnol. 2017, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Li, C.; Zhou, K.; Dong, H.; Chen, B.; Wang, F.; Zhao, G. Nanomolar Hg 2+ Detection Using β-Lactoglobulin-Stabilized Fluorescent Gold Nanoclusters in Beverage and Biological Media. Anal. Chem. 2016, 88, 10275–10283. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Liu, X.; Piletsky, S.A.; Hlady, V.; Britt, D.W. Recognition of conformational changes in β-lactoglobulin by molecularly imprinted thin films. Biomacromolecules 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Aoki, N.; Tsuchiya, A.; Kaneko, S.; Suzuki, K. Sequential Analysis of β-Lactoglobulin for Allergen Check Using QCM with a Passive Flow System. Chem. Lett. 2015, 44, 981–983. [Google Scholar] [CrossRef]
- Indyk, H.E.; Hart, S.; Meerkerk, T.; Gill, B.D.; Woollard, D.C. The β-lactoglobulin content of bovine milk: Development and application of a biosensor immunoassay. Int. Dairy J. 2017, 73, 68–73. [Google Scholar] [CrossRef]
- Minh Hiep, H.; Endo, T.; Kerman, K.; Chikae, M.; Kim, D.K.; Yamamura, S.; Takamura, Y.; Tamiya, E. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci. Technol. Adv. Mater. 2007, 8, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Rebe Raz, S.; Liu, H.; Norde, W.; Bremer, M.G.E.G. Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal. Chem. 2010, 82, 8485–8491. [Google Scholar] [CrossRef]
- Ashley, J.; D’Aurelio, R.; Piekarska, M.; Temblay, J.; Pleasants, M.; Trinh, L.; Rodgers, T.L.; Tothill, I.E. Development of a β-Lactoglobulin sensor based on SPR for milk allergens detection. Biosensors 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Amaya-González, S.; De-los-Santos-Alvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Aptamer-based analysis: A promising alternative for food safety control. Sensors (Basel) 2013, 13, 16292–16311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Sun, X.; Su, X.; Wang, T. Advancements of molecularly imprinted polymers in the food safety field. Analyst 2016, 141, 3540–3553. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Feng, X.; Halder, A.; Zhou, T.; Sun, Y. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies. Chem. Commun. 2018, 54, 3355–3358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley, J.; Shukor, Y.; Tothill, I.E. The use of differential scanning fluorimetry in the rational design of plastic antibodies for protein targets. Analyst 2016, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghaus, M.; Mohammadi, R.; Sellergren, B. Productive encounter: Molecularly imprinted nanoparticles prepared using magnetic templates. Chem. Commun. 2014, 50, 8993–8996. [Google Scholar] [CrossRef]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Lesel, B.K.; Yonamine, Y.; Beierle, J.M.; Hoshino, Y.; Shea, K.J. Temperature-responsive “catch and release” of proteins by using multifunctional polymer-based nanoparticles. Angew. Chemie Int. Ed. 2012, 51, 2405–2408. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K.J. Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody. October 2008, 130, 15242–15243. [Google Scholar] [CrossRef]
- Soon, J.M.; Manning, L. “May Contain” Allergen Statements: Facilitating or Frustrating Consumers? J. Consum. Policy 2017, 40, 447–472. [Google Scholar] [CrossRef] [Green Version]
- Waiblinger, H.-U.; Schulze, G. Action Levels for Food Allergens: An Approach for Official Food Control in Germany. J. AOAC Int. 2018, 101, 17–22. [Google Scholar] [CrossRef]
- Crevel, R.W.R.; Baumert, J.L.; Baka, A.; Houben, G.F.; Knulst, A.C.; Kruizinga, A.G.; Luccioli, S.; Taylor, S.L.; Madsen, C.B. Development and evolution of risk assessment for food allergens. Food Chem. Toxicol. 2014, 67, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Limited, T.A.B. Food Industry Guide to the Voluntary Incidental Trace Allergen Labelling (VITAL®) Program Version 3.0; Allergen Bureau Ltd.: Auckland, New Zealand, 2019; pp. 1–18. [Google Scholar]
- Holzhauser, T.; Johnson, P.; Hindley, J.P.; O’Connor, G.; Chan, C.-H.; Costa, J.; Fæste, C.K.; Hirst, B.J.; Lambertini, F.; Miani, M.; et al. Are current analytical methods suitable to verify VITAL® 2.0/3.0 Allergen Reference doses for EU Allergens in Foods? Food Chem. Toxicol. 2020, 145, 111709. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, X.; Gao, J.; Tong, P.; Chen, H. Development of a H2O2-sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β-lactoglobulin by monoclonal antibody. J. Sci. Food Agric. 2018, 98, 519–526. [Google Scholar] [CrossRef]
- He, S.; Li, X.; Gao, J.; Tong, P.; Chen, H. Development of sandwich ELISA for testing bovine β-lactoglobulin allergenic residues by specific polyclonal antibody against human IgE binding epitopes. Food Chem. 2017, 227, 33–40. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, P.; Pi, F.; Sun, C.; Sun, J.; Jia, M.; Ying, C.; Zhang, Y.; Sun, X. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens. Food Control. 2017, 74, 79–88. [Google Scholar] [CrossRef]
- Ruiz-Valdepeñas Montiel, V.; Campuzano, S.; Conzuelo, F.; Torrente-Rodríguez, R.M.; Gamella, M.; Reviejo, A.J.; Pingarrón, J.M. Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 2015, 131, 156–162. [Google Scholar] [CrossRef]
- Shah, F.; Shi, A.; Ashley, J.; Kronfel, C.; Wang, Q.; Maleki, S.J.; Adhikari, B.; Zhang, J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1361–1387. [Google Scholar] [CrossRef] [Green Version]
Milk Allergens | Binding Affinity KD (M) |
---|---|
β-Lactoglobulin | 7.0 × 10−8 |
Lactoferrin | 2.1 × 10−4 |
α-casein | 3.2 × 10−4 |
k-casein | 3.1 × 10−4 |
Analytical Tools | Matrices | LOD | Linear Range | Ref. |
---|---|---|---|---|
Fluorescent-sandwich ELISA 1 | BLG | 0.49 ng mL−1 | 125–4000 ng mL−1 | [44] |
Sandwich ELISA | BLG | 1.96 ng mL−1 | 31.25–8000 ng mL−1 | [45] |
Liquid Chromatography tandem Mass Spectrometry method | BLG peptide | 0.39 µg mL−1 | 0.48–31.25 µg mL−1 | [46] |
SPR 2 immunosensor | BLG | 1.71 mg mL−1 | 10–1000 ng mL−1 | [27] |
SPR immunosensor | BLG | 0.16 µg mL−1 | 50–500 µg mL−1 | [30] |
SPR nanoMIP sensor | BLG | 3.10 ng mL−1 | 1–5000 ng mL−1 | This work |
QCM 3 immunosensor | BLG | 1 µg mL−1 | - | [26] |
Electrochemical magnetic-immunosensor | BLG | 0.8 ng mL−1 | 2.8–100 ng mL−1 | [47] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aurelio, R.; Ashley, J.; Rodgers, T.L.; Trinh, L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Development of a NanoMIPs-SPR-Based Sensor for β-Lactoglobulin Detection. Chemosensors 2020, 8, 94. https://doi.org/10.3390/chemosensors8040094
D’Aurelio R, Ashley J, Rodgers TL, Trinh L, Temblay J, Pleasants M, Tothill IE. Development of a NanoMIPs-SPR-Based Sensor for β-Lactoglobulin Detection. Chemosensors. 2020; 8(4):94. https://doi.org/10.3390/chemosensors8040094
Chicago/Turabian StyleD’Aurelio, Roberta, Jon Ashley, Thomas L. Rodgers, Linda Trinh, Jeff Temblay, Mike Pleasants, and Ibtisam E. Tothill. 2020. "Development of a NanoMIPs-SPR-Based Sensor for β-Lactoglobulin Detection" Chemosensors 8, no. 4: 94. https://doi.org/10.3390/chemosensors8040094
APA StyleD’Aurelio, R., Ashley, J., Rodgers, T. L., Trinh, L., Temblay, J., Pleasants, M., & Tothill, I. E. (2020). Development of a NanoMIPs-SPR-Based Sensor for β-Lactoglobulin Detection. Chemosensors, 8(4), 94. https://doi.org/10.3390/chemosensors8040094